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Percolation properties of the Wolff clusters in planar triangular spin models
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We formulate the Wolff algorithm as a site-bond percolation problem, apply it to the ferromag-
netic and antiferromagnetic planar triangular spin models, and study the percolation critical behav-
ior using Anite-size scaling. In the former case the Wold' algorithm is successful as an accelerating
algorithm, whereas in the latter case it is not. We found the percolation temperatures and the clus-
ter exponents for both models. In the antiferrornagnetic model, the percolation temperature is

higher than the critical temperature of the spin system. The cluster exponents are found to be the
same as the random two-dimensional (2D) percolation. In the ferromagnetic model, the percolation
temperature agrees with the critical temperature, and the cluster exponents are dift'erent from the
random 2D percolation, meaning that they are in di6'erent universal classes. For the ferromagnetic
model we discuss the mechanism of the cluster growth in the regime of the Kosterlitz-Thouless
transition. We also note a relation between the dynamic exponent and the percolation exponents.

I. INTRODUCTION

Ever since Swendsen and Wang' (SW) put forward
their novel algorithm for the Potts model, various algo-
rithms have been proposed to reduce critical slowing
down of spin systems using ideas from percolation
theory. The original SW algorithm' is based on the
Fortuin-Kasteleyn mapping for site-bond percolation
and the Potts model. Clusters of spins in the same states
are grown and the whole clusters are fiipped. Thus, a
number of spins are updated in a single move and the
correlation time is reduced. This was successfully applied
to the ferromagnetic Potts model and the antiferromag-
netic Ising model on a square lattice. ' Later WolfF intro-
duced a single-cluster algorithm that, when applied to the
Ising model, is similar to the SW algorithm except that
only one of the SW clusters is Aipped. This particular
cluster is chosen with a probability proportional to its
size. Wolff also introduced a generalization of the spin-
Aip operation in the Ising model to models with continu-
ous degree of freedom and successfully applied it to the
ferromagnetic XY and Heisenberg model. Using a com-
bination of the SW algorithm and the Wolff Hips, Wang,
Swendsen, and Kotecky were able to deal with the anti-
ferromagnetic three-state Potts model on a square and
simple-cubic lattice. In all of the above cases, the systems
are not frustrated and the new algorithms give a
significantly smaller dynamical exponent than the
Metropolis algorithm. A comparison of the eKciency be-
tween the SW and Wolff algorithm for the Ising model
was done by Tamayo, Brower, and Klein who found
that, for d )2, the Wolff algorithm is more efficient than
the SW algorithm.

We have been motivated by an interest in techniques
for acceleration of vector spin systems with competing in-
teractions (frustration). An alternative method, Fourier
acceleration, can speed up the relaxation of the long-
wavelength modes of any continuous degree of freedom.
It is successful in reducing critical slowing down in fer-

romagnetic and other unfrustrated spin systems. ' How-
ever, frustrated systems commonly break discrete degrees
of freedom in addition to the global continuous symme-
try; in particular, the global symmetry group O(n) for n

vector spin systems contains a reAection operation which
is discrete. When Fourier acceleration was applied to
such a system, it was found to be ineffective in accelerat-
ing the discrete degree of freedom. ' The Wolff update is
exactly a reAection, so there is an apparent possibility
that it could be useful in updating these degrees of free-
dom. Unfortunately, our study has shown that the Wolff
algorithm does not succeed in finding the right groupings
of spins to be rejected.

While the previous works are concentrated on showing
the eKciency of the new algorithms by finding the
dynamical critical exponent, in this paper we present a
study of the percolation properties of the clusters" in the
Wolff algorithm. Instead of being used as an acceleration
algorithm to reduce critical slowing down, we formulate
the Wolff algorithm as a site-bond percolation problem.
It is applied to the planar triangular spin model with fer-
romagnetic (FPT) and antiferromagnetic (AFPT) interac-
tions, the latter being a frustrated system. We will show
that, for the FPT model, T (the percolation temperature
of the Wolff clusters) is equal to T, (the critical tempera-
ture of the spin system), whereas T ) T, for the AFPT
model. Thus, in one case (FPT), the Wolff algorithm is
successful in reducing critical slowing down while in the
other case (AFPT) it is not. We will investigate the prop-
erties of the Wolff clusters in these two cases.

II. WOLFF ALGORITHM
AS A PERCOLATION PROBLEM

Consider a classical planar spin system with Hamil-
tonian

H= —pJ g tT, o.
(xy )
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Wolff' generalized the spin-Aip operation in the Ising
model to a continuous model by defining it to be a
reAection about a direction orthogona1 to a projection
vector r in the spin space

%(r)cr =o„—2(o r)r .

For a particular projection vector r which is chosen at
random, we can identify the clusters in the system by
visiting each nearest-neighboring bond (xy ) and activat-
ing it with the probability

P(o„,o )=1—exp[min[0, 2P—J(r cr )(r o~)j) .

We then pick a spin at random. The cluster to which it
belongs is called the Wolff cluster. The Wolff algorithm
of sampling the spin configurations consists of continu-
ously generating the Wolff clusters using random projec-
tion vectors and Gipping them according to Eq. (2) as
soon as they are generated. In this way we generate a
series of spin configurations and a distribution of Wolff
clusters n,*. It can be shown" that this satisfies the de-
tailed balance and will sample spin configurations accord-
ing to the partition function corresponding to the Hamil-
tonian in Eq. (1).

At high temperatures, the spins are less correlated and
the cluster sizes are small. As the temperature is
lowered, the spins become more ordered and the cluster
sizes increase. We define the percolation temperature of
the Wolff clusters T as the temperature at which span-
ning clusters start to appear in a large system. Therefore,
we have two different critical temperatures in our system:
the critical temperature of the spin system T, and the
percolation temperature of the clusters T . In our two-
dimensional (2D) models, we consider T, to be the
Kosterlitz-Thouless' (KT) temperature for the FPT
model. For the AFPT model, we consider T, to be the
temperature at which both discrete and continuous de-
grees of freedom' order. As in an ordinary percolation
problem, we can define the following cluster properties
for the Wolff clusters: the percolation probability P
which is the fraction of spins belonging to the spanning
cluster, the distribution of cluster size n, =X, /1V, where
N, is the fraction of Wolff clusters with size s, and X=L"
is the total number of spins in the lattice. Also, the clus-
ter susceptibility g is the second moment of the cluster
distribution

sn,*

1 S

P =—(s)S)S
S

S

(7)

(ii) On the other hand, since P is the fraction of all spins
which belong to the spanning cluster, the probability that
a Wolff hit is on the spanning cluster is P . Thus, we re-
quire

X
P„=Prob(s )s, ) = g n,* .

S
C

(8)

[Note the normalization QPn, *= 1 follows from (5).)
Note that P„ from Eq. (7) increases as s, increases,

whereas P from Eq. (8) decreases as s, increases, so
there is a unique solution of s, for which (7) and (8) are
equal. This uniquely defines an estimator P from the
distribution of Wolff clusters n,*.

As in ordinary percolation problems, we make the fol-
lowing scaling assumptions:

P„=L ' 'f(tL '),
y =L ' 'g(tL ')

o. 1/v
n,*=s ~h(ts ', tL

(10)

Here the temperature of the system plays the role of the
percolation probability p in the ordinary percolation
problem. The system is above the percolation threshold
when T is below T and vice versa.

To make the computational problem well defined, we
need a working definition of P when L ( oo. If we
found all clusters simultaneously as in SW, ' then we
could use the standard approach of taking the largest
cluster as the "infinite" spanning cluster. However, with
the algorithm of Ref. 4, we only generate one cluster at a
time; therefore, we have chosen to extract P from the
function n,*. We suppose there is a cutoff cluster size s„
above which the Wolff clusters are considered to be span-
ning clusters. Now, in the limit L —+ ao, we note that P
is related to n,* in two independent ways; we generalize
these ways to finite L, and then we fix s, by requiring that
both ways give the same value of P . The two ways are
the following: (i) The size of the spanning cluster is P N;
thus, we require

y =ps n, . (4)
where t =

~
1 —T/T~ ~

and

We will write the expectations ( . ) with respect to the
Wolff process. A given Wolff cluster has one chance to
be grown for each site that can be hit; thus, the probabili-
ty of hitting a Wolff cluster of size s is

n, =—N, =sn, ,

i.e., the clusters are hit with probability proportional to
their sizes. Then we can write

y = gsn, *=(s) .

(12)

Equation (12) results from Eq. (5) and so the Wolff ex-
ponent ~* is smaller than the cluster exponent ~ by 1.
Observe that in the limit t ~0, Eq. (11) implies

n,*=s 'h(ts ') . (13)

This is consistent with the fractal scaling

(14)

for clusters of diameter R only if the fractal dimension D
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obeys the relation Dvo. =1. It can be shown by inserting
(11) into (7) and (8) that our estimator P indeed satisfies
(9).

2 I

(a)
I I I I I I I

III. RESULTS

We now consider an AFPT model with Hamiltonian
(1) and J= —1. The T, for this system was previously
determined to be 0.505+0.005.' We generate the Wolff
clusters according to the algorithm in Ref. 4, which is an
equivalent, but more efficient, version of the algorithm
described above. A "Wolff step" consists of generating a
Wolff cluster and Gipping it to obtain a new spin
configuration; the number of spins updated in one Wolff
step is equal to the size of the Wolff cluster. The follow-
ing runs are for 100000 Wolff steps. The system sizes are
L =12, 18, 24, 36, 48, and 72, where X=L . The spin
configurations are in a parallelogram cell with periodic
boundary conditions. Figure 1 shows a typical distribu-
tion of the cluster sizes at a temperature above T, (i.e.,
below percolation threshold). For intermediate cluster
sizes, n,* follows a power law. Figure 2 shows the scaling
plots for P, g, and n, . It is clear that the distribution
of the Wolff clusters depends on the size L. Hence, there
are two arguments in the scaling function h in Eq. (11).
But, for s «L", one will expect that the dependence of
n,* on L is not important. In Fig. 2(c), only the data
points for L =72 (which is our largest system) are plot-
ted. T and the critical exponents are found by adjusting
their values to achieve optimal collapsing of the data
points into a single curve. Their uncertainties are es-
timated by varying their values and visually determining
the maximum deviation so that the data collapsing is still
acceptable. From the scaling plots we find that
T =1.037+0.002. The cluster exponents are tabulated
in Table I. Note that values of v are independently
determined from Figs. 2(a) and 2(b), and they turn out to
be the same. Also listed in Table I are the critical ex-
ponents for the 2D random percolation calculated from
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FIG. 1. Distribution of Wolff clusters n,* for the AFPT mod-
el with L =72 at T= 1.04.

FICx. 2. Finite-size scaling plots for the AFPT model: (a) P„,
(b) p~; the upper and lower branches are for T & T~ and T) Tp,
respectively. (c) Scaling plot {for L =72 only) of cluster size dis-
tribution n,*.
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TABLE I. Critical exponents for the Wolff clusters as found
from the scaling plots in Figs. 2 and 3 for the AFPT and FPT
models, respectively. D is the fractal dimension. The values for
2D percolation are from Ref. 17. v.

p is obtained from
through Eq. (12), D is calculated from Eq. (17). The other ex-
ponents are obtained from the scaling plots.

Exponent

P,
Vp

p

p

Op

D

AFPT

0.140+0.004
1.355+0.005
2.41+0.02
2.01+0.02
0.39+0.02
1.88+0.02

FPT

0.25+0.03
2.5+0.2
4.5+0.4

1.90+0.01

2D percolation

—=0.139

31~ 333
=2.389—', =2.055

9} 0.396
—„' =1.896

(a) oo
+ x~@ xo

+ L=12

x L=24

&& L=36

o L=48

o L=72

the conjectures of den Nijs, ' Pearson, ' and Nienhuis
et ah. ' These values are believed to be exact. ' We ob-
serve that they agree quite well. Thus, the exponents nu-
merically obey the usual scaling laws

P„=(r —2)/o.

—y„=(r —3)/o~,

and the hyperscaling law

dv =y +2P (16)

We conclude that the Wolff clusters in an AFPT model
are in the same universality class as random 2D percola-
tion.

We next consider the FPT model with Hamiltonian (1)
and J= + 1. T, was previously determined to be
1.39+0.02. ' Figure 3 shows the scaling plots for I'
and g . (Attempts to make n,* data collapse on a scaling
plot were unsuccessful. ) From these plots we determined
T to be 1.40+0.02. Note that the uncertainty in T in
this case is much larger than that in the AFPT model.
This is because v is larger in the present case and conse-

1/v
quently the coe%cient I p in the argument of the scal-
ing functions (9) and (10) has a smaller range of accessible
values, leading to a larger uncertainty in t.

The cluster exponents from the FPT model are also
summarized in Table I. Hyperscaling (16) is again found
to be satisfied numerically. Since we could only fit three
independent exponents Il, v, and y„ in this case, we
cannot check the scaling laws (15). We observe that Tz
agrees with T, and the different exponent values show
this system is in a different universality class from ran-
dom 2D percolation. It is intriguing that /3, v, and y
are all larger than those of uncorrelated percolation by
about the same factor —1.85.

IV. DISCUSSION

A. AFPT model

The fractal dimension D is obtained through the relation

D=(y +P~)/v~ .

0.5
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In the AFPT model, we notice that T & T, . The Wolff
clusters percolate when the temperature is still appreci-
ably higher than T, . At temperatures near T„ the clus-
ter distribution is dominated by either very small clusters
or infinite clusters. Thus, a great deal of computer time
is spent in growing the infinite clusters, which, when
Aipped, have the net effect of updating those spins in the
holes of the clusters only. This makes the algorithm very
inefFicient around T, . At T, which is high compared
with T„ the spin correlation length is short and one may
expect that the site-bond percolation resembles the ran-
dom percolation. Hence, we expect the percolation of
the Wolff clusters to be in the same universal class as the
random 2D percolation, as confirmed in the exponents of
the Wolff clusters.

B. FPT model

0.1
0.01

I I I I I I I I I I I I I I I I

0.1
L1/v&

FIG. 3. Finite-size scaling plots for the FPT model, (a) P
and (b) y .

It is known from an exact mapping that, for the un-
frustrated Ising and Potts model (where the acceleration
algorithms has been successfully applied), T = T, . ' In
the case of the ferromagnetic XY model, previous work
showed numerically that the Wolff algorithm successfully
accelerated the dynamics near T„and by the argument
at the beginning of Sec. V (below), this indicates that
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T = T, . Our result directly confirms that T = T, for the
FPT model. At T, the spin-correlation length diverges
and the site-bond percolation changes to another univer-
sality class, as shown in the exponents of the Wolff clus-
ters.

In general dimension d, we can distinguish two
scenarios for what limits the size of Wolff percolation
clusters in the FPT model. Scenario 1: large clusters be-
come exponentially unlikely as they involve the product
of many probabilities which are small compared to unity.
This case is familiar, since it occurs in ordinary uncorre-
lated percolation. Scenario 2: a FPT system can be bro-
ken into "domains" by "domain boundaries" with respect
to some projection vector r. These are boundaries
separating regions where the spin components along r are
of opposite signs. Within a given domain, the projection
of every spin onto the Wolff projection vector r has the
same sign and the Wolff clusters cannot jump across the
domain boundaries. Then, in this scenario, the clusters
are limited by the domain boundaries, i.e., a typical Wolff
cluster percolates and has a nonzero density through
most of the interior of a domain.

Let us consider scenario 1. Since the cluster growth is
not stopped by the domain boundaries but by the accu-
mulation of the probabilities of broken bonds in the inte-
rior of the domains, we expect g (g. If T~ ~ T„we do
not expect to find the same exponents as in ordinary per-
colation because the bond probabilities depend on the
spin Auctuations, and near T, these develop long-range
correlations. It has been shown ' that, for random bond
percolation where the occupations p have long-range
two-point correlations

(18)

the correlations are relevant (changing all the exponents)
if a ( I/v . In this case, the new correlation length ex-
ponent is v'=1/a )v . The fact that we do not have an
increased value of v for the FPT case as compared to
random percolation is consistent with this point of view,
which would conclude that a = I/v =0.8. On the other
hand, the KT theory' implies a decay of spin correla-
tions (due only to spin waves)

( )
—(d/D+ I) (20)

which, in turn, implies the hyperscaling relation. Howev-
er, for vortex pairs in the KT theory, the vortex pair den-

domain boundaries do not intersect. Then a single bound
vortex pair typically produces a domain boundary loop so
the domain diameter is comparable to the vortex spacing.
Near T, where there are vortices on many length scales,
we must be more careful about this picture. The low-
order equations of the KT renormalization group impli-
citly assume a separation of length scales between vor-
tices; given a cutoff b, it is assumed that all vortices with
spacing closer than b can be uniquely grouped into
(+,—

) pairs and that they affect larger scales only by a
renormalization of the effective spin stiffness constant.
The corresponding domain picture is then hierarchically
nested: every bound pair of two vortices must be con-
nected by a domain boundary; smaller bound pairs can
occur between the two vortices, but no larger bound pairs
can occur between them. A schematic picture is shown
in Fig. 4. It turns out that the KT correlation length is,
in fact, the separation of the largest vortex pairs, i.e., the
typical separation of unbound vortices. ' At larger scales
the vortices are unbound and random. At this point the
domain boundaries connect nearby vortices randomly
and we expect the domain size to be comparable to the
spacing of unbound vortices. But the percolation correla-
tion length is the cutoff of the cluster distribution. Thus,
within scenario 2 where clusters are identified with
domains, we get g„-g.

In the case of ordinary uncorrelated percolation (at cri-
ticality), if we rescale the system, the cluster distribution
is constant. In other words, clusters have a self-similar
distribution; the density of clusters of size greater than
R scales as R ", which implies

&o„o,) —ix —yi (19)

with gx~( T) = —,
' at T= T, . In view of the nonlinear rela-

tion (3) and the possible importance of higher than two-
point correlations, it is not clear to us how (18) might be
related to (19).

Note that, in scenario 1, it would be somewhat surpris-
ing to find T, = T exactly. Even in the long-range corre-
lated percolation models, the critical fraction p, is still
between 0 and 1. Thus, one would not expect the onset of
long-range correlations in the percolation to make a sud-
den qualitative change so that the system reaches per-
colation. Therefore, the observation that T = T, argues
strongly for scenario 2.

Let us now consider scenario 2. For d =2, it has been
noted by Brower et al. that every vortex must sit on a
domain boundary; it is also clear that vortices of + and—signs must alternate along the domain boundary, and

FIG. 4. Schematic picture of domain walls I,'solid lines) in a
hierarchical configuration of bound vortices. Vortices are
marked "+"and "—"according to their sign; a dashed circle
encloses each bound pair. The Wolff projection vector r is tak-
en to be vertical. The up and down arrows label domains in
which the spins have positive and negative projections on r;
along the domain walls the spin directions are strictly horizon-
tal, in the sense marked by the horizontal arrows. Under fur-
ther coarse graining, this configuration would be mapped to a
single loop of domain wall connecting vortices 3 and B.
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—E /T.
sity is proportional to y, where y=e ' is the vortex
fugacity and E, is the vortex core energy; the distribution
can look the same on all length scales only if y~const.
Now, the KT recursion relations' have the form

1 i i ii&ni~

(aj

+ L=12

I I I I IIII I I I I IIII I I I I IIII I I I I IIII

+ x&m+ x& +

dl
-(T T„—)y,

dT 2

dl

(21)

near the fixed point at T, , where b-e' is the cutoff
length scale. They iterate to a fixed point where y=0.
So, under scenario 2, it follows that the cluster distribu-
tion is not exactly self-similar but must be corrected by a
prefactor y . To be more precise, at T„ the point where
Eq. (21) iterates to T= T~, they turn out to have a singu-
lar solution y(l) —I/l. Thus, at T, the distribution of
vortex pairs is self-similar except for a logarithmic pre-
factor —1/(in' ) . Under scenario 2, and assuming that
the fractal dimension relation (14) is still valid, we note
lnR -lns and so conclude that the cluster size distribu-
tion ought to have the form

x L=24

o L=36

o L=48

o L=72

I I I I IIII I I I I IIII I I I I IIII I I I I IIII I I I I IIII I I I I IIII

10 10 10 10 10 10 10
exp( —ct '/ )L

1 +x~ (b)-
0 +B t X&m++ X~+X

n (s) -s ' + "/(lns ) (22)
0.5—

Since (22) is just modified by a logarithmic correction,
there is no important effect on other scaling assumptions
and on exponent relations which did not involve v .

Under scenario 2, we must change the way t enters in
the scaling assumptions. The scaling assumptions (9) and
(10) become

0.2—

+ L=12
x L=24
o L=36
~ L=48
o L=72

P I —xf i(e —c/t

y =I.~g'(e '~' I.),
(23)

(24)

I I IIIII I I I IIIII I I I IIIII I I I IIIII I I I IIIII I I I IIIII I I I IIIII014
10 10 10 10 10 10 10 10

exp( —ct '/ )L
where c is nonuniversal. The scaling plots of these forms
are shown in Fig. 5. There is apparently no visible
difference on the quality of the fits in Figs. 3 and 5. The
exponents are found to be

x =0.100+0.005,

y = 1.78+0.01,
c =2.2+0.2 .

(25)

g
KT2 —

7l
(26)

where 2 —gK~=1.75. The closeness of y /v to 1.75 is
intriguing. For the Ising model, it is known that g
(Ref. 19) and, in d =2, the Ising model also has

y /v = 1.75. However, we are not seeing a simple coin-
cidence with the Ising behavior since v =2.5&v„;„=1.
But there is no theory for why g -g should be true in
the XY case. It would be interesting to check whether
y /vz=y/v in d )2 where there is an ordinary critical
point.

The values of f3 /v, y /v, and v as determined from
Fig. 3 are 0. 100+0.005, 1.80+0.01, and 2. 5+0.2, respec-
tively. Note that x, y, and c are close in value to P~/v~,
y /v, and v fit from the power-law form in Sec. III. In
the KT theory,

FIG. 5. Scaling plots for the FPT model using the KT form
of the scaling relations.

V. CONCLUSION

By comparing our results on the AFPT and FPT mod-
els, a crucial condition for the success of the Wolff algo-
rithm is how T compares with T, . If T is higher than
T„ the Wolff clusters percolate before reaching T, as the
temperature is decreased, as in the case of the AFPT
model, and by the time we approach the point of most in-
terest, T„ the algorithm is very inefficient because the
clusters are mostly spanning clusters. So we want
T ~ T, . But if T is too low compared with T„the aver-
age cluster size at T, will be small and the algorithm will
not be efficient. Based on this, one would guess that the
algorithm is most efficient when T, =T, in which case
spanning clusters just start to appear at T, .

In the FPT case, the geometrical insight gained from
knowledge of the percolation properties improves our un-
derstanding of exactly what kind of degrees of freedom
are being updated. Furthermore, a physical picture of
what is stopping the growth of the clusters would be use-
ful for possible modifications of the algorithm to deal
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with unfrustrated vector spins at T (T, (Ref. 22) or pos-
sibly with frustration.

We now consider the relation between the dynamic ex-
ponent z ~ and the exponents y and v . Tamayo et al.
have presented essentially the same argument for the Is-
ing case. The natural time unit for comparing computa-
tional work is one update per spin, which is proportional
to the system size X. Since, in a Wolff update of a cluster
of size s, only a fraction s/X of the spins are updated,
and (s ) =g, the Wolff correlation time r~ has to be re-
scaled by a factor g /N [Ref. 7, Eq. (9)]. Now, let us sit
at T and consider the time scale for updating the
longest-wavelength mode. Clearly this should be related
to the updates of spanning clusters. Each spanning clus-—p /v
ter includes a fraction -L of all spins. We postu-
late the following assumption: when we hit each site (of
order) once with a spanning cluster, the system complete-
ly forgets the old value of its longest-wavelength mode.

p /v
This means we must hit a total of L ~ ~ spanning clus-
ters. Recall that the probability of hitting a cluster is
proportional to its size; then, since the fraction of clusters—p /v
we hit which are spanning is L ~ ~, we need a total of

2P /v
L ' ' WolF hits.

However, the next time a spin is hit by a spanning
cluster, it is possible that this cluster comprises essential-
ly the same sites as the previous time that the spin in
question was hit; if so, this update merely undoes the
effect of the earlier one. To correct for this, we must

multiply the number of Wolff hits by L ', where z is the
dynamic exponent for the percolation correlation func-
tion which measures the overlap between how the system
decomposes into clusters at times zero and t different
times. This overlap is the analog of (M(0)M(t)) in a
ferromagnetic spin system.

Finally, we conclude the time required to completely
decorrelate the longest wavelength is

2/3 /v +z Xp

1.e.,

z~=[(2P +y )/v —d]+z~ .

The result of Ref. 7 for z~ [their Eq. (15)] is the same as
our Eq. (28) except it is in terms of the spin exponents,
which are identical to the percolation exponents for the

Ising case. Our argument shows that, more generally, the
percolation exponents, not the spin exponents, must be
used.

If the percolation exponents satisfy hyperscaling, as we
indeed found numerically (for d=2) in the FPT model,
then (28) gives z~=z . More generally, if hyperscaling is
violated we get

Z~ 8+Z

where 0~ 0 is the violation-of-hyperscaling exponent to
be added to d in (16) and (20).

For the Ising case, the Ising spin exponents and hence
the Wolff percolation exponents satisfy hyperscaling, so
z~=z . Tamayo et aI. measured the dynamic exponent
z

&
of the susceptibility correlation function (g(0)y(t))

which is apparently the percolation analog of
(M(0) M(t) ) in a spin system; this should have the
same critical exponent z+&=z . Their numerical results
show that z =0 for the d =4 Ising model, but z )0 for
d (4.

For vector spins, it has already been observed by
Brower et al. that Z~=O for vector spins in the upper
critical dimension d=4. Furthermore, their numerical
results are consistent with Z~=O in lower dimensions.
Since both terms in (29) are non-negative for physical
reasons, this would imply not only that the Wolff percola-
tion satisfies hyperscaling, but that z =0 for all d (4.

To summarize, we have found T and the cluster ex-
ponents for the FPT and AFPT models. In the case of
the AFPT where the Wolff algorithm is unsuccessful in
reducing critical slowing down, the Wolff clusters per-
colate at temperatures high above T„and the clusters are
in the same universal class as random 2D percolations.
In the case of the FPT where the Wolff algorithm is suc-
cessful in reducing critical slowing down, we found that
T = T, and the percolation of the Wolff clusters changed
to another universal class.
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