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Infiuence of exchange effects on the plasmon excitation spectrum of metals: Application
in the case of beryllium
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The equation-of-motion technique is used to obtain an integral equation that describes collective
effects in the homogeneous electron gas, or jellium model of electrons in a solid. This theory should
provide the excitation spectrum independently of any external agent and includes exchange effects
in the generalized random-phase approximation (GRPA). Collective effects are classified according
to their symmetry. Because of the homogeneity one more quantum number is needed in addition to
the wave number k, namely, the helicity label m. The plasmon spectrum (m =0) is obtained by nu-
merical analysis. Applied to Be, the theory provides a satisfactory interpretation of data obtained
by inelastic x-ray scattering. The lower branch appearing in the spectrum of Be is explained in
terms of electron short-range interactions from first principles, without the introduction of phenom-
enological parameters. For those metals for which jellium is a good approximation, it is not neces-
sary to include band effects for the explanation of this second branch.

I. INTRODUCTION

It has been experimentally proved by inelastic x-ray
scattering that certain light metals, such as Be, ' Al,
Li, and graphite exhibit a double peak in the electron
dynamic structure factor S(q, co). This peak appears for
values of q inside the particle-hole continuum and for q
greater than a critical value.

There are two main reasons for this kind of spectrum,
namely, the band structure inhuence on plasmon states
and exchange and correlation effects. Although there is
no doubt that both effects inhuence plasmons, a theory
dealing with both at the same time has not been possible
yet.

Pandey and co-workers' as well as Sturm have in-
cluded band-structure effects in the dielectric response
e(q, co ) treating a two-band model in the so-called
"random-phase approximation including band structure"
(RPAB). They have given results for Be (Ref. l) for a rel-
atively limited region of q, which show a double band for
q ~0 close to the plasmon value.

Brosens, Devreese, and Lemmens' calculated the
dielectric response function e(q, co) including exchange
effects. Green, Nielson, and Szymanski" obtained sirni-
lar results summing up appropriate classes of diagrams in
a perturbation expansion giving an explanation of the
double peak in the dynamic structure factor of Li and Be.

Awa, Yasuhara, and Asahi' calculated the dielectric
polarizability including local-field corrections in the Har-
tree field, thus obtaining a double branch for Al. The
second branch is related by them to the dumping effect of
one-electron states originating from virtual plasmon
emission under the influence of short-range correlations.
In their treatment the lower plasmon branch is calculated
taking into consideration excitations involving electron-
hole pairs and plasmon interactions. Furthermore, they
make use of the Hubbard' approximation which intro-
duces artificial screening in the electron gas.

Schulke performed experiments using high-resolution
synchrotron radiation' on monocrystalline Be,' and
provided arguments in favor of a lattice-induced origin of
the double peak based on fitting data to a simple two-
band model.

Hong and Lee' calculated the dynamic form factor us-

ing a method of recurrence relations developed by
them' ' which involves orthogonal expansion of the
density operator. They result in a double-peak structure
in the case of Al. Their method has the advantage that
the compressibility sum rule and the third-order sum rule
are simultaneously satisfied.

Iwamoto, Krotchek, and Pines' also calculated the dy-
namic structure factor introducing pseudopotentials to
describe electron interactions, and they attribute the
double-peak structure of Be to multipair excitations.

Mukhopadhyay produced similar results by perform-
ing a proper linearization of the equation of motion for
signer distributions demanding a self-consistent calcula-
tion which involves the structure factor indirectly.

Zdetsis et al. ' attribute the double peak of Be to the
splitting of the 3ps hybridized band in the band structure
of this element calculated by taking clusters of atoms.

In this paper the equation-of-motion technique is used
to produce an integral equation which describes the exci-
tation spectrum of the electron gas. Exchange effects are
introduced by a proper linearization of the interaction
terms known as the generalized random-phase approxi-
mation (GRPA). The jellium symmetry is taken into
consideration, and a more general formalism is developed
which predicts nonzero helicity states. However, only
the plasmon case is considered, and an application of the
theory is made in the case of Be for which extensive ex-
perimental data exist. Compared to previous methods
both branches of the plasmon spectrum are produced
from the same equation and no screening parameters are
introduced. Furthermore, the form of the amplitude for
each branch gives additional information for its nature.
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In Sec. II the formalism is presented and the symmetry
properties are taken into account. Various collective
states are classified according to the irreducible represen-
tations of the full space group. The integral equation
which is obtained is examined analytically and numerical-
ly in Secs. III and IV, and results are applied to Be. Fi-
nally, Sec. V contains concluding remarks.

II. CLASSIFICATION OF COLLECTIVE STATES

We consider the Hamiltonian of a homogeneous N-
electron system subject to an external potential U(r) ex-
pressed in the second quantization representation:

4)' i, (r, R)=( —i) J (kiri)

Xexp[i(k, +q/2)r, +imp„+iq. R] (2 6)

transforms according to the q, m irreducible representa-
tion of the group I&. Here r, R are the center-of-mass
coordinates for two identical particles r =r, —r2 and
R=(r, +r2)/2. By J we denote the ordinary cylindrical
Bessel function of order m and k, r are expressed in cylin-
drical coordinates k =(k„ki, Pi, ) and r = (r„ri,P, ). The
vector q defines the z axis of the coordinate system, and
so the various directions of q define the elements of the
irreducible subspace. The meaning of labels q and m is
clarified by application of the operators P, L.P, and P
on (2.6):

(2.7)

(2.1) (2.8)

[4' (r), % (r')[+ =0, (2.2a)

In this equation the spin index has been suppressed
since we are interested in the spectrum of spin-zero
states. The formalism presented here is used to deduce
the properties of the spin-zero states of the electron gas.
In Eq. (2.1) the Atomic Unit System is used. By
4 (r), %(r) we mean the usual creation and annihilation
fields which obey the following anticommutation rela-
tions:

P+k, k 1+k,k (2.9)

From the previous relations it is evident that q is the
momentum eigenvalue and m the helicity eigenvalue, i.e.,
the projection of angular momentum along q.

Despite its apparent simplicity, basis (2.6) has the de-
fect that the coordinate system is defined by q along the z
axis. Even so it can be used for the expansion of two-
particle field operators as follows:

['P(r), 4(r') ) + =0,
[4"(r),%'(r')[+ =Sir —r') .

(2.2b)

(2.2c)

4 (R+r/2)%(R —r/2)= g AP' & @$ & (r, R) .
k, , k

(2.10)

The symmetry group of (2.1) has already been dis-
cussed. It has been proved that with U(r)=0 the Ham-
iltonian (2.1) is invariant under the full space group I3.
This group consists of all translations and rotations in the
three-dimensional Euclidean space, and it is a six-
parameter Lie group. The eigenstates of (2.1) in the ab-
sence of an external potential U(r) can be classified ac-
cording to the irreducible representations of the group.
These are labeled by the eigenvalues of its two Casimir
operators P and L P, where P denotes the total momen-
tum and L the total angular momentum of the X-particle
system. By L.P we denote the helicity operator. In the
second quantization representation operators P and L
have the form

q+=(q +iq )/&2, (2.11)

we find,

gq, 0

k~, k

(2.12)

Operators A ~&™i, defined by (2.10) have the symmetryz'

described above. They will be used to generate the eigen-
states of the Hamiltonian. Operators such as Fourier
transforms of the density and current operators are ex-
pressed in a simple manner. Using q to denote a unit vec-
tor along q and

P= jr dr,
L= rXj r dr,

(2.3)

(2.4)
q.J = g (k, +q/2) A„'i „

k~, k
(2.13)

where j(r) is the current operator,

j(r) =—[Vt(r)VV(r) —V'0 (r)%'(r)] .
2l

(2.5)

k~
q+ Jq X - z +k&k, (2.14)

In order to classify the eigenvalues, one must form
realizations of this group in an appropriate function
space. This has already been carried out for various
spaces. The most appropriate realization for our physi-
cal problem is that of the two-particle function space.
For example, the basis

So (2.11) denotes the right- and left-circularly polarized
components of current, a representation appropriate for
the description of transverse and circularly polarized
states. In order to obtain the excitation spectrum, we
construct the equation of motion for the two-particle
operator in (2.10):
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2

[~ Aq, m
]

q +k q Aqm
k~, k 2 k~, k

2&+g exp(™$1,)[(ag k.+qak
—a&+qak+1, )p1, +pk(ak 1, +qak

—ai, +~ak+i, )]dpiq .
2m' 0

(2.15)

Expression (2.15) is linearized by performing a Hartree-Fock linearization known as GRPA. In this approximation
pairings of creation and annihilation operators are formed and only those corresponding to direct and exchange scatter-
ing of the electrons are kept. The final result is

]= [EHF (&+q) —EHF(~ ) ] A/j

where

41T 1 2 exP(im$$)+5 0(ng nk+q) 2 g Ai k 4'(ng ni+q) g f g dpk Al
21T 0

k, , k k, , k

(2.16)

k 4mnk.
EH„(k)= +g

k —k'
(2.17)

is the Hartree-Fock energy contributing as a self-energy term and n& is the zero-temperature ground-state occupation
function for the free-electron system:

1, k~kF
0, k)kF . (2.18)

Excited states having a q, m symmetry are produced by applying an operator Bq on the ground state ~%0). If the
commutator of 8 is of the form

Bm] mBm (2.19)

then ~q is the excitation energy from state ~'P0) state B ~V0).
Examing the linearized expression (2.16), we see that Bq can be selected in the form of a linear product of Akq'

1, .

Bq = g f (k„ki)Ak k
k, , k~

(2.20)

Using (2.20) in connection with (2.16), we can see that the commutation relation (2.19) is approximately satisfied in
the frame of the GRPA if and only if the amplitude fz (k„ki ) obeys the following integral equation:

[coq
—EHF(k+q)+EHF(k)]f q (k„ki )

exp[im (Pk —Pk. )]=5 0 2 z (nk —ni, .+q)fq (k,', ki)dk'+
2 f (ni, .+q nk )

—
2 fq (k„ki)dk' .

(2.21)

Solutions of (2.21) for m&0 have been discussed. Localized solutions are particle-hole pairs of momentum q accom-
panied by a polarization cloud of well-defined helicity m.

Extended solutions also exist. They are low-lying energy states of momentum q and helicity m similar to the zero-
sound-mode states obtained in the frame of Fermi-liquid theory These st.ates are Landau damped. However (to our
knowledge), no attempt has been made for the experimental confirmation of the existence of such states.

The m =0 solutions of (2.21) appear in electron-energy-loss and x-ray spectra. These solutions are discussed in con-
nection with appropriate experiments and existing theories.

First, we rewrite Eq. (2.21) for m =0 in a dimensionless form:

[0—bE(g;x, p)]F(g;x,~)=, f 'd ' f dp'(n. —n. &)F(a;x',V')

+ oo,2, 1 dP„
4pf —x' dx'f dp'(n„. —n„+~) F(Q;x',p'),

0 —1 27T 0 X —X
(2.22)
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e kF
f3= =0.1658r, .

27TE'F

Then

(2.23a)

bE(Q;x, p, )=Q +2Qxp, —Pg(ix+Qi)+Pg(x),

where A=co~/e~, x=k/k~, Q=q/k~, and p=cos8z
with eF the Fermi energy and kF the Fermi wavelength.
Although the symmetry arguments suggest cylindrical
coordinates for k, x,p are more appropriate variables in
Eq. (2.22).

The solution F(Q;x,p, ) is expressed in terms of these
coordinates and a dimensionless parameter P, which is a
measure of the ratio between potential and kinetic energy
in units of the Wigner-Seitz radius r, of the electron gas:

frequency-moment sum rules. In calculating the dynamic
form factor, no double peak appears if one does not go
further than the GRPA. ' '

The method used in this paper differs from the dynami-
cal RPA approach in that a direct search is made for the
energy spectrum of the collective oscillations and not
through the dynamical form factor. This is achieved by
using an iterative procedure with the long-wavelength
collective solutions as a starting point and q as an itera-
tive parameter. Then solutions for finite q are obtained
by extending the trial solutions with the assumption of
continuity with respect to q. Details are presented in the
next section.

III. LONG-WAVKLKNGTH STATES

with

2

( )
1 —x x+1

x

In terms of P the plasmon energy reads

0 =co&/ez=&16P/3 .

(2.2 '4)

(2.23c)

(2.23d) n„—n„+q~pQ5(x —1), (3.1)

With a complicated integral equation like (2.22), it is
useful to begin with a limiting case that can be handled
by analytic methods. The results form a starting point
for a full numerical solution.

In the long-wavelength limit (2.22) simplifies because
states which participate in collective effects are concen-
trated in a region close to the Fermi surface. Thus, when
the reduced wave vector Q ~0, we have

Brosens and Devreese, dealing with the dynamical
exchange effects in the dielectric function, produced an
equation for the amplitude similar to (2.22). They
developed a numerical procedure for its solution based on
vectorization of the integral equation, and they derived
results which included exchange corrections in the spec-
trum of the particle-hole continuum. Although these au-
thors mention the possibility of an iterative approach,
they do not use it because of the expected oscillatory be-
havior of the solutions. This is due to the fact that the in-
tegral equation provides solutions both for particle-hole
excitations and collective excitations.

Hong and Lee' calculated the dynamic form factor by
developing a method based on recurrence relations. ' '
In their approach they have proved that the GRPA lead-
ing to (2.22) is not satisfactory since it cannot obey simul-
taneously both the compressibility and the third-order

0—bE(Q;x, p)~Q —2Qp, (3.2)

when the self-energy terms are neglected in the energy
difference hE. The kernel of the integral equation is
different from zero only on the Fermi surface. We ex-
pand the solution F(Q;x,p) for x =1, in Legendre poly-
nomials of the first kind,

F(Q;1,p)=g c„P„(p), (3.3)

and the Coulomb kernel in a double series of spherical
harmonics. The problem of the vanishing denominator in
(2.22) is treated by taking the limit x ~1+ in both sides
of the integral equation. These limits coincide. After
neglecting the self-energy terms, we finally obtain the fol-
lowing linear system for the coefFicients c„:

Cn C1
2n +1 4P

2 6ooo(g) 2f3(2n + 1 )y cn' y ~pl. 'MGgg'M(g)n 1 3 2 000
n' LL'M

(3.4)

with

F.(~)~,M(x) ~:M(x)
GLL'M ( 0) dx (3.5a)

and

qkF
(3.5b)

2(2n +1}(2L+1)(2L'+1} V'2n +3 v'2n +1 (3.5c)
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where D denotes the usual Clebsch-Gordan coefficients.
Equation (3.4) can be solved numerically.

An alternative procedure is to attempt solution by
iteration since in the long-wavelength limit the Hartree
potential dominates over the exchange interactions.
Thus, as a starting point for iteration, we select the
plasmon solution in the absence of exchange. Neglecting
the second term in the right term of (3.4) yields the
plasmon solution

(0) (0) 0 6 (g)
4R

(3.6)

since 6000(g) is the Legendre function of the second kind
6„(g). Substituting (3.6) in the expansion (3.3) gives the
known solution, namely,

F(0)(g. 1 p)— a (Q)
0—2gp

(3.7)

where a (Q) is an arbitrary function of Q.
In order to examine the influence of the exchange

terms on the plasmon spectrum, (3.6) is substituted in
(3.4) to yield the next step of iteration. To find an ap-
proximate dispersion relation, one equates coefficients in
the right and the left members and keeps the less oscillat-
ing part of the exchange term. This gives

1 — 6,(g)+13 —6,(()+—62(g) =0 . (3.8)4/3 1 1

Q=Q + (1—0.068r, ) .6Q 2

5Q
(3.9)

For plasmon states in the limit Q~O or equivalently
g~+ ao with 0 nonzero, the Legendre functions 6),62
can be approximated as power series in 1/g. The final re-
sult for the plasmon dispersion is

er authors. ' ' They obtain a correction factor
6=1—0.055r„which gives for Be a coefficient 0.42 for
the Q term, while (3.9) gives 0.41, in coincidence with
the experimental value.

The procedure described serves as a starting point for
obtaining solutions for finite values of Q. The necessary
steps are as follows.

(i) For small Q we solve (3.4) numerically or by itera-
tion and obtain the solution on the Fermi surface
F(Q;1,p).

(ii) This is substituted in the second member of (2.22)
taking also the limiting value given by (3.1) to yield
F(g;x,p).

(iii) Integration of (2.22) over phase space x,p produces
a dispersion relation which is solved numerically to ob-
tain the values of 0 which permit a solution of (2.22) for
given O.

(iv) Starting from these values for 0 and F(g;x,p) and
augmenting Q by a small step Q'= Q + b, g, one can sub-
stitute in (2.22) to find the corresponding solution Q' and
F(g';x, p, ).

IV. INTERMEDIATE WAVE VECTORS:
RESULTS FOR Be

A brute force attempt to solve (2.22) might result in
solutions not having direct physical significance. An ac-
ceptable solution can be obtained by demanding con-
sistency of numerical solutions with those obtained
analytically in the long-wavelength limit.

In order to obtain the plasmon-type spectrum for finite
values of Q, we start from the long-wavelength limit and
extend the solutions in the particle-hole continuum. The
first step is to obtain an appropriate dispersion relation
for the spectrum. This is achieved by multiplying (2.22)
with n „—n „+& and integrating over phase space. After a
few manipulations the following dispersion relation is ob-
tained:

This result is similar to that derived by Kanazawa and
Tani using perturbation expansion methods and by oth-

A (Q;0)= A0(g;A)+ A,„,(g;Q) =0,

where

(4.1)

A0(g;Q)=1 — f x dx f d)M
Q2 0 —i Q bE (Q;x,p)— (4.2)

1 2~ d(()„.

~,„,(g;&)=4Pf x'dx f x'dx' f d)((, f dp'

(n„—n„+&)(n„—n +&)X
AE(g;x,p)— (4.3)

In order to simplify (4.1), F(g;x, p, ) has been normalized posing the condition

f x dx f dp(n„—n„&+) (Fg; , x)=)M1 . (4.4)
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0.
OII 1.00 2.00

i
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FIG. 6. As in Fig. 5 for Q =0.78.

FIG. 4. Excitation energy A=co/EF vs reduced wave vector

Q =q/kF. The solid line represents theory, while asterisks
stand for the experiment of Vradis and Priftis (Ref. 4). Dashed
lines mark the limits of particle-hole spectrum.

out detailed experiments on other metals having r, in this
range and for which the jellium model is a good approxi-
mation in order to check the existence of the predicted
lower branch.

The difFerent nature of the two branches becomes evi-
dent from the shape of the amplitude in Figs. 5 —7, which
is plotted for the same values of q and their correspond-
ing Q. Phase space is described by the variables x,p as
defined in connection to (2.22). The plotted function in
these figures is @(Q;x,p), defined by

values of k which lead to the collective plasmon mode
0+ appear to be extended over the entire Fermi surface.
In particular, for values of q inside the particle-hole con-
tinuum, localizations coexist with an overall deformation
of the surface. The major contribution to the amplitude
comes from k along q, i.e., in the direction of plasmon
propagation p=cosBk=1. The lower branch Q is of a
different nature. The amplitude 4(Q;x, p) is localized
around a certain q-dependent direction of k. Thus the
longitudinal wave has a finite lifetime depending on the
localization width and decays into particle-hole excita-
tions.

V. CONCLUSIGNS

@(Q;x,p ) = [0 bE (Q;x,p)—]F(Q;x,p),
where F(Q;x,p) is normalized by condition (4.4).

(4.5) In this paper the dynamical Hartree-Fock equation
was derived as the zero helicity case of a more general
equation describing the excitation spectrum of the elec-

0

0

—2,—
Q =0.2

UPPER
LOWER Q = 2.0

UPPER
LONER

wv

—0.5 0.0 0.5 1.0 -5——1.0
I

—0.5 0.0
I

0.5 1.0

FIG. 5. Amplitudes W given by (4.5) for x =1 and Q =0.2
for the corresponding Q (dashed line) and Q+ (solid line) vs

p =cos8z in the case of Be. FIG. 7. As in Fig. 5 for Q =2.0.
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tron gas.
For values of r, between 1.7 and 4.3, two branches of

collective excitations are predicted, one being the
plasmon branch. The lower branch has been observed
experimentally in certain metals with r, in the predicted
range. Yasuhara, and Asahi' have also dealt theoretical-
ly with the lower branch by considering excitations in-
volving electron-hole pairs and plasmon interactions.

The upper branch solutions coincide numerically with
previous theoretical results in the long-wavelength limit.

Finally, we would like to comment that the origin of

the experimentally observed lower branch is due to col-
lective excitations in crystals for which the jelliurn model
is a good approximation. In other cases the crystal struc-
ture cannot be neglected.
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