
PHYSICAL REVIEW 8 VOLUME 43, NUMBER 10 1 APRIL 1991

Symmetry properties of Raman heterodyne signals in Pr:LaF3
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We have observed various symmetry properties of the Raman heterodyne signals of spin echoes
of ' 'Pr nuclei in Pr'+:LaF3 and explained them. We have theoretically derived a general symmetry
law that governs the symmetry property of the signals for the static magnetic-field reversal. Ob-
served symmetry properties could be explained by using this law and the nature of the product of
three matrix elements relevant to the Raman heterodyne process. In some cases the symmetry
properties could be explained only from a consideration of the geometrical symmetry of the system.
Numerical calculations were performed under some assumptions on the optical pumping and the
effect of level multiplicity, and the results qualitatively support the explanation of observed symme-

try properties. Several symmetry properties that have not been observed are predicted.

I. INTRODUCTION

Raman heterodyne detection (RHD) of magnetic reso-
nance' has been widely used in solids and gases be-
cause of its high sensitivity and phase-sensitive charac-
teristics. However, the behavior of the Raman hetero-
dyne signal (RHS) in solids (for example, Pr:LaF3) is
far from being completely understood and apparently
anomalous behaviors have been observed. From the
anomalous path dependence of RHS in Pr +:LaF3 we
found evidence confirming the twinning of the LaF3 crys-
tal. '

The examination of symmetry properties of RHS is one
of the most important and fundamental problems.
Mitsunaga et al. observed that the RHS for the transi-
tion I, =+—,'+-++ —', (16-MHz signal) inverts its sign for the
magnetic field reversal but that for I,=+—3+-++—,

' (8-MHz
signal) does not. This is one of the important symmetry
properties but no explanation has been given.

In this paper we report on the observation of various
symmetry properties of RHS in Pr +:LaF3 in a static
magnetic field ( —100 Oe) and their explanation. The in-
terference of the RHS from different sites was exam-
ined, ' but, to our knowledge, the detailed examination
of symmetry properties for a single-site ion in a static
magnetic field in Pr +:LaF& has not been reported.

We observed RHS of spin echoes in Pr +:LaF3 and ex-
amined their symmetry properties in detail. Some of
them could be explained by using only the geometrical
symmetry of the system. Others could be explained by
using a general symmetry law of RHS for the magnetic
field reversal, which we have derived theoretically. This
law indicates that if the product of three matrix elements
relevant to the Raman heterodyne process is real (or pure
imaginary), the RHS changes (or does not change) its sign
for the magnetic field reversal. The observed symmetry
properties including the difference of symmetries for the
16- and 8-MHz transitions could be explained by using
this law and the nature of the product. Numerical calcu-
lations were also performed to confirm the qualitative ex-

planation of the observed symmetry properties.
In Sec. II we describe the outline of the experiment and

the observed symmetry properties of RHS. In Sec. III
and an appendix the expression of RHS for a three-level
system in a static magnetic field is derived. In Sec. IV we
give the geometrical explanation of some symmetry prop-
erties. In Sec. V we derive the general symmetry law for
the RHS using the expression of RHS and the property of
the rotation matrix D '

k '(a, P, y ). ' By using this law
and transition diagrams, we explain the different symme-
try properties of the 16- and 8-MHz signals in Sec. VI.
In Sec. VII the results of the numerical calculations are
presented and compared to the observation. The effects
of optical pumping and multiplicity of the levels are dis-
cussed. In Sec. VIII we predict the symmetry properties
of the RHS which have not been observed.
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FIG. 1. Experimental setup. AO is an acousto-optic modula-
tor and DBM is a double balanced mixer.

II. OBSERVATION GF SYMMETRY PROPERTIES

We observed RHS of spin echoes of ' 'Pr (I=—,') in the
ground-state sublevels of Pr +:LaF3. The experimental
setup and procedure are essentially the same as those in
Ref. 5. As shown in Fig. 1 the sample crystal (0.1 mo1%)
at 2K is irradiated with a linearly polarized light propa-
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gating along the C3 axis from a dye laser tuned to the
H4-'D2 transition. The laser beam diameter at the sam-

ple is about 300 pm. In order to simplify the experirnen-
tal condition, the light beam is gated, which is different
from the procedure in Refs. 1 and 2. As shown in Fig.
2(a) a pump light pulse ( —50 ms, —10 mW) is applied to
create population differences between ground-state sub-
levels with optical pumping. After a time much longer
than the radiative lifetime ( -0.5 ms) of the optical tran-
sition, rf pulses are applied to generate spin echoes in the
ground state. The rf field is parallel to the C3 axis. A
static magnetic field Ho of about 100 Oe is applied per-
pendicular or parallel to the C3 axis. A probe light pulse
( —10 mW) is applied at the echo time, and the signals are
detected as heterodyne beats of the induced Raman and
the probe lights. The phase of the reference rf signal is
adjusted so that the maximum bell-shaped echo signal is
obtained. There are six magnetically inequivalent sites of
Pr ions in the crystal. " We separately detected signals
for these sites by choosing rf frequency, the polarization
of the laser beam, and the path of the laser beam through
the crystal. The laser frequency is swept to avoid the de-
crease of signal intensity due to the optical pumping.
The sweep rate is so small that the laser frequency
remains within the jitter (-3 MHz) during the single
shot.

The observed symmetry properties are shown in Table
I. In this table "Odd" means that the sign of the signal is
inverted (or its phase is shifted by 180 ) for the operations
indicated, whereas "Even" means that the signal is un-
changed. The symmetry properties indicated by an aster-

5O ms

Light p Urnp
9t

3ps -6ps
Probe

(c)

10ps

FIG. 2. (a) Pulse sequence. (b) and (c) typical spin echo sig-
nals under normal (b) and reversed (c) field conditions, respec-
tively, to illustrate the basis for Table I as well as the quality of
signals which permitted the categorical assignments in the table.

TABLE 1. Observed symmetry properties in the case of H, ~~C, . "Odd" means that the sign of the
signal is inverted for the operations indicated, whereas "Even" means that the signal is unchanged.
This notation is the same as that in Ref. 2.
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isk were examined previously by the cw method and the
results are the same as ours. The property indicated by g
is an expectation and has not been observed. There are
two kinds of transitions I, =+—', ~+—,

'
( —16 MHz) and

I,=+—3~+—,
'

( —8 MHz) in the ground state. The sym-

metry properties are generally difterent for these transi-
tions. The first column shows the symmetry properties
(1) for the magnetic field reversal. As shown in Ref. 5
there are A and B sites relating to the crystal twinning of
LaF3. These sites are interchanged by 180' rotation
about the C3 axis. The second column shows the proper-
ties (2) of the signals for the interchange of these sites.
The third column shows the properties (3) of the signals
when the transitions ~m )+ ~(m+ I)) and

~

—m )
~~ —(m+1)) are interchanged by changing the rf fre-
quency. The fourth column shows the properties (4) of
the signals when the direction of the magnetic field Ho is
changed in the plane perpendicular to the C3 axis as
shown in the attached figure. These symmetry properties
are very complicated and no explanation has been given
so far.

In Figs. 2(b) and 2(c) typical spin echo signals are
shown under normal (b) and reversed (c) field conditions,
respectively, to illustrate the basis for Table I as well as
the quality of signals which permitted the categorical as-
signments in the table.

We classify these symmetry properties into two groups.
The first group is the one that can be interpreted simply
by using the geometrical symmetry. The symmetry prop-
erties (1), (2), and (3) for HO~~C3, and (4) belong to the first
group. The interpretation is given in Sec. IV.

The rest of the symmetry properties, that is, properties
(1), (2), and (3) for HolC& belong to the second group
which cannot be interpreted only by geometrical symme-
try. It can easily be shown that the symmetry property
(3) is a direct consequence of (1). Moreover, since A and
B sites are interchanged by 180' rotation about the C3
axis, property (2) can be derived from (1); the direction
of Ho is inverted by the interchange of 3 and 8 sites
when HolC3. Therefore in order to explain the symmetry
properties belonging to the second group, it is enough for
us to explain one of them. We take up the symmetry
property (1) for HolC~. The explanation is given in Secs.
VI and VII.
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represents the wave function of the state whose Zeeman shift is
positive (or negative).

tric dipole transitions are allowed between
~
I ) and ~3)

and between ~2) and ~3). co; /2ir indicates the frequency
splitting between the levels ~i ) and ~j ) (i, j= 1, 2, and 3).
co@/2' and AH� /2m are the frequencies of the probe laser
and the rf magnetic field. The detunings 6 and A~ are
~32 —~z and ~2&

—~H, respectively. We neglect the in-
homogeneous broadening of the ~1)-~2) transition, and
treat the case of just resonance for the rf transition
(coH=co2„b,H=O). We also neglect the eff'ect of the
phase relaxation of the ~1)-~2) transition. These

III. EXPRESSION OF RHS FOR A THREE-LEVEL
SYSTEM

Figure 3 shows relevant energy levels of Pr +:LaF3."
Both the ground and excited states are electronic singlets,
but each of them splits into three Kramers doublets by
the electric quadrupole interaction. Application of a
weak magnetic field lifts the twofold degeneracy and re-
sults in the energy levels as shown. Both the ground and
excited states are subjected to nonaxial quadrupole in-
teractions whose principal axes do not coincide with each
other '" as shown in Fig. 4.

We take up a three-level system as shown in Fig. 5.
The levels ~1) and ~2) are two of the ground-state sub-
levels between which magnetic dipole transition is al-
lowed and ~3 ) is one of the optically excited states. Elec-

Yg Ye

(Xg, Yg, Zg) ~ (Xe, Ye, Ze)

R(,~,.)

FICx. 4. Directions of the principal axes (Xg Yg Zg) and
(X„Y„Z,) of the ground- and excited-state quadrupole cou-
pling tensors. R(a, ll, y) is the transformation operator from
the system (X„F„Z,) to (Xs, Y,Z ), where a, P, and y are the
Eulerian angles. The assignments of the principal axes are
di6'erent from those in Ref. 2; (a =y =0).
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The laser frequency jitter ( —3 MHz) is quite small
compared to the rf transition frequencies ( —8 MHz and
—16 MHz). Therefore in our case the anti-Stokes pro-
cess (b, -0) and Stokes process (b, ——

co2, ) are treated
separately. Constants b and b' correspond to these two
processes. Equation (3.2) shows that RHS vanishes if
b+b'=0. This occurs when the population differences
p22

—
p&& for these two processes created by the pump

pulse are just inverted with each other and therefore the
sublevel coherences detected by these processes are of the
same amplitude and 180' out of phase [see Eq. (A14)]. It
is also worthwhile to note that these two processes give
the same RHS (b =b') when the relevant sublevel coher-
ences are the same.

We have dealt with the RHS of spin echoes. In the
case of the cw signals' the symmetry properties are also
determined by o' ' and the discussion of the symmetry
properties should be the same.

In Pr +:LaF3 the state ~i ) can be factored into the nu-
clear and electronic parts, ~i ) =

~i „„)~ i„), where
~ l, l )

and 2„) are equal to
~ Pg ) and

~ 3„)= ~ P, ) . Therefore
o' ' is also factored into nuclear and electronic parts.
The electronic part of cr' ' equal to ((Pg ~ez d, ~P, )

~
and

is a real constant. It does not depend on the particular
choice of the levels ~1), ~2), and ~3). Therefore in later
analysis we only consider the nuclear part of o' '.
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FIG. 5. Three-level system.

simplifications are not essential for the discussion of the
symmetry properties of the RHS.

We derive the expression of the RHS induced by the
application of the probe light to the system where the
sublevel coherence (spin echoes generated by the applica-
tion of two rf pulses) exists between levels

~
1) and ~2),

and there is no optical coherence and no population in
the optically excited state. In our experiment the
creation of sublevel population difference by optical
pumping, the generation of sublevel coherence by rf
pulses, and the detection of the coherence by a probe
light are performed at different times. This makes the
analysis simpler than that in the experiment' using cw
irradiation and a rapid frequency sweeping of the laser
light. The optical pumping process and the effect of level

multiplicity will be discussed later.
By solving the density matrix equation for the three-

level system we obtain Eq. (A15) for the Raman hetero-
dyne beat signal as

IV. INTERPRETATION BY
GEOMETRICAI. SYMMETRY

In some special situations, the observed symmetry
properties can be explained only from the consideration
of the geometrical symmetry of the system.

The first example is the symmetry property (4) in Table
I. In Fig. 6(a) we show the geometrical situations. In the
left figure the static magnetic field Ho(lC3) is applied
making an angle +0 with respect to the C2 axis. The rf
field H, (t) is along the C3 axis (+X direction). We
denote the RHS in this situation S(8). In the right figure
a different situation is shown where the angle between
Ho(LC3) and the C2 axis is —8 [referring to the original
coordinate (X, Y', Z)]. We denote the RHS in this situa-
tion S( —8). The symmetry property (4) means that
S(8)= —S( —8).

To explain this relation we introduce, in the right
figure, a new coordinate system (X', Y', Z') which is ob-
tained by 180' rotation of the system (X, Y,Z) about the
Cz axis. The Pr + ions seen from these two coordinates
are identical since the local symmetry at the Pr + site is
C2," but the directions of the external fields seen from
these coordinates are different. Referring to the coordi-
nate (X', Y', Z'), Ho makes an angle +8 to the C2 axis,
and H& is along the —X' direction. Suppose that the
phase of the rf field is shifted by 180' or the direction of
H, is inverted. In this "virtual" situation the physical
condition of the system seen from the coordinate
(X', Y', Z') is identical to that seen from the coordinate
(X, Y,Z) in the left figure. Therefore this virtual situa-
tion should yield the RHS equal to that in the left figure,
namely, S(8). In the real situation in the right figure, the

I, (t) = 2rrkzLN(b+b—') ~E ~'Re[ —io'"exp(icoHt )] .

(3.1)

The derivation is described in detail in the Appendix.
The procedure to obtain this expression is a little more
rigorous than that in Ref. 1. It is evident that the charac-
teristics of the RHS after the phase-sensitive detection of
I, (t) are represented by

(3.2)

where a is a real constant given by 2mkFLN(b+b'). — .

Hereafter we call S the RHS. Equation (3.2) shows that
RHS is proportional to the probe light intensity and
o' '.' o' ' is a product of the transition matrix elements
relevant to the coherent Raman process; o. =p,~23p3].(3)—
It is in general a complex quantity involving the phase of
the signal.
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phase of the rf field is difT'erent by 180' from that in the
virtual situation, and therefore the RHS S( —0) should
be equal to —S(8). This is the explanation of the sym-
metry properties (4).

When both Ho and H
&

are parallel to the C3 axis, the
symmetry property (1) can be explained in a similar way.
We denote the RHS in the left figure in Fig. 6(b) S(Ho).
Ho is inverted in the right figure and we denote the RHS
S(—Ho). If H, is also inverted in the right figure, the
physical situation seen from the (X', Y', Z') system be-
comes identical to that in the left figure, and the RHS
equal to S(Ho) should be observed. Therefore the situa-
tion in the right figure should give the RHS —S(Ho),
namely, S( —Ho) = —S(Ho). This is the explanation.

The symmetry property (3) is the direct consequence of
the symmetry property (1), and the symmetry property
(2) when Ho~~C3 is self-evident since A and B sites are
equivalent in this case. Thus we have explained all of the
symmetry properties in the first group.

C3

(b)

C2
/'4

(X, Y, Z)

C2

C3

C2
/4

(X, Y, Z)

C2

V. GENERAL SYMMETRY LAW FOR RHS

In this section we theoretically derive a general sym-
metry law of RHS for magnetic field reversal using the
expression of RHS and the property of the rotation ma-
trix D '(a, p, y ).. ' The law holds for arbitrary direc-
tions of the quadrupole axes of the ground and excited
states and of the rf and static magnetic fields.

In order to derive the law, we first consider the wave
functions of the ground- and excited-state sublevels. For
the ground state these are expressed as

C3 C3

(X, Y, Z) (X, Y, Z)

FIG. 6. Diagrams for the geometrical interpretation of the
symmetry property. (X, Y,Z) and (X', Y', Z') are two principal
coordinate systems which are interchanged by 180 rotation
about the C2 axis. (a) is to explain the symmetry property for
0+ —0 where 0 is the angle between the C2 axis and Hp(lC3),
and (b) is for the magnetic field reversa1 when HO~~C, .

~+m ) =exp(im/4)[ —exp( ib /2—)sin(a )~+m ) +exp(+i/ /2)cos(a )~
—m ) ],

~

—m ) =exp( —iver/4)[(exp( ig /2)co—s(a )~+m )+e px(+if l2)sin(a )~
—m )], (5.1)

where the ground-state quadrupole axes are taken as the quantization axes. ~+m ) (or
~

—m )) denotes the wave func-
tion of the level whose energy shift by the weak magnetic field is positive (or negative). Notations a, g, and

~
m )

corresponds to a, , g, , and m, ) in Ref. 2, respectively. ' The polar coordinates (9,$) of a static magnetic field with
respect to the quantization axes are involved in a and g

The excited-state wave functions can be written in the same form as in Eq. (5.1) by using quantities a ., g, ~
m ),

and (O', P') for the excited state in which the excited-state quadrupole axes are taken as the quantization axes. The ex-
pressions when the ground-state quadrupole axes are taken as quantization axes can be obtained by using the rotation
matrix D '(a, P, y) (Refs. 9 and 10) as

~+m ), =exp(i~/4)[ —exp( —ig, /2)sin(a . ) ~+ m ),+exp(+i g, l2)cos(a )
~

—m ),],
~

—m ), =exp( —iver/4)[exp( i(2/—)cos'(a, )~+m ),+exp(+i(, /2)sin(a )~
—m ),], (5.2)

with

n, n'=+5/2, +3/2, + & /2
g, n )D„' „, '(a, P, y)( —,', n'~+m )', (5.3)

where a, p, and y are Eulerian angles for the transforma-
tion from the excited-state quadrupole axes to the
ground-state ones. g, n ) is the eigenstate of I, with ei-

genvalue n and is equal to g„ in Ref. 2.
Using the relation

[D(5/2)(a P ~)]e ( 1)i —jD(5/2) (a P +) (5.4)

we can obtain simple relations between the transition ma-
trix elements. For the optical transition we obtain
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&+m (, +n &, =+(( —m ~+ n ), )*

(5.5)

As for a "and g ' ' the transformations are

a "(—H()) =m. /2 —a "(H()),

"(—Ho)=~+/ "(H()) .

Therefore we obtain from (S.1) and (5.2)

(+m ~+n &, ( —H )=[(+m ~(+n &, (H )]*,
for the optical transition, and

(5.7)

(5.8)

(5.9)

(5.10)

(+m
/
A I/+m ')( —Ho)= —[(+m

/

A. I/+m ')(Ho)]*

(5.11)

for the rf transition, where ( +m
~
+ n ) (+Ho), etc.,

denote the values of the matrix elements at +Ho.
It might be considered that the diferent relations

would be obtained if dift'erent phase factors are adopted
in the expressions for the wave functions Eqs. (5.1) and
(5.2). But the product of the three-matrix elements
(p)~$3p3( ) is independent of the phase factors.

In Sec. III we have shown that the RHS is proportion-
al to the product of the three-matrix elements p, ~$3@3]
and it determines the phase of the signal. Now we derive
the general symmetry law using the relations obtained in
the above. The product o' ' can be written explicitly as

These relations indicate that the optical transition proba-
bility between the levels ~+m ) andJ+n ), is equal to
that between the levels

~

—m ) and ~+-n ), . In a similar
way we obtain

&+mI A II+m '& =+(& —m
~
A 1~+m ') )*, (5.6)

for the rf transition, where A=Re& .y& and y& is the
nuclear gyromagnetic ratio tensor.

Now we consider the inversion of the direction of the
static magnetic field. It is represented by the transforma-
tion

unchanged. The observed symmetry property for the
magnetic field reversal can be explained if we are able to
know the nature of o' '. In Sec. VI we examine the na-
ture of o' ' by using a simple transition diagram and in
Sec. VII by numerical calculations.

The general symmetry law can be derived from more
general viewpoints, the time-reversal symmetry, especial-
ly the antilinearity of the time-reversal operation and the
sign reversal of spins by the time-reversal transformation.
The law is generally applicable to the signals in any
phase-sensitive magnetic sublevel spectroscopies. The
derivation of the law and its applications will be de-
scribed elsewhere.

Using Eqs. (5.5), (5.6), and (5.13) we can obtain the re-
lation

o' '( —Ho,'+m, +m ', +n)
=o' '(Ho; + m, + m ', + n ) . (5.14)

This relation indicates that the symmetry property (3)
for the Zeeman spectra g and g can be explained on the
same basis as that for the magnetic field reversal.

VI. EXPLANATION USING SIMPLE
TRANSITION DIAGRAMS

In this section we explain the symmetry property for
magnetic field reversal when HolC3, using the general
symmetry law and simplified transition diagrams. As is
shown in Table I, 16-MHz signals change their signs
whereas 8-MHz ones do not, when the direction of the
magnetic field is reversed. ' This fact can be explained if
we are able to show that o' ' is real for 16-MHz signals
and pure imaginary for 8-MHz ones. To show this we
consider the transition diagrams as shown in Figs. 7(a)
and 7(b).

Both the ground and excited states are subjected to the
nonaxial quadrupole interactions (see Fig. 4). The
ground-state quadrupole interaction is less asymmetrical
than that of the excited state. Therefore we take quanti-

(a) 16 MHz

8m=-t

i5r
2 |2& 3 I-ti )2

X(+m '~+n), (H, ), (+-~+—)(H, ) .

Thus we obtain from Eqs. (5.10), (5.11), and (5.12)

o' '( —Ho;+m, +m ', +n )

= —[o' '(H;+m, +m ', +n ) ]* .

(5.12)

(5.13)

I ~2&
5

zlm=)

I /2)3

Elm=]

This is the general symmetry law, and is a kind of re-
ciprocal relation connecting the signals before and after
the magnetic field reversal. It governs the phase change
of the signal for the magnetic field reversal. Namely, if
o' ' is real the signal changes its sign for the magnetic
field reversal, and if o' ' is pure imaginary the signal is

l& H.(:os&

8m=-t

FICz. 7. Simplified transition diagrams. (a) and (b) are for the
16- and 8-MHz transitions, respectively.
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zation axes along the ground-state quadrupole axes so
that the ground-state sublevels can be well specified by
the nuclear magnetic quantum number m (I, can be con-
sidered to be a good quantum number) in the absence of
the static magnetic field. For simplicity, we use the ap-
proximation that the ground-state quadrupole X axis is
parallel to the C3 axis. Therefore I is responsible for the
rf transition (see Fig. 4).

The Zeeman splittings of the excited state sublevels for
Ho ((100 Oe) are small (less than about 2 MHz) com-
pared to the spectral width of our laser (-3 MHz).
Therefore we treat the excited-state Zeeman sublevels as
degenerate ones.

Figure 7(a) shows the transition diagram for the 16-
MHz signals. The arrows indicate optical and rf transi-
tions involved in the Raman heterodyne process and the
wavy arrow the existence of the state mixing. The selec-
tion rule for the nuclear magnetic quantum number for
the optical transition is hm =0 and that for the rf transi-
tion is bm =1. Matrix elements for these transitions are
real (we can take (m ~I„~m') as real without loss of gen-
erality ). Because the selection rule for the total process
should be hm =0, the mixing b,m = —1 in level 3 must
be incorporated to close the loop. The state mixing
Am = —1 is caused by the incongruence between the
ground- and excited-state quadrupole axes, and the mix-
ing coefficient is real because a and y is zero (see Fig. 4).
Thus the product of the matrix elements involved in this
closed path is real. Because this is considered to be the
dominant process involved in the 16-MHz signals, o' ' is
almost real for the 16-MHz signals.

Figure 7(b) is the transition diagram for the 8-MHz sig-
nals. The main difference from the 16-MHz case is that
the ground-state 1 is not a nearly pure state, but a mix-
ture of

~
—,
' ) and

~

—
—,
' ) due to the Zeeman interaction with

a static magnetic field. The state 2 is nearly pure g).
Considering the selection rule hm =0 for the total pro-
cess the mixing hm = —2 in level 3 is necessary in this
case. The mixing can be provided by the nonaxial quad-
rupole interaction of the form DIz, +E(IX, I„,) and-
also by the incongruence between the ground- and
excited-state quadrupole axes. The relevant matrix ele-
ments are also real. But in the state mixing b m =1 in the
ground-state 1 the factor "icos(0)" is introduced where 0
is an angle between the static magnetic field and the C2
axis ((m ~Ir ~m') is pure imaginary ). Because this pro-
cess is considered to be dominant, o' ' is almost pure
imaginary in the 8-MHz case.

Thus we have explained the difference between the
symmetry properties for 16- and 8-MHz transitions for
the magnetic field reversal when HOIC3.

VII. INTERPRETATION BY
NUMERICAL CALCULATIONS

We have discussed symmetry properties considering a
simple three-level system. However, the observed signals
are the sum of the contributions from many three-level
systems. Population differences in the ground-state sub-
levels created by optical pumping and the nature of o' '

are generally different for these three-level systems. The
symmetry properties belonging to the first group in Table
I are determined regardless of these effects as shown in
Sec. IV. The symmetry properties belonging to the
second group may depend on these effects. In Sec. VI we
have given a qualitative explanation using simple transi-
tion diagrams. In this section we give the more quantita-
tive explanation for the symmetry properties in the
second group by performing numerical calculations con-
sidering the existence of many three-level systems. The
validity of the general symmetry law derived in Sec. V is
also confirmed by this calculation.

In order to explain the observed symmetry properties
by using numerical calculations, we first consider the op-
tical pumping in the multilevel system.

A. Creation of sublevel population difFerence

Population differences between the ground-state sub-
levels are created by the optical pumping pulse. The op-
tical pumping effect in Pr +:LaF3 is very complicated
and may sensitively depend on the pumping conditions
such as the pumping power and the spectral width of the
pumping light. The details of the pumping process are
not known. Here we make plausible assumptions that (1)
the depopulation from the magnetic sublevels of H4 to
those of 'D2 occurs proportional to the optical transition
probabilities between these sublevels and (2) there is no
nuclear spin memory, that is, the repopulation from 'D2
to H4 does not depend on the magnetic sublevels.

The frequency jitter of the laser we used is about 3
MHz, and the frequency splittings of magnetic sublevels
by Ho ( + 100 Oe) are at most 2 MHz in 'D2 state. There-
fore we assume that the excited-state magnetic sublevels
can be treated as degenerated ones during the optical
pumping process.

B. Incorporation of multilevel efFect

There are six sublevels in each of 'D2 and H4 states.
Therefore 12 (=2X6) independent transitions (6 anti-
Stokes and 6 Stokes processes) take part in the signal be-
cause of the large inhomogeneous broadening of 'D2- H4
transition ( —5 GHz). Therefore we obtain the expres-
sion S, for the total RHS as

m =5/2, 1/2, —3/2
[ [b(+m )+b'(+m )]cr' '(+m )+[b( —m )+b'( —m )]cr' '( —m )I, (7.1)

where a'= 2m kELN, and a' '(+r—n ) and b "(+rn ) represent the values of p&2p23p3, and b", respectively, when level 3
is

~
m ),. We have assumed that the excited-state magnetic sublevels can be regarded as degenerate ones during the

optical pumping process and that the sublevel population differences are created by the pumping pulse in proportion to
the transition probability of the transition resonant to the pumping pulse. Therefore the values of b( m ) and b ( m )

can be obtained by using Eq. (A14):
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b(+m ) =b( —m ) =(I &2I+m &, I'+ I &2I —m &, I')b, ,

b'(+m)=b'( —m)=(I&1I+m &, I'+I&1 —m &, I')bo,

(7.2)

(7.3)

where bo and bo are constants independent of the transition matrix elements. Inserting Eqs. (7.2) and (7.3) into Eq. (7.1)

we obtain,

s, =a'IE„ I'
m =5/2, 1/2, —3/2

[CT' '(+m )+0' '( —m )]

X [bo( I & 2I+ m &, I'+ I & 2I —m &, I')+b,'( I &II+m &, I'+ I & 1I —m &, I')] . (7.4)

In the expression of o' '(+m )+o' '( —m ) the projec-
tion operator I+m &„&+m I+ I

—m &„&—m
I appears.

It can be calculated from Eq. (5.2) and is equal to
I+m &„&+m I+

I

—m &„&—m
I

which is independent
of the static magnetic field.

Equation (7.4) is the final expression of RHS used for
the numerical calculations.

C. Results of numerical calculations

The results of the numerical calculation of the real and
imaginary parts of expression (7.4) are shown in Fig. 8

C2 Ho

where the parameters in Ref. 2 are used' and we as-
sumed that ho= —bo for simplicity. 0 is an angle be-
tween the C2 axis and the applied static magnetic field
which is perpendicular to the C3 axis. The rf magnetic
field is parallel to the C3 axis. The numerical calculations
give nearly real and pure imaginary values of S, for the
16- and 8-MHz signals, respectively. This is just expect-
ed from the discussion in Sec. VI. The angular depen-
dence of cr' ' for 8-MHz signals is roughly represented as
cos(0) given in the discussion in Sec. VI. When 0=0 or
180' (HOIICz), the signal vanishes both for 16- and 8-MHz
transitions. This can be explained by the geometrical
consideration similar to that in Sec. IV. When 0 is 90
(HOICK), the imaginary part vanishes, which is also ex-
plained geometrically. The results of numerical calcula-
tion also show that S, actually obeys the general symme-
try law [Eq. (5.13)].

VIII. PREDICTION FOR OTHER CONDITIONS

(b)
Re(St)

0-
Im(st)

(c)
0 180

Im(st)
r

270'

S3

0~
E

I I I I I ~ I I l~ I

0' 90'

I

I

Re(St) '

I I I I I I I I I I I I I I I l I I I I I I I I

180' 270' 360'
e

FICx. 8. Results of numerical calculations. The angle 0 is be-
tween the C2 axis and Ho(lC3). The rf magnetic field is parallel
to the C3 axis.

We have dealt with the cases where H, IIC3 in

Pr:LaF3. Et is possible to predict the symmetry proper-
ties when H&lC3 from similar arguments. The predic-
tions are shown in Table II. As is expected from the
geometrical symmetry, the relative direction of H& with

respect to the C2 axis is important. %'e consider two
cases where Hi IIC2 [Table II(a)] and H, J.Cz [Table II(b)].

Some of the symmetry properties (indicated by an as-
terisk) are derived only from the geometrical considera-
tion as in the case of H, IIC3. The other symmetry prop-
erties are expected from the observed symmetry proper-
ties in the case of H, IIC3. Optical pumping processes are
independent of H&. The rf transition matrix elements in
the case of H, II Cz are proportional to & m

I
1r I

m '
&

whereas those in the case of H, IC3 to & m
I Ix I

m' &. Since
&mIIi Im'& is pure imaginary and &mII+Im'& is real,
the phase of cr' ' for HiIIC2 divers by m/2 from that for
H

&
IC3. Therefore we can expect by using the general

symmetry law that the symmetry property (odd or even)
for the magnetic field reversal when H, IICz is opposite to
that when H, IC3. The other symmetry properties can be
expected in the similar way.

Symmetry properties of Pr +:YA103 observed by
Mitsunaga et al. and of Eu +:YAlO3 observed by Erick-
son will also be able to be explained in the similar way.



43 SYMMETRY PROPERTIES OF RAMAN HETERODYNE SIGNALS. . . 7535

TABLE II. Expected symmetry properties in the case of H, lC3, and H&IICz in {a) and H~J.Cz in (b).
The notation is the same as that in Table I.

(1) (2) (3)
field reversal site interchange Zeeman spectrau::—u Asite -:Bsite

u. J C, u. II c; u. J. C, u. II c; u. J. C, u. II c;
+—f-+ +—3 5

2 2

( 16MHz)

1 3
2 2

even even odd odd even even even

( 8MHz)

(b) u) J Cg

Qdd even even odd odd even even

field reversal site interchange Zeeman spectra

u, ::—u Asite:: Bsite
u. J c. H. II c; u. J c. u. II c; u. J c, u. II c;

8 = i(u„Cz)
: —8

u. J c;
2 2

( 16MHz)

1 3
2 2

( 8MHz)

odd

even

odd

odd

even

odd

Qdd

odd

odd

even

odd

odd

odd

Qdd

IX. SUMMARY

In summary we observed various symmetry properties
of the RHS in Pr +:LaF3 and explained all of them using
the general symmetry law which we have theoretically
derived and geometrical symmetries. The numerical cal-
culation gives quantitative explanation of the observed
symmetry properties.

APPENDIX: DERIVATION OF Eq. (3.1)

RHD is a technique to optically detect sublevel coher-
ence through coherent resonant Raman scattering. We
derive the expression of RHS induced by the probe light.
For that purpose we solve the density matrix equation of
motion under the initial condition that the sublevel
coherence is already generated by the rf pulses and there

I

is no optical coherence and no population in the optically
excited state.

1. Density-matrix formula

The interaction between a three-level system and the
probe field

E (t,z)=e E exp(+icozt ikzz)—I2+cc.
can be expressed by the density matrix formula. The
direction of the probe beam is taken along the z axis, e is
the unit vector which expresses the direction of the polar-
ization, and E is taken to be real. The density matrix
equations for the three-level system in Fig. 5 are as fol-
lows:

P,2(t, 6)= (i /2) [y,3P32(t, 6)—
y32P, 3(t, 6) ]exp( i ~H t ), —

P» ~ =[ ~+~~ —r ]p»( ~)+ (X» 2)[P33( ~ —p»(t ~)]—(X» 2)p» ~) p(+ ~Ht»

@23(t ~)=(i~—1, )P23(t, ~)+ i(»3 ~2)[P»(t, ~)—P&2(t, ~)1—i(X»~2)P2i(t, ~)exp( —i~H t )

(A 18)

(A lb)

(A 1c)

where y, is the optical dephasing rate, y, 3 is the Rabi fre-
quency for the i —3 transition (i =1,2), and the tilde
denotes the slowly varying part as

p, 2(t, b, ) =p, ~(t, b, )e px( +icoH t ),
p»(t, z, A) =p, 3(t, b, )exp[+i(cozt kEz)], —

2. Detection of sublevel coherence

The initial conditions are

P13(0 ~) P23(0 ~) P33(0 ~)
p, ~(0, b, )%0,

(A3a)

(A3b)

p23( z ~) p23(t, b)exp[+i(co~t kzz)] . —(A2c) namely, at t =0 (at the beginning of the probe pulse)
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there is no optical coherence and no population in the op-
tically excited state but sublevel coherence exists. The
sample with sublevel coherence p, z(0, b, ) causes a
coherent Raman scattering of the probe light.

a. Anti Sto-kes process (b, -O). When the probe light
E is nearly tuned to the 2-3 transition, pi3(t, h) is oscil-
lating at the frequency nearly equal to coH whereas
p23(t, 5) is not. From Eqs. (Ala) and (Alb) we obtain

P i2( t, 6 ) = —i (X32/2)P13( t» 5 ) (A4a)

p»(t, &)=(i &—y, )p»(t, 5)
—i(Xzq/2)pi2(t, b, ), (A4b)

where pi3(t, b, ) =pi&(t, b, )exp( —
icoHt ) and rapidly oscil-

lating terms are neglected.
Considering the initial conditions we obtain p»(t dl)

from Eqs. (A4a) and (A4b) as

'X23Pu(0 ~)
pi3(t, b )= exp[( —y, +id, )t/2]sin(+Ix2, I

+b, y, +2—iy, bt/2) .+Ix»l'+~' y—~+2&y»~
(A5)

The macroscopic coherence p»(t) can be obtained by summing p»(t, h) over the optical inhomogeneous broadening
G(b, ), namely,

p„(t)=f dbpi3(t, b, )G(b, ) . (A6)

b. Stokes process (5——co2&). Using similar procedures as in the anti-Stokes process we can obtain

+ iX3iP12(0, b, ')
p32(t, b, ')= exp[( —y, ib, ')t/—2]sin(+lx3, I

+6' y, 2iy—, b, 't—/2,
v'Ix» I'+a' y', —2i y—,~' (A7)

p32(t)= f db'p3'2(t, b, ')G(b, ') (AS)

where 6' = b, +AH and p32( t, b, '
) =p32( t, b, ' )exp( i coH t )—.

Similarly to Eq. (A6) we obtain
Jfl]2= ( 1leH d I2) (A9)

and d is the magnetic dipole operator. The sublevel
coherence pi&(0, 5) associated with spin echoes can be ob-
tained by the standard procedure' as

3. Sublevel coherence associated with spin echoes

We treat the RHS of spin echoes produced by the ap-
plication of ~/2 and m rf pulses after the population
difference p22(b, ) —p»(b. ) is created by optical pumping.
The rf field is expressed as

Pi2(O, b, ) = —t [P2~(b, ) —p»(b, ) ]p, ,2/(2lpip I )» (A10)

where the decay of the sublevel coherence is neglected.
The sublevel coherence p, 2(O, b ) has nonzero-value for
within the spectral width (-3 MHz) of the pump

pulse.

H, (t) =eH H, exp(+i AH t )/2+c. c. ,

where eH is the unit vector representing the direction of
1

8&. The rf Rabi frequency g, 2 is defined as
pi2H, /A where.

4. Raman heterodyne signal

The Raman light E,(t,z) is connected with density
matrix elements p, 3(t) =p, 3(t)exp(icoHt ) and
p23( t) =p23( t)exp(i AH t ) by Maxwell equations as follows:

E,(t, z ) =e E,(t)exp[i(co~t kEz )]+c.c. —

=e~ [ 2vrikzLN[p»p—»(t}+p32P23(t)]]exp[i(cozt kzz)]+c.c. , — (A 1 1)

where I. is the sample length, N is the impurity-ion number density; an optically thin sample is assumed. p, 3 is the opti-
cal transition matrix element defined as

p;3 (l Iep'd I3)

where d, is the electric dipole operator (i = 1,2).
The signal field E,(t, z ) and the probe field E (t,z ) give rise to the total field

E,(t,z)=E (t,z)+E, (t,z) .

From the total intensity
I E, I, one obtains the observed heterodyne beat signal

I,(t)=2Re[E, (t)E& ]= 2rrkELE&N Re[ip3—&p»(t)+i)Li32p23(t)] .

The first term expresses the anti-Stokes process and the second term the Stokes process.
From Eqs. (A5) —(AS) and (A10) we obtain

(A12)
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tp31p)3(t) = t—bp)9 23p3LEp exp(+ troat ),
ip32p$3(t) =ib'*@2,p»p3zE~exp( —

icoHt ),
where

(A13a)

(A13b)

and

+ 00 [pzz(b, )
—p»(b )]sin(V Ix23I +5 y, +2iy, ht /2)b= dhexp —y+ih t 2 6 6

+g —y +2iy, g
(A14a)

[p22(~') —p»(~')]»n(V'Iy23I'+~' y, —2iy, b't/2)b'= db, 'exp[( —y, i b, ')—t /2]G(b. ') (A14b)
QIy I'+a' y' —2ty—,a

It is reasonable to assume that the population difFerences p22(b, )
—p»(b, ) and pz2(b, ') —p»(d') are even functions of b,

and b, '. In this case one can easily show that b and b' are real [G(b, ) and G(b, ') are also assumed to be even functions
of b, and 6'].

We obtain the expression for I, (t) from Eqs. (A12), (A13a), and (A13b) as

I,(t)= 2rrkzL—N(b+b')IE
I Re[ —io' 'exp(+icoHt)], (A15)

where cr' ' is a product of the transition matrix elements
relevant to the coherent Raman processes; o' '

8 i&23P3& ~

It might be considered that b and b' depend on time t
and is modulated. However it is shown in Ref. 14, in the
case of y, =0, that b and b' are essentially time indepen-

I

dent when the condition I )) Iy23I, Iy, 3I is satisfied [I is
the width of b where p, 2(0, 6)%0, in other words, the
width of the hole burned by the pump pulse]. In our ex-
periment the condition is satisfied and therefore b and b'
are time independent.
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