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Deuterium atoms form a fascinating spin-one Fermi fluid of moderate density. Several properties
of this fluid are evaluated using the self-consistent Green-function method of many-body theory.
The aim is both to determine the properties and to see how well Green-function methods can be im-

plemented in a moderately dense Fermi liquid. Approximations begin with the self-energy. This is
separated into Brueckner-Hartree-Fock terms and correlation or two-hole —one-particle (HHP)
terms. We find ground-state energies E in reasonable agreement with Monte Carlo values. While
the HHP terms are not so important for E, they lead to a significant enhancement of the effective
mass m* at the Fermi surface cF. The particle-hole interaction is calculated from the self-energy
using the conserving Baym-Kadanoff method. This leads to Landau parameters Fo that are positive
and an F

&
that is consistent with m

I. INTRODUCTION

A key purpose of this paper is to test how well proper-
ties of a moderately dense Fermi liquid such as atomic
deuterium may be evaluated using Green-function
methods. The Green-function method we employ is set
out in several standard texts on many-body theory. '

We implement the method to evaluate the ground-state
energy, single-particle properties such as particle ener-
gies, lifetimes, and effective mass, and the interaction ap-
pearing in the dynamic susceptibility. We test the results
using internal consistency such as the Hugenholtz —van
Hove theorem, the equality of effective mass calculated in
different ways and by comparison with Monte Carlo
(MC) and correlated basis function (CBF) calculations.

The present work is similar in spirit to that of Mahaux
and collaborators " and of Dickoff; Polls, and
Ramos' ' in nuclear matter. Particularly, we em-
phasize the role of two-hole —one-particle (HHP) or
correlation terms in the self-energy and the consistent
treatment of particle and hole propagation.

The deuterium atom consists of a single electron and a
deuteron nucleus having nuclear spin I=1. The deuteri-
um atom is a composite fermion. ' We assume the elec-
tron spin of each atom is aligned (downward) as if anti-
parallel to a strong applied field (D~). Only the nuclear
spin is a free variable providing a spin I=1 Fermi quid.
With electron spins aligned, two D~ atoms interact via
the weak b X„+ potential' which has a well depth of
c —6.4 K at separation ro=4. 2 A and a core radius

0
cr =3.69 A. The D~-D~ potential is compared with the
He-He potential for which o. =2.6 A in Fig. 1. The satu-
ration volume of liquid deuterium is V, =190 cm /mol
compared with V, =36.8 cm /mol for liquid He. Thus,
the saturation density n, o. =0.20 of D~ is approximate-
ly one-half that of liquid He and atomic deuterium forms

a moderately dense Fermi Auid.
Also, with nuclear spin I=1, there are three possible

spin states, I, =1, 0, —1. We consider models in which
all three nuclear spin states are equally occupied (D3),
two spin states are equally populated (Dzt) and one (D~t)

spin state is populated. This greater spin flexibility al-
lows us to test the role of spin Auctuations more fully
than in liquid He. A second purpose here is to evaluate
the properties of D~.
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FIG. 1. The D~-D~ potential given by Eq. (1) and the He-He
potential (HFD-B of Ref. 44).
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In Sec. II we sketch what is known about D~. In Sec.
III we outline the Green-function method used here. The
spin dependence of the interaction, especially when three
nuclear spin states are equally occupied (D3i), is set out in
Sec. IV. The starting point is the first-order self-energy
using a T-matrix interaction. Results for the single-
particle energies, the effective mass, the ground-state en-

ergy, the particle-hole interaction derived from the self-
energy using the Baym-Kadanoff' method, and Landau
parameters are presented in Sec. V. The results are dis-
cussed in Sec. VI ~

II. ATOMIC DEUTERIUM

To date, atomic deuterium, D~ has been prepared' in
a high magnetic field 8 up to densities n = 10'
atoms/cm only. Early theoretical studies showed
that D~ formed a highly quantum gas, due to its light
mass and relatively weak interaction. At higher densities
D~ displays many interesting properties. ' MC cal-
culations ' have shown that (D~) and (D3i) form a self-
bound liquid when compressed to densities n =4X10 '

atoms/cm . The total energy of (D&i) also has a minimum
but the energy is always positive. SuperAuidity in D~ has
been proposed ' and a Fermi-liquid theory for spin
I = 1 has been developed.

As a model, we assume atomic deuterium (electron
spin alignment) but take the applied field B =0. We also
ignore the hyperfine interaction between electron and nu-
clear spins. The Hamiltonian is then

p.H=g + gv(rj ) .
i i(j

The pair potential v ( r ), the same for atomic H i, D i, and
T, has been calculated by Kolos and Wolniewicz' for
separations 0.5 ~ r ~ 6. 5 A. The long-range van der
Waals attraction has been evaluated by Bell and by
Hirschfelder and Meath. We use Silvera's fit to v(r)
as quoted by Friend and Etters,

V(r) =exp(0. 096 78 —1. 101 73r —0.3945r )

—IB(r r, )
—e(r, r)—exp[ —(r, /r —1)—]]

6.5 124 3285
6 8 10

where 6 is the Heaviside step function and r, =10.0378.
The r and v (r) are in atomic units.

As noted, with I= 1, three nuclear spin states I, = 1, 0,—1 are possible for each atom. We consider doubly spin
polarized D (Dii) in which only one nuclear spin state is
allowed (say, I, = —1), and D2i and D3( in which two and
three spin states are assumed to be equally populated, re-
spectively. As a model, D, is analogous to nuclear spin-
polarized He ( He ). D2" is analogous to normal He in
which two-spin states are equally populated while D3 is a
new three-spin-state Fermi fIuid. In practice, via the
hyperfine interaction, D~ atoms having electron and nu-
clear spin opposite can Hip electron spins which leads to
D2 molecule formation. This removes nuclear spin

atoms and leaves predominantly nuclear spin-down (f)
D~ atoms. Thus, the D&~ states is most likely to be ob-
served, in practice, providing doubly spin-polarized deu-
terium. This nuclear spin alignment may be of practical
importance in DT fusion reactions. '

III. MAlVY-BODY THEORY

A. Galitskii-Feynman-Hartree-Fock approximation

Our goal is to explore how well properties of the
moderately dense Auid, atomic deuterium, can be calcu-
lated using Green-function methods beginning from the
pair interatomic potential v(r). We begin with approxi-
mations to the energy of a single particle in the Quid,

The interaction I &z, z(12, 12) is the diagonal component
of the spin-symmetrized interaction

I, (12,34) = I (12,34)5, 6 —I (12,43)5, 6, (4)

which is the sum of a direct [I =I (12,34)] and an ex-
change [I =I (12,43)] term. The self-energy (3) is de-
rived in standard texts by summing the "ladder" dia-
grams. In this summation the Fourier transform of the
bare potential v (q) is replaced by the T matrix I related
to v (q) by

I (1234)=v(p, —p3)

+i f d5v(p, —p )G, (5)G (6)I (56, 34)

with a similar equation for I with indices 3 and 4 inter-
changed. We call this the Galitskii-Feynman T matrix.
By using (4), both the Hartree (I +) and Fock (I +) terms
are included in (3). The GFHF self-energy (3) and the
GF T matrix (5) are depicted graphically in Fig. 2. The
bare potential v (r) enters the theory via (5).

For Gz(2) in (3) and Gi(5) and Gz(6) in (5), we assume
the free-particle form

(1—n )
G(p, co) = +

CO Cp + l'g

fl
p

CO Cp l 'g

= Gp(p, cv)+6'(p, cv), (6)

where s = c.(p, s ) is the "on-energy-shell" value of
s(p, co) in (2). The total G(p, cv) may be regarded as the
sum of particle (P) and hole (H) terms describing propa-
gation of particles above the Fermi sea and holes within

&dp, ~)= +&i(p ~)
2m

Here p, co, and A, are the momentum, energy, and spin of
the particle, respectively. For the self-energy we use the
lowest-order value, which we call the Galitskii-
Feynman-Hartree-Fock (GFHF) approximations,

X,(1)=—i Jd2+I, , (12, 12)G (2) . (3)
2

Here 1=p,co„ the subscripts are nuclear spin labels, and
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in (8) is retained, I" reduces to the Brueckner G matrix.
Equation (8) is discussed in detail by Ramos et al. '

B. Properties of the GFHF approximation

V I

FIG. 2. (a) The lowest-order self-energy, Eq. (3). (b) The
Cxalitskii-Feynman T matrix.

the Fermi sea, respectively. In (6), n~ =e(s~ s~) —is the
Fermi gas momentum distribution and cz is the Fermi
energy.

The I (12,34) is a renormalized interaction between a
pair of atoms having initial momentum p& and p2 and to-
tal initial energy E =co, +cu2,

I (12,34)=I (pip2, p3p&,'E =cvI+ro2) .

The total energy and momentum are conserved in the in-
teraction,

E —co
~
+602 —F3+c04,

P=PI+P2 P3+P4-

Using the form (6) for G(5) and G(6), assuming "on-
shell" energies E5 = s(p ~, s~), and because I depends only
on E, we may integrate over the energy variable co5 in (5)
to obtain

I (12,34) =v(p, —p3)

d p5+
3

U P& Ps
(2m. )

X(2)( 1 )

=
—,
' f d2 fd5I (15,26)G(5)G(6)I (62, 51)G(2) . (9)

Spin indices are omitted in (9). In X' '(1), I is written in
the configuration of a particle-hole interaction. To see
that X' '(1) contains no topologically diFerent diagrams
from (3) when expression in terms of the bare interaction
v(q), note that the T matrix in (3) contains terms such as

—f d51 (12,56)G(5)G(6)I (56, 12) (10)

OC OC

6

(a)

The GFHF approximation consists of iterating the
above equations (2)—(4) and (8) until consistent with
E = E,

&
+E2 set at its "on-energy-shell" value. In general,

X(p, co) is complex and we iterate the equation both with
and without the imaginary part of X(p, co) for compar-
ison. Once the iteration is complete, "off-energy-shell"
values of X&(p, co) and related properties can be calculat-
ed. The GFHF model has several features. A continuous
single-particle energy (2) is used with no gap at the Fermi
surface. ' There is a symmetric treatment of particle and
hole states' ' in both 6 and I . In the more usual
Brueckner G matrix, scattering to only intermediate par-
ticle states is included.

The CxFHF self-energy depicted in Fig. 2 can be de-
rived as the lowest-order self-energy, obtained by sum-
ming "ladder" diagrams (e.g. , p. 85, Ref. 1). However, it
is interesting to note that the self-energy which is second
order in I contains no new diagrams that are not already
in the first order X, Eq. (3). The second-order self-energy,
depicted in Fig. 3(a), is

(1 n~)(1 n6)— —
D+ic

n5n6

D —ie

XI (56, 34) . (8)

Here D =E—c5 —c6 is the energy denominator. I is the
sum of a particle-particle (PP) term (1 n5 )( 1 n6 )— —
representing scattering to intermediate particle states
above the Fermi sea and a hole-hole (HH) term (n5n6)
representing scattering to intermediate states within the
Fermi sea. The form (8) displays the symmetric treat-
ment of particle and hole states in I . If only the Pp term

+ 0 ~ ~ ~

FICx. 3. (a) The second-order self-energy, Eq. (9}. (b) Terms
contained in the Galitskii-Feynman T matrix.
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as depicted in Fig. 3(b). The first-order self-energy in (3)
due to this term (10) of 1 is

separate X into two parts,

~PPH+ ~HHP (13)

i——f d2 fd5I (12,56)G(5)G(6)I (56, 12)G(2) .

By formally interchanging the labels 5 and 2 and using
I (26, 15)= I (62, 51), we may write (11)as

X(1)=—,
' f d2 f d51 (15,26)G(5)G(6)I (62, 51)G(2),

(12)

following Ramos et al. ' Here P (H) denotes a particle
(hole) contribution to X in the spirit of the hole-line ex-
pansion, as specified below. In (6), we saw that the
Green-function separates naturally into a particle and a
hole term. From (8), the T matrix separates into a PP
and a HH term. This separation appears generally in the
Lehman representation of I . Suppressing the momen-
tum indices, this representation is

which is the same as the second-order self-energy (9).
Thus, the second-order term (9) is not topologically dis-
tinct from the first-order GFHF term. —:rpp(E) + rHH(E)

r, (x)
E —2@+x—iq

(14)

C, XppH 8Ild XHHp

To compare with previous studies' ' ' and to identify
the origin of specific properties, it is convenient to

where p=eF. The I pp(E) has particle poles lying below
the real axis at E=2p+x —ig Sub. stituting (14) and (6)
into (3), the self-energy is

d P2 dh)2
X(co, )= i — [I PP(co, +co2)+I HH(co, +co~)][G (co~)+GH(co~)]

(2~) 2~)

d P2 [I p (Ct)1+F2)n I HH(M1+Ep)( 1 pn)]
(2~)

=~PPH( ~1 ) +~HHP( ~1 ) (15)

In (15), the integration over co2 has been done by contour
integration and closing the contour above or below the
real axis to avoid the poles in I (co, +coz). Clearly, XHHP
contains two hole lines from the second term I HH in I
and a particle line (1 n2). The XPPH is—structurally the
same as the usual Brueckner-Hartree-Fock (BHF) self-
energy. However, since we retain both terms in (8) for
the interaction, I, the value may be somewhat different
from the BHF value calculated with a G matrix. On the
basis of the hole-line expansion, we expect XHHp to be
smaller than XppH.

Using the analytic properties of 1 in (14), the imagi-
nary part of X(p, co) is

P22"(p„co,)=f, I "(co,+E, )(2'�)
X [B(co1+E~

—2P)B(P —E2)

P22"(p„co,)=f I "(co,+E2)(2'�)'
X [B(p,—E~) —B(2p —a), —E~)], (17)

P2 I ' co)+co2 n2(2' )

dp r"(p)' --- -,+,-y

which is the form we evaluated. From (17) it is clear that
X"(p„co,) must vanish at co, =p, .

Combining terms in (15) and using the analytic proper-
ties of 1 in (14), the real part of X(p, co) may be written as

d P2
X'(p, , co, )= [I '(co, +co )nz —I HH(co1+Ez)]

(2m. )

—B(2p —co, —E~ )B(E~
—p ) ] =~PPH(P 1 & ~1 +~HHP(P 1 ~ ~1 ) (18)

=~ PPH(~1)+~ HHP(~1) (16)

The first term Xp'pH clearly contributes for co, & p only
while the second term XHHp contributes for co, &p only.
Using

B(x —2p) = 1 —B(2p —x ),
X" can be written as

The XppH is X ppH but including the HH terms in I to
complete I . Thus, strictly XppH contains both the PP
and HH lines in I . From previous work, scattering to
particle states dominates I . Similarly, XHHP(p, , co, ) con-
tains both particle and hole states in G.

Because X p'PH(p, co ) contributes only for m & p and
X HHP(p, co) contributes only for m (1M, the corresponding
real parts are often denoted as the polarization potential
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[V, =X pp~(p, a] ) ] and correlation potential
[V&0

=X ~~p(p a] ) ], respectively. The V, is clearly the
Brueckner-Hartree-Fock potential. The V„ is also
denoted as the rearrangement energy. In previous work,
we evaluated the full X"(p,a]) in (17) including both
X pp~ and X zzp. However, we evaluated only Xpp~ in
the real part. A chief goal here is to include Xz@p and in-
vestigate its size and character. The X~~p has been in-
cluded in nuclear matter by Ramos et ah. ' ' and as an
addition to the Brueckner-Hartree-Fock by Mahaux
et al. '

IV. SPIN DEPENDENCE OF THE INTERACTION

In this section we set out the spin dependence of the in-
teraction r]&34(12,34) in (4) for D]~, D2, and D3~.

In D~, with all nuclear spins aligned, there is only a
single interaction I

& & & &. If we introduce relative incom-
ing and outgoing momenta, k= —,'(p] —p2) and
k'=

—,'(p3 —p4), respectively, and the usual angle averag-
ing over the c.m. momentum P, we may expand I in (4)
in angular-momentum components

P, iI= 1 ) =o,
P, lr=o& = lr =o),

where I=I; +I - is the total spin and I=0,2 are the spin-
symmetric states and I= 1 is the spin-antisymmetric
state. Then, the general form for the spin dependence of
the interaction is

r]234 r]~]3|]2/+ rQ( 12I(I; I, )+(I; I, )'l34 & . (23)

Then one easily obtains

I )t ))=I",+2I =2a
r'='= r, =2a, ,

(24)

teraction in a space-symmetric state involves only the
even-I components of I (2a, ) and a space-antisymmetric
state involves the odd-I components (2ao).

Note that the operator

I, Ij + ( I,. Ii ) =2P, ,

where P, is the projection operator on spin-symmetric
states; that is,

I (k, k', P)=g(2L+1)r P (cosB„) .
L

(19) which gives

I )=2a, ,
Expanding both the diagonal I and I in (4) using (19),
we find I

& & & &
contains only odd-angular-momentum

components

rs=—r]]]]=rD(k,k, p) —rE(k, —k, p)=2ao, (20)

I z=ao —a, .

This allows us to express I,234 in terms of the I I in (23).
The three nonvanishing interactions are

where

ao =g(2L + 1)I L(k, P )
L

odc1

r»» ——I =r, +2r, ,

I „„=I,-, =r, +r, , (26)

is a sum over odd-L components of I z. Equivalently,
since the spin state is symmetric, the space state is an-
tisymmetric and I

& & & &
contains only odd-angular-

momentum components. We evaluated I by evaluating
the individual I z and summing.

For I; =1, the spin-symmetric interaction which ap-
pears in density-dependent properties and the spin-
antisymmetric interaction which appears in magnetic
properties are conveniently defined as

I '=
—,'I ]]]]+(r] ] +1 ]]]])= —,'(4ao+2a, ),

Dz has two equally populated spin states as in a spin- —,
'

Fermi liquid (e.g. , normal He). As in liquid He, the
spin-symmetric and spin-antisymmetric interactions are

r'=-,'(r„„,—r»») =, (a, —
The I

& &
does not appear in I ' because spins perpen-

dicular to the z axis (~) do not contribute to the magne-
tization. Using (27) we can relate I"and I ' to the calcu-
lated I z.

r'=
—,'(r t] t] —r] &~] ) = —,'(a

(22) V. RESULTS

In this case we have fermions of nuclear spin I, =1, in
which the three-spin states I;,= —1,0, 1 are equally popu-
lated. Since we take B=0 and there are no explicitly
spin-dependent forces, the spin dependence of the in-
teraction is introduced by the symmetry imposed on the
space state by the symmetry of the spin state. The in-

In this section we present results for the single-particle
energies s(k), the effective mass m*(k), the ground-state
energy E, and the particle-hole interaction I I, , within
the GFHF approximation in Sec. V A —V D, respectively.

A. Single-particle energies

The GFHF single-particle energies are given by Eqs.
(2) and (3). From (2) and (18), the real part of the on-
energy-shell single-particle energy is
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ReE(k) =Res(k, e(k) )

=Eo(k)+N, f 1' (l2;E, +E2)nz —Pf (dy/~)
I' (l2;y)

(27') 00 C)+Ep

—:E(k)+XppH(k)+XHHp(k) (28)

Here E (k)=(haik) /2m, I'(12,EI+s2) is the diagonal and
on-energy-shell T matrix (8) and EI =s(kI ). The I' is the
spin-symmetric value of the T matrix defined in Sec. IV
and X, is the number of spin states; N, =1, 2, and 3 in

D„Dz, and D~, respectively. The imaginary part of E(k)
is given by the on-energy-shell value of (17). Summation
over the spin states in (17) also leads to the interaction
X,I' .

In Figs. 4—6 we show the E(k) for DI, D2, and D~.
These were obtained by iterating Eqs. (2), (3), and (8) re-
taining only the real part of c ( k ) in the T matrix during
iteration. The imaginary part of E(k) in Figs. 4—6 was
calculated using the converged T matrix. In Fig. 4 we see
that Res(k) for DI moves to lower energy as the density

0
n is increased. Here n, =3.5X10 A is the satura-
tion density. However, the shape of ReE(k) in Fig. 4 is
largely independent of density. The lme(k) is positive for
k & kF due to X HHp and negative for k ) kF due to X ppH.

In Fig. 5 for Dz~ we see that ReE(k) shows a flattening
at k=kF. The magnitude of this flattening increases
with increasing density. In Fig. 6 for D~ we see a similar
and more pronounced flattening of ReE(k) at k=kF,

especially at high density. Also, substantial structure ap-
pears in e(k) for D2~ and Dz~ at k (kF at higher density.

The flattening of s(k) at k =kF and the structure in
e(k) have the following origins. Firstly, the flattening of
Res(k) at k=kF comes predominantly from XHHp, the
correlation potential. In the lower half of Fig. 7 we show
Res(k) with (line 1) and without (line 2) XHHp. Clearly,
including only XppH line 2 in Fig. 7, we obtain a nearly
parabolic E(k). XPPH(k) and XHHP(k) are shown in the
upper half of Fig. 7. XHHp(k) makes a positive or "un-

0
binding" contribution to E,(k) for k )0.2 A '. The mag-
nitude of XHHP(k) from Fig. 7 clearly reaches a max-
imum below kF and falls rapidly near kF. This drop in

XHHp leads to a flattening in E( k).
The flattening of E(k) at kF also apparently depends on

spin fluctuations. There is no flattening of Res(k) in D,
where all spins are aligned and spin fluctuations are
frozen out. The flattening is more pronounced in D&
than in D2. In D& where three spin states are allowed,
spin fluctuations may be expected to play a larger role.

In general, we found that the iteration between the T
matrix and e(k) converged most rapidly and to the most
stable solution at low density for D&. This might be ex-
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FIG. 5. The same as Fig. 4 for D&~, n, =3 17 X 10 '

atoms/cm'.
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pected since the present many-body theory is a low-
density theory. Also, in D&~ the exchange interaction
operates between all spins. This exchange correlation is
included in the GFHF self-energy and provides correla-
tions between all particles in D&~. The exchange correla-
tions in D, reduce the need for an explicit description of
higher-order correlations so that GFHF is a better theory
for D, than for D2 or D3.

Convergence of the iteration was slowest and least
stable for Dz and D3 at high density. In Fig. 8 we show
ReE(k) obtained in the last few iterations for D2 at
n =1.03n, and n =1.47n, . At n =n„ the final few
ReE( k ) all lie on a single line except at k =0. At
n =1.5n, the ReE(k) does not converge well at all for
k ~0.3 A '. However, the flattening of s(k) at k=kF
appears in all the final few E(k) so that we believe this
flattening is well determined. The structure in E(k) at
low k (k ~0.3 A ') is not well determined. We believe
the poor convergence at higher density in D2 and D3 is
due to the nonmonatomic behavior of s(k) introduced by
XHHp which we were not able to describe well from one
iteration to the next.

Convergence was rapid and stable when only XppH, the
Brueckner-Hartree-Fock potential, was included. This
was especially true when the full complex E(k) was in-
cluded in the iteration. In all cases when E"(k) was in-
cluded in the iteration, we retained the full imaginary
part, XppH and XHHp. The converged Res(k) had some-
what lower energy when E"(k) was included in the itera-
tion, leading to a somewhat lower ground-state energy, as
discussed in Sec. III C.

c
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B.EfFective mass

The effective mass is defined as

m*(k)=k "'"'
dk

(29)
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0.5
I I
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k (A')

2.0 2.5
This is a total derivative of the on-energy-shell E(k) in
which all components entering E(k) (the single-particle
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FIG. 7. Upper: Final iterated values of XppH and XHHp,
given by Eq. (18), in D2~ at density n =1.49n, . Lower: Line 1 is
the corresponding self-consistent value of c,(k)=F (k)+XppH
+XHHp line 3 is c,( k )= c, ( k ) +XppH (line 1 without XHHp), and
line 2 is the self-consistent c,(k) =c (k)+XppH obtained by
iterating with XppH only.

3
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k {A-')

0.6 0.8 1.0

FICi. 8. Values of Res(k) obtained from the last few itera-
tions in D2, at n =1.03n, and 1.49n, .
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FIG. 9. Effective mass of D3~ obtained by differentiating
Res(k) of Fig. 6 using Eq. (29) at these densities. 4

FIG. 11. Effective mass of D&~ obtained from Res(k) in Fig.

energies and the T matrix) change with k. We evaluated
m*(k) by numerically differentiating the ReE(k) shown
in Figs. 4-6.

In Fig. 9 we show m *(k) for D3i at three densities. The
m*(k) is clearly enhanced well above unity at k values
slightly larger than kF. This mass enhancement follows
from the flattening of E(k) near kF and increases with in-

creasing density. In liquid He, m *(kF ) increases from
m *=3 to 5 between saturated vapor pressure (SVP) and

p =25 bars. Clearly when spin fluctuations are possible,
m*(k) can show enhancement in Di. An enhancement
of m*(k) near k„was apparently first proposed by
Brown et al. " for nuclei. The present calculations sug-
gest this enhancement is due to spin Auctuations and it
increases with density as observed in liquid He. The
m '(k) shown in Fig. 9 are calculated from an average of
(29) over the final few spectra e(k) to obtain smooth
values.

In Fig. 10 is m*(k) for Dzi at three densities. The

m (k) again peaks at k=kF and m (kF) increases with
increasing density. The magnitude of m (k~) is, howev-
er, significantly smaller in Dz" than in D3~. The m *(k) for
D& is shown in Fig. 11. In this case there is no effective
mass enhancement and m *(k) appears to decrease with
increasing density if anything. We do not attribute any
significance to the small peak in m *(k) at the low density
n =0.74m, in D&~.

In Fig. 12 we compare m (k) for Di, Dzi, and D3 at
their respective saturation densities. The increasing
enhancement of m*(kF) with an increasing number of
spin states strongly suggests the enhancement is related
to spin fluctuations. The width of the peak in m "(k) is
comparable to that found in nuclear matter. ' The
enhancement here is due almost entirely to the correla-
tion term XHHp which produces the flattening of E(k) at
k =kF. We have not attempted to separate m into its
"k mass" and "Emass" components.

In Table I we compare the m *(kF ) at k =kF obtained

p~
2

40.
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FIG. 10. Effective mass of Dz obtained from Rem. (k) in Fig. FIG. 12. Effective mass m * given by Eq. (29) in Dl, D~, and

D3 at saturation density n, in each case.
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TABLE I. Effective mass calculated from Landau parameters
(m*=1+F', /3) and from the m "(kF)=kF[de(k)/dk]z ' from

Fig. 12.

D2

1.5

103n (A3)
3 4

I I

(1+F;y3)I *(kF)
0.94
0.90

1.67
1.7

2.43
2.2-3.0

1.0

0.5

from (29) with the m* calculated using the Landau rela-
tion m*=(1+F', /3). In the latter, F', was calculated
from the converged T matrix at low wave vector as dis-
cussed in Sec. V D. From Table I we see that the I * cal-
culated by the two independent methods agree well.

0.0&.

C. Ground-state energy

The total energy may be obtained as

E S,
—',EF+ gX'(k„,E)n, ,2% k

I

(30)

-1.5 I I I I I I

0.05 0.10 0.15 0.20 0.25 0.30 0.35

flg3

where X'(k „E,) is the real part of the on-shell self-energy
in (28). In Fig. 13, we show E/X for the nuclear spin-
polarized case D~~. In Fig. 13, the line marked E is the
fu11 GFHF value including XppH and XHHp and iterated
with real E(k). The E~ is E iterated with real energies
E(k) but with the correlation term XHHp omitted. By

FIG. 14. Ground-state energy of D& and D3. E is the full
GFHF energy iterated using a real c.(k), and E& is the GFHF
energy iterated with a complex c(k) but without ReXHHp.

comparing E and Ez, we see that XHHp makes a positive
contribution to E. The magnitude of XHHp increases with
density. From the hole-line expansion picture, we expect
terms containing hole lines (two in this case) to increase
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FIG. 13. Ground-state energy of doubly spin-polarized deu-
terium D&~(o. =3.69). E is the full Galitskii-Feynman-Hartree-
Fock (GFHF) energy iterated using a real single-particle energy
spectrum E(k), E~ in the GFHF energy iterated using a real
c(k) without ReX„», Ec is the same as E„' but using a complex
c(k). MC is the Monte Carlo result D&~(o. =3.69) of Panoff and
Clark (Ref. 34).
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FIG. 15. Ground-state energy of D&, D2, and D3. The solid
line is the GFHF energy iterated using a real c(k), and the
dashed line is the MC values of Panoff'and Clark (Ref. 34}.
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TABLE II. Parameters of Eq. {31)obtained by fitting (31) to the GFHF energy shown in Fig. 15.

(10'n, o. )

0.1685
0.1633

E,
(K)

0.454
0.414

1.096
1.525

B
(K)

1.44
1.11

C
(K)

—0.82

D2l 0.1559
0.1541

0.0291
0.0287

0.776
0.773

0.70
0.50 —0.30

0.1729
0.1724

—0.3123
—0.3123

0.930
0.918

—0.44
—0.48 0.069

as kF increases. The contribution of XHHp to E here has
the same sign and density dependence as found by Ramos
et a/. ' in nuclear matter. The E' in Fig. 13 is essentially
the Brueckner-Hartree-Pock energy.

In Fig. 13, Ec is E/N calculated retaining the imagi-
nary part of E(k) in the iteration and omitting XHHp. A
typical imaginary part to E(k) is shown in Fig. 4. By
comparing Ec and Ez, we see that including the imagi-
nary part leads to a somewhat lower E/N. However, the
difference is small. This means that the real parts of E(k)
obtained by iterating with and without X"(k) are also
similar.

We obtained the highest E by iterating with real E(k)
and including XHHP and the lowest E (Ec) iterating with
complex s(k) and omitting XHHp. These ground-state en-
ergies E and E~ represent the maximum "spread" in en-

ergy obtained using the present basic method. E and E~
are shown in Fig. 14 for D& and D3. We could not use a
complex E(k) in XHHp since the cutoff in y at 2p and at
low y which we used are only valid for real E(k).

The full GFHF energy is compared with Monte Carlo
values by Panoff and Clark in Fig. 15. The MC values
may be regarded as "benchmark" values. From Fig. 15
we see that the GFHF predicts an E which is too high for
D, but too low for D3. This is similar to liquid He in
which E& was comparable but higher than MC values for
spin-polarized He (Ref. 43) but E& lay below the ob-
served E in normal He (Ref. 46).

We fitted the polynomial

—=E + Ax +Ex +Cx (31)
N

where x=(n n, )jn, to the GFHF—ground-state ener-
gies shown in Fig. 15. The resulting saturation energy E,
and density n, and parameters A, 8, and C are listed in
Table II. The values of k~ and c.F at the saturation densi-
ty n, are listed in Table III. The value of the Fermi ener-

gy

s =(fi /2m)(6~ n ) /X

depends on the number of spin states N, . The zero-order
kinetic energy (E ) =3EF/5 is largest in D," and smallest
in D3 and this sets the relative values of E for D] D2,
and D3. The spin-symmetric interaction I ' for D& con-
tains only odd-angular-momentum components. Particu-
larly, the repulsive s-wave component is excluded. Thus,
the potential energy is most attractive in D&~ which brings
the total energy at saturation E, of D, , D2, and D3 much
closer together than suggested by the kinetic energy alone
(see Table III). There is clearly a very sensitive cancella-
tion between kinetic and potential energies making a pre-
cise calculation of E difBcult.

We included the Cx term in (31) solely to test the sen-
sitivity of n„E„and A to the fit used. Table II shows
that E, and A are not very sensitive to whether Cx is in-
cluded in the fit or not, except for A in D, . The
compressibility a '—:V(B E/d V ) at saturation is

d (E/X)nv =n
Bn n =n

S

=2A . (32)

The value of the compressibility is well determined for
D~ and D3 but may be off by 50% in D&.

(33)

Using the GFHF self-energy (2), this interaction is, gen-
eralized to nondiagonal form,

D. Interaction and Landau parameters

Following Baym and Kadanoff, ' the interaction ap-
pearing in the dynamic susceptibility which is consistent
with the self-energy is

TABLE III ~ Saturation properties of D&, D„and D3 in the GFHF approximation.

D1
D2
D3l

10 n,
(A -')

3.35
3.17
3.54

Pl 0

0.163
0.154
0.172

V,
(cm /mol)

185
196
170

kF
(A -')

0.578
0.450
0.412

0
CF

4.05
2.45
2.02

E,
(K)

0.41
0.029

—0.31
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I, (12,34)=I, (12,34)+g Jd5 I, (15,46)G (5)G (6)1 (62, 53) .
5, 6

(34)

1=p+Q,
2=p

3=p

4=& '+Q

(35)

where momentum and energy conservation has allowed
the number of independent four-vectors to be reduced by
one. Physically, Q corresponds to the four-momentum
carried through I(p + Q,p', p, p'+Q ). The Landau
theory refers to the limit Q~0 and

~ p ~

=
~

p'
~

=k~.
Defining the Landau angle OL as the angle subtending p
and p', reduces I(p,p', p, p') to I(cosOL ). The well-
known relation' which expresses l(p, p', p,p') in terms of
the Fermi-liquid quasiparticle interaction f(p,p', p,p')
(and, consequently, the Landau parameters) is

(36)
We now consider various approximations to this ex-

pression. As a first approximation we take

The leading term in (34) is the T matrix. The T matrix is
the part of the total ph interaction that is primarily re-
sponsible for renormalizing the steeply repulsive part of
U (r). The second term is called the induced or polarized
interaction. It represents the interaction between a ph
pair via the density (I") and the spin-density (I ') excita-
tions. The Landau parameters can be calculated from the
proper spin combinations of I(12,34)." The Landau
limit is most easily understood by defining an alternate
set of four-momenta:

r

dn
L dE,

3cp

2
nf, , (37)

where (dn/de), is the density of states per unit volume
F

at c~ and L denotes the Lth Legendre coefficient. We
note firstly that Fo is negative. The compressibility ~ in
Landau theory is given by

1 dn 1nK= (38)
n d c. 1+Fo

In order to have a positive compressibility, we must have
F~ & —1. The negative values of F~ te11 us that the ap-
proximations

fV»S'' p u') =~(p p' S' p') =I (p p' p p')

predict an unstable Auid. It does not properly describe
the Landau limit.

Dickho6' et al. " have shown that the e6'ect of the
second term of (36) can be reasonably simulated by re-
placing the 2E(k~) used above by a "starting energy"
Eo(Q) given by

f(p u' p p') =~(u p' u p') = f'(s»s"' p p') .

Note that, if l(p, p', p,p') were frequency independent,

f(p s
'

p p') =~(s»u' u s ')

due to the analytic structure of G (q). In Table IV we
show Landau parameters calculated from this approxi-
mation. The details of the analysis are given by Clements
et al. and here we mention only that the total energy in
the T matrix is set at E =2E(k~). These are Landau pa-
rameters at saturation density n, using the self-consistent
T matrix. They are in dimensionless units

d'p n(p)E(p) d'p n (p)
(2m ) E(p) —s(p —Q) (2') E(P) —e(P —Q)

(39)

In the Landau limit, Eo reduces to 2e(kz) ——43E~ where
8~=A' k&/2m' with m* given by Eq. (29). Our second
approximation is then,

f(p,p', p,p') =I(p,p', p,p') = I (p,p', p,p')

I

but with the energy set equal to Eo rather than 2s(k~).
For comparison, the results for the first two approxima-
tions are shown in Table V. Similar to the findings of
DickhoA; we find that the starting energy has a

TABLE IV. Landau parameters calculated from the T matrix with starting pair energy E=2cz at
saturation in D&, D&, and D3.

Dl
Dq
D3

FS

—1.37
—4.19
—8.44

Fs

—0.17
2.01
4.30

0.81
0.45
1.10

F3

0.70
0.64
0.54

F4

0.10
0.31
0.77

m */m

0.94
1.67
2.43

Dq
D3

Fo
—0.70
—0.75

Fl

0.01
0.31

Fa
2

1.08
1.01

Fa

0.52
0.37

Fa

0.11
0.37
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TABLE V. Fo and m calculated from the T matrix and from the total I~I, =ID+I;„d for the initial
pair energies indicated and from the compressibility via Eqs. (32) and (40).

Method

T matrix (E=2p )

T matrix [E=EO(Q)
T matrix [E=EO(Q)] plus induced

with term of Eq. (34)
Compressibility, Eq. (40)

Dl

—1.4
—0.58

—0.15
0.1+0.4

D2l

Fo

—4.2
—1.86

0.18
0.6+0.2

Dl

—8.4
—3.74

—1.74
2.3+0.2

T matrix (E=2cF )

T matrix (E=EO) plus induced terms
0.94
0.89

1.67
1.75

2.43
2.55

significant inAuence on the Fo. Although the starting en-

ergy could also influence F'„we have not performed this
calculation. Rather, we note that, in the calculations of
DickhoA; the starting energy has little efI'ect on the F', .
Consequently, the e6'ective mass used to calculate the
density of states as in (37) were those given by F I listed in
Table I.

Finally, the Fo calculated from I(p,p', p,p') by adding
the induced terms in (34) are also listed in Table V. These
values correspond to

f(p»p' p p'')=f'(p' p' p' p')+I;.d(p»p' p' p"'»

where I (p,p', p,p') is calculated using the starting ener-
gy. The details of evaluating I;„d can be found in Ref. 47. F' =30 (40)

The induced interaction contributes a small but non-
negligible amount to the total F&. The I* calculated
from the total F', is also listed in Table V. The Landau
parameters calculated, with I;„d included, use this value
for m' in the density of states. It is immediately ap-
parent from the Fo that I;„d contributions are substantial.
Furthermore, they are more important for D2 and D3
than in D, . This is similar to liquid He in which Fo, cal-
culated by the first approximation discussed above, is
large and negative (

—10) for normal He but small (
—1)

for spin-polarized He.
Fo may be calculated from our calculated values of

compressibility (32) by equating (32) and (38). This gives

10

0

3 I I I I I I I I I

0 05 ~0

Q/kF

I I I I I I !

2.0
)0. I I I I I I I I I I I I I I I I I I I

0 0.5 1.0 1.5 2.0

Q/kF
FIG. 16. The particle-hole interaction appearing in the dy-

namic susceptibility, Eq. (34), (ID+I;„d) for D& at saturation
density n =n, . ID+I;„d for two starting energies in the T rna-
trix are shown.

FIG. 17. The density dependence of the interaction
I=ID+I;„d [calculated with Eo(Q)] for D, .
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These values of Fo, often said to include rearrangement"
terms, are higher-order values and are listed in Table V.
They are indeed positive and will be more reliable. Com-
paring these values of Fo to those calculated from the
different approximations discussed above leads one to
conclude that consistency is possible. However, both an
accurate calculation of I(p,p', p,p') which includes in-
duced terms and a proper solution of (35) is necessary.

In Fig. 16, we show the real part of I(Q) in D, . The
two curves correspond to I=I~+I,„d given by (34)
where I~ is the leading term I . The I(Q) is a generaliza-
tion of I from Q=0 to finite Q as discussed in Ref. 47.
From Fig. 16 we see that the starting energy Eo(Q) adds
a positive contribution to I for Q (kp. For still larger Q,
the Eo has little effect. In Fig. 17, the density depen-
dence of I(Q) is displayed. From Fig. 17, we see that
I (Q) increases with increasing density.

VI. DISCUSSION

Dl
D2
Dq

TABLE VI. E!N and single-particle energy at kz.

c(kF )

0.1
—0.3
—0.6

E/N

0.4
0.0

—0.3

In Fig. 15 we compared the present GFHF ground-
state energies with the MC values of Panoff and Clark.
For Dii the GFHF E/N lies approximately 0.2 K above
the MC value. In nuclear spin-polarized He, we
found the GFHF E/N also lies somewhat above the
MC value. However, from Fig. 15 we see that the GFHF
E/N for D2 and Dz lies approximately 0.15 K above and
below the MC values, respectively. In normal He, we
found" the GFHF energy lies approximately 1 K below
the observed value. For more than one spin state (i.e., D2
and Dst), the GFHF energy appears to be in error by typi-
cally 0.2 K in D with no systematic deviation in sign.
The E/N calculated using the correlated basis function
method deviates from the MC values by similar amounts
but generally in a more systematic way. ' Thus in D~,
the GFHF approximation provides reasonable values of
E/N and n„but is not as reliable as the CBF method.

The Hugenholtz —van Hove theorem states that the
single-particle energy at the Fermi surface e(k„) should
equal the energy per particle E/N at zero pressure
(n =n, ) In Table .VI we compare e(kp) and E/N for Dii,
D2, and Dz calculated in the GFHF approximation. In
each case, e(k~) lies approximately 0.3 K below E/¹
Thus, we may expect errors in e, (k ) and E /N of approxi-
mately this magnitude. This discrepancy rejects the lack
of consistency between the e(k) and E/N, suggesting par-
ticularly that higher-order terms contributing approxi-
mately +0.3 K remain to be included in the theory.

In Fig. 7 we saw that, for k =kg XppH(k Fi, ) was typi-

cally —4 K and approximately five times as large as
XHHp(k, s&). Thus, the Brueckner-Hartree-Fock term

XppH dominates the self-energy. However, on the level of
precision needed to fulfill the Hugenholtz —van Hove
theorem, XHHP is an important contribution. We note
too that the XHHp calculated here from (18) differs some-
what from the X HHp in (15). The X HHp in (15) contains a
factor (1—nz) which requires cz) sp. The X HHp is strict-
ly the hole-hole-particle (1 n2) t—erm. The XHHp was
evaluated by Ramos et al. ' ' and is positive for all k
values. The present XHHP is negative at small enough k
because s2 can be far below sp in (18) making coi+ez (y
possible in (18). We chose to evaluate XHHp since this
was the term omitted from previous calculations.
Also, since XHHP takes both positive and negative values,
its contribution to the total energy E is smaller than that
of X HHP. In previous work we included both XppH and

1I
~HHP'

Perhaps the most interesting result of this work is the
enhancement of the effective mass at k~ and its clear rela-
tion to spin fluctuations shown in Figs. 9—12. In D, ,
where the nuclear spins are aligned and spin fluctuations
are frozen out, there is no enhancement of m *(k). In D&i

we find m*(kp)=0. 90 in agreement with previous re-
sults and with m *(kp ) =0.87 predicted by Dave
et al. using the correlated random-phase approxima-
tion (RPA). In D2i and Di where spin fiuctuations are
possible, there is a significant enhancement of m*(k) at
k =kz. The enhancement is largest in D&, as seen in Fig.
12. The enhancement arises here principally from
XHHp( k Ei ) which leads to a fiattening of c( k, e& ) at
k =k~.

The effective mass at the Fermi surface calculated from
the Landau parameters m *= 1+F', /3 (see Tables I and
V) is also consistent with the m (kp) obtained from Fig.
12 in D&, Dz, and D&. The Landau parameters F', and
m' change little when the induced term of (34) and the
second term in (36) are included (see Table V). In con-
trast, we found the induced term in (34) enhanced m"
significantly in liquid He.

A complex c.(k) can also be retained in the iterations.
This leads to a somewhat lower but comparable ground-
state energy. The converged e'(k, e&) is also somewhat
lower. A complex c,(k) can also be used to calculate
XHHp but in this case the cutoff we used is not strictly
correct and XHHp is overestimated. Using a complex s(k)
we found an m *(k) comparable to the results displayed
in Figs. 9—12.

Including XHHp may be viewed as completing the
GFHF approximation. As discussed in Sec. III, the com-
plete GFHF self-energy includes both the first- and
second-order self-energy terms with the interaction I
given by a T matrix. The second-order term, depicted in
Fig. 3, may be viewed as the leading term in the "bubble"
or RPA series of terms. Blaizot and Friman find that
including the whole "bubble" series reduces the size of
contributions arising from X' ' in Fig. 3, at least for a lo-
cal interaction. It would be interesting to include this
"bubble" series using a T matrix to explore its impact in
liquid He and D~.
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