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Density-functional calculation of efFective Coulomb
interactions in metals
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The e8'ective Coulomb interaction between the localized electrons is calculated for Fe and
Ce. It is found that a change in the number of 3d electrons in Fe is only screened to about 50%
inside the Fe atom where the change was made, although perfect (10070) screening was expected
for a metallic system like Fe. In Ce, on the other hand, the screening is very efficient. The
difference is discussed. For Ce the calculated Coulomb interaction (6 eV) is in good agreement
with experiment, while the result (6 eV) for Fe is surprisingly large.

I. INTRODUCTION 2(d"s') ~ d"+'s'+ d"-'s' (2)

For strongly correlated systems, where accurate abini-
tio calculations are diKcult to perform, our understand-
ing of the physical properties is often based on a model
Harniltonian approach. An important parameter in such
models is the effective Coulomb interaction U between
the localized electrons in the system, i.e. , the 3d elec-
trons in a transition-metal compound and the 4f elec-
trons in a rare-earth compound. Traditionally, the pa-
rameters in such a model are treated as adjustable pa-
rameters and deduced from experiment. Recently, it has
become very popular to calculate these parameters using
the ab initio density-functional (DF) formalism in the
local-density (I,D) approximation. ~

The meaning of U has been carefully discussed by
Herring. 2 In, e.g. , a 3d electron system with n 3d elec-
trons per atom, U is defined as the energy cost for the
reaction

2(d") ~ d"+'+ d"-',

i.e. , the energy cost for moving a 3d electron between two
atoms which both initially had n 3d electrons. Herring
emphasized that U is a renormalized quantity. In partic-
ular, U contains efkcts due to screening from other types
of electrons, e.g. , 4s and 4p electrons for a 3d metal. Thus
the number of 4s and 4p electrons on an atom with n+ 1
3d electrons is reduced and the number on an atom with
n —1 3d electrons is increased. This screening by 48 and
4p electrons reduces the energy cost for the reaction Eq.
(1). In the Anderson or Hubbard models, for instance,
such a screening is not included explicitly and it is then
important to introduce it implicitly as a renormalization
of U. There are also other renormalization effects for U,
in particular due to changes in the radial extent of the
orbitals when the number of 3d electrons is changed. 2

Herring argued that for metals the screening by 4s
and 4p electrons is very eKcient, and that one therefore
ought to consider the reaction

i.e. , to assume that any change in the number of 3d elec-
trons is perfectly screened inside the signer-Seitz sphere
by a change in the number of 48 and 4p electrons of the
opposite sign. The arguments of Herring for this per-
fect screening were partly based on screening in a free-
electron gas. In Fig. 1 we show the screening charge
of a positive point charge in a homogeneous electron gas
with the same density as the average density of 4s and
4p electrons in Fe ( l.l electrons per atom, r, =2.6 ao).
The curve TF was obtained using Thomas-Fermi linear
response and the curve LDA was obtained from linear re-
sponse in the I D approximation. 3 The figure illustrates
that a large fraction of the screening charge falls inside
the Wigner-Seitz sphere with the radius Rws = 2.66 ao.
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FIG. 1. Screening charges in Fe. The full curve shows
r P~, (r), where P4, is the Fe 4s wave function calculated for
the 3d 4s configuration. The dashed and dash-dotted curves
show the results of linear screening in an electron gas using
the LD and TF approximations, respectively. r is in units of
ao-
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This fraction is 0.66 and 0.92 in the TF and LD ap-
proximations, respectively. If nonlinear screening eAects
are taken into account the screening of a positive point
charge is substantially more efIicient, 4 while the screen-
ing of a negative point charge should be somewhat less
eKcient.

The arguments above are based on screening in an elec-
tron gas. For Fe metal the screening is primarily done by
the 4s and 4p electrons. The 4s and 4p wave functions
must be orthogonal to the s and p core states. This forces
the 4s and 4p wave functions to be located primarily out-
side the core region. This is illustrated in Fig. 1, where
we also show the square of the 4s wave function. The 4s
wave function has its outermost node at about r = 1 ao
and is rather effectively expelled from the region r & 1.5
ao. This efFectively prevents the screening in Fe from be-
ing as eKcient as in an electron gas. In this paper we
show that because of this, the screening in Bd metals is
far from perfect while it is quite efficient for 4f systems.

In Sec. 2 we discuss the calculation of Coulomb inter-
action, and in Sec. 3 we present results for Fe and Ce.
The results are discussed in Sec. 4.

II. CALCULATION GF E,ff

In this section we focus on the calculation of the
screened Coulomb integral F,rr, corresponding to the un-
screened Slater integral I"0, where

(3)

IIere $3g(i) is the Bd wave function and r & (i'&) is the
smaller (larger) of r and r'. To describe multiplet effects
the Slater integrals I"3 and F~ are needed. These are
usually deduced from atomic data, since the additional
screening effects in a solid appear to be small, s and are
not discussed further here.

To derive an expression for F,& we consider the ex-
pression for the interaction energy in Hartree-Fock (HF)
for a configuration with the Bd states m;, T, ..., m;
mr, l, . ..,mr~ l occupied, where m refers to the angular
momentum. We write the interaction energy as

&r(m, T, ..., m; T;m, , l mr l) = 2iFo~n(n —I)+E (m;, T ...m;~ T)

+E (mg, l, .",m, l)+&&rr(m;, T, "., m„T;m, , l, "., m; l),
(4)

(5)

where the first term is the spherical part of the Hartree
energy related to I"~&, the second and third term the ex-
change energies for the spin-up and spin-down exchange
energies, respectively, and the fourth term is the non-
spherical contributions to the Hartree energy. The total
number of 3d electrons is n. The term DEB does not en-
ter in the following discussion, since we assume all charge
densities to be spherical inside a given atomic sphere
[the atomic-sphere approxirnation7 (ASA)]. We can then
write

0 n

Er —+1 (6)

where we have only indicated the number of spin-up and
spin-down electrons, since in the ASA it does not matter
which m quantum numbers are occupied. We now use
the relations

(7)

where z; is an eigenvalue to the LDA equation. We then
obtain

('n 1 n& ('n 1 n
+,'n = ssay I

—+ —,—
I

—ss~y I

—+ —,——I I,
g2 2'2p g2 2 2 ) ' (8)

where c3gy is the spin-up 3d eigenvalue, and the first
term gives t,he difI'erence between the first two terms in
Eq. (6).

To calculate I" & we now consider a large supercell.

The number of 3d electrons on one of the atoms in the
supercell is varied, and I'~& is deduced from Eq. (8). In
such a calculation the response of the 4s and 4p electrons
to the change in the number of 3d electrons is included
and the radial extent of the Bd orbital is allowed to ad-
just self-consistently. The calculation therefore includes
the important renormalization efI'ects. In doing this cal-
culation we have to avoid double counting of the hopping
between the 3d orbital and the rest of the system, since
this hopping is included explicitly in, for instance, the
Anderson model. The hopping integrals connecting all
the Bd orbitals to other orbitals are therefore put equal
to zero. g' This approach has the further advantage that
it is easy to force each Bd orbital to have the desired oc-
cupation number. In the calculation for Fe below) all
atoms but one have the 3d occupation n = 7 (Bd 43 ),
with 3.5 spin-up and 3.5 spin-down electrons. The cen-
tral atom is given occupation numbers according to Eq.
(8) above. The total number of electrons is chosen so
that the system is neutral. These calculations are sup-
posed to be performed for an infinite supercell. For a
finite supercell we introduce a correction due to the fact
that the Fermi energy changes when the number of 3d
electrons changes. From Eq. (7) we have that the dif-
ference between the first two terms in Eq. (6) is then
given by s3&ff(& + &, z) —sr;(z + z, z), where c'r; is the
Fermi energy. This follows, since the supercell is always
neutral, and the change in the number of jd electrons
requires the addition or subtraction of the corresponding
number of delocalized electrons at the Fermi energy. We
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then obtain the expression

(n 1 nl ('n 1 n
+'m = &s~y

I

—+ —,—
I

—&s~T
I

—+ —,——i)i, 2 2'2) q2 2'2
(n 1n ('n 1 n

s~ I

-—+-, — +«I —+-,——I I,i2 2'2 i, 2 2'2 ) ' (9)

which agrees with Eq. (8) if the Fermi energy is un-
changed.

III. RESULTS

We have performed calcu1ations, using the lin-
ear muFin-tin orbital method in the atomic-sphere
approximation. We first consider Fe. In the calculation
for Fe we have used a frozen core approximation. Since
the 3s and 3p electrons are rather extended and relatively
weakly bound, they can to some extent relax when the 3d
charge is changed. From atomic calculations, we estimate
the eRect on F~& to be a reduction of 0.5 eV. This number
is therefore subtracted from all the frozen core calcula-
tions. We have first used a supercell with four atoms.
Using the formula (9) we obtained the result F~& —5.9
eV. If the spin polarization is neglected a slightly smaller
value (5.6 eV) is obtained. This small difFerence is not
essential, and all the following calculations are therefore
nonspin-polarized. We next considered a supercell with
16 atoms, and obtain Fo& ——6.2 eV using formula (9).
This illustrates that the results are rather well converged
with the respect to the size of the supercell. We have
performed some additional checks of the internal consis-
tency of the results. By using the total energy difference
formula (6) we obtain the result 6.3 eV for the 16-atom
supercell. The good agreement with the result (6.2 eV)
above illustrates that the transition state arguments be-
hind Eq. (9) are accurate. We observe, however, that
using Eq. (8), which is not corrected for the change of
the Fermi energy in the finite system, leads to the result
5.7 eV, and a somewhat less satisfactory accuracy. For
a smaller supercell this discrepancy is larger. As a final
test, we have considered a supercell where one atom has
the occupancy 8, one the occupancy 6, and all the others
the occupancy 7. From this energy E(de + ds + 14d ) we
subtract the energy E(16d") obtained by letting all 16
atoms in the supercell have the occupancy 7. This gives

F,& directly according to Herring's definition. The result
6.8 eV does not differ greatly from the other calculations
(6.2 and 6.3 eV) for the 16 atom supercell, suggesting
that the results are numerically reliable. In these calcu-
lations the hopping from the 3d levels on all the atoms
in the super cell was suppressed. This of course inAu-

ences the 4s- and 4p-like electron bands and possibly the
ability of these electrons to screen the changes in the 3d
charge. To check this, we have performed a calculation
for a four-atom supercell, where the 3d hopping is sup-
pressed only for the central atom. The 3d electrons on
the other atoms are therefore allowed to participate in
the screening as well as in the hybridization with the
4s and 4p electrons. This calculation leads to the value
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FIG. 2. Screening charges in Ce. The notations are equiv-
alent to Fig. 1. The solid line shows the 5d wave function
calculated for the configuration 4f 5d Gs . r is in units of as.

F~& —5.6 eV, which agrees with the result above (5.6
eV) for a four-atom supercell.

It is now of great interest to check the assumption in
previous calculations about perfect screening. We find
that the changes in the 3d charge is screened to 24% and
29%%uo by the 4s and 4p electrons, respectively, on the same
site. Totally the on-site screening is therefore slightly
more than 50%, and it is thus far from perfect. On the
neighboring atoms there is in addition about 40% screen-
ing. In a renormalized atom calculation, Cox, Coulthard,
and Ioyd obtained a much smaller value F,& 2.8 eV.
This is not surprising, since they assumed perfect screen-
ing.

We next consider Ce (see Fig. 2). We have performed
a calculation for n-Ce using a supercell with four atoms.
In this case the outermost core (5s and 5p) lie ouside
the 4f orbital, and it is important to include core relax-
ation explicitly. Thus the core orbitals were recalculated
for each 4f occupation. This leads to I",& ——6.1 eV.
The change in the number of 4f electrons is screened to
about 4% by the Gs electrons, 4% by the 6p electrons and
97% by the 5d electrons inside the Wigner-Seitz sphere.
For Ce there is therefore a slight overscreening by about
105%. These results can be compared with calculations
by Herbst, Watson, and Wilkins, who used a renormal-
ized atom HF approach. They obtained U = 5 eV. This
result contains Hund's rules effects from the higher Slater
integrals F, F, and F . Thus we subtract the corre-
sponding multiplet effects from our F,&, which leads to
a value of about 4.6 eV, in good agreement with Herbst,
Watson, and Wilkins. We can also compare with cal-
culations by Dederichs et al. ,

3 who used an impurity
calculation and therefore did not make any assumption
about the screening. Their calculation is therefore closer
to ours, although it contains effects of double counting
of the hopping. Dederichs et OL obtained the results 6.6
and 8.1 eV for Ce in Ag and Pd, respectively, i.e. , slightly
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larger than our result. Min et al. have performed super-
cell calculations for Ce and obtained U = 5.4 eV, i~ which
is slightly smaller than our result.

IV. DISCUSSION

As discussed in the Introduction, it has been generally
believed that for metals any change in the number of lo-
calized electrons is perfectly screened inside the Wigner-
Seitz sphere by the delocalized electrons. Our calcula-
tions show, however, that for the 3d system Fe, the on-
site screening is only about 50% while for Ce there is
a slight overscreening on the central site. For Fe the
screening is done by the 4s and 4p electrons. As illus-
trated in Fig. 1, because of the orthogonality to the core
electrons, the 4s and 4p electrons cannot provide such a
compact screening charge as would be expected in a free-
electron gas with a similar density. The 4s wave function
is therefore rather effectively excluded from the volume
r ( 1.5ao. As a result the 3d to 4s bare Coulomb inte-
gral Fo(3d, 4s) is only moderately large. Furthermore the
4s bandwidth is essentially determined by the square of
the wave function at the Wigner-Seitz radius. Since the
4s wave function has its maximum close to the Wigner-
Seitz radius, the bandwidth is very large and the density
of states is small. To illustrate the effect we assume that
the screening charge is simply the density of 4s and 4p
states, N(0), close to the Fermi energy times the shift
LE, of the 4s level due to the change in the number of
jd electrons. If the change in the number of 3d electrons
is unity, the shift is

AE, = F (3d, 4s) —6n, pF (4s, 4s)'—

where bn, p is the change in the number of 4s and 4p elec-
trons and d is the distance between the nearest neighbors.
We have assumed that the 4s and 4p wave functions have
the same radial extent and that the screening charge out-
side the central sphere, 1 —bn, z, is located in the nearest-
neighbor spheres. The screening charge is then given by

bn, „=N(0) AE, .

For Fe wave functions normalized to the Wigner-Seitz
sphere we have I' (3d, 4s) 1.01 Ry, F (4s, 4s) 0.89
Ry, d = 468a aOnd N(0) 2 states/Ry atom. This
gives bn, z

——0.6, in reasonable agreement with the cal-
culated result bn, z

——0.53. For Ce the corresponding
numbers are I"o(4f, 5d) 0.95 Ry, I" (5d, 5d) —0.78 Ry,
d = 6.48ao, and N(0) 14 states jRyatom. This gives

n5g 1.18 in reasonable agreement with the calculation.
We notice that the difference between Fe and Ce is the
much larger value of N(0) for Ce. This follows partly be-
cause the 5d function is somewhat more contracted than
the 4s function, but in particular because the Wigner-
Seitz radius is larger for Ce than for Fe, so that the Ce
5d wave function has decayed much more at the Wigner-

Seitz radius. The integrals for Fe are slightly larger for
Fe than for Ce, because of the effect of renormalizing the
wave functions to the Wigner-Seitz radius. Although we
find that the 4s and 4p electrons screen a perturbation
in iron rather ineFiciently, the situation is completely dif-
ferent if the 3d electrons are included. Thus it was found
that a core hole in an Mn impurity in CdTe is slightly
overscreened if the 3d electrons on the same site are al-
lowed to participate in the screening. In a similar way
we expect, e.g. , 3d impurities in 3d hosts are screened
eKciently.

The calculated value of F & appears to be in rather
good agreement with experiment for Ce. Thus values
in the range 6—7 eV have been deduced from comparison
with spectroscopic experiments and model calculations.
For Fe the situation seems to be different. Typically F,ff
is expected to be in the range 1—2 eV for the metallic
transition metals, with the exception of Ni. These es-
timates often do not include many-body effects in the
analysis on the same level as was done for the Ce com-
pounds. Nevertheless it seems that many-body effects
cannot fully explain the difference between the calcu-
lated and experimentally deduced values of F,f for Mn,
where a similar result for F,f is obtained. This seems to
be in contrast to the nonmetallic 3d compounds, at least
the Ni and Cu compounds, where the present approach
appears to give sensible values for F,ff. 2 We note
that in the cases where the screening is far from perfect,
the present calculation is expected to overestimate F,&.
In these cases an appreciable amount of screening charge
is located in the spheres which are nearest neighbors to
the central sphere, where the number of localized elec-
trons was changed. This charge may be expected to be
concentrated in the parts of the spheres which are clos-
est to the central sphere, while the charge is assumed to
be spherically symmetric in the ASA applied here. The
screening charge then has a smaller effect on the 3d level
in the central atom, and F is less effectively screened
[cf. Eq. (9)]. This effect can be estimated by assuming
that all the screening charge outside the central sphere
is located exactly outside the central sphere, while in the
ASA the charge is effectively located at the center of the
neighboring spheres. The correction to F,ff is then

(12)

where 0.5 is the screening charge outside the central
sphere, 4.68 is the distance to the nearest neighbor, and
2.66 is the Wigner-Seitz radius. This should be an upper
limit to the error due to the ASA. This could reduce the
I DA value for F ff to about 4 eV, which still appears too
large compared with experiment.

V. SUMMARY

The effective Coulomb interaction has been calculated
for Fe and Ce as examples of transition metals and rare-
earth metals, respectively. It is found that the on-site
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screening is rather inefficient for Fe ( 50%%uo), but very ef-
ficient for Ce ( 100%%uo). Because of the requirement that
the screening orbitals are orthogonal to the core orbital,
the screening orbital is more extended than the screen-
ing charge in a free-electron gas. As a consequence, the
width of the band corresponding to the screening orbital
is very large for Fe, making the screening ineKcient. For
Ce, on the other hand, the |tVigner-Seitz radius is rather
large compared with the 5d orbital, the corresponding
band is not so broad, and the screening charge inside the

signer-Seitz sphere is large. The results for metallic 3d
systems appear to disagree with experiment, while the
results for nonmetallic 3d systems and 4f systems seem
to be in satisfactory agreement with experiment.
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