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Determination of the shape and size of aggregated phases in NaC1:Mn +

by small-angle neutron scattering
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Suzuki-phase precipitates formed in NaC1:Mn + have been studied by small-angle neutron
scattering. The experiments, carried out on single crystals of NaC1 with different Mn + concentra-
tions, indicate the usefulness of this technique for detecting precipitates and for determining their
shape and size. A salient feature of the present work is the anisotropic character of the neutron-
scattering intensity, which provides a way for determining the size of the precipitate out of the
Guinier region. The analysis of the intensity decay allows us to detect precipitate shapes displaying
slight modifications with respect to the perfect cube.

INTRODUCTION

Certain properties of materials are greatly infIuenced
by the presence of impurities and sometimes also by their
aggregation state. In alkali halides doped with
transition-metal ions, the presence of aggregated phases
with well-defined crystalline structures has often been ob-
served. ' ' In particular, as-grown Mn -doped NaC1
crystals usually contain Suzuki-phase (SP) microcrystals,
even for a Mn + concentration of about 100 pprn. This
phase of the formula Na6MnC18 belongs to the FI3m
space group with a lattice parameter twice that of the
NaC1 cell. The crystallographic axes of the cubic SP
coincide with those of the NaC1 crystal, as has been
shown by x-ray diffraction and Raman techniques. "
The SP precipitates have also been widely studied by
means of different techniques: photoluminescence, '

electron paramagnetic resonance (EPR), ' magnetiza-
tion, ' and specific-heat measurements. ' The optical,
magnetic, and thermal properties of this phase differ
markedly from those of the same crystal having the
Mn + ions as isolated impurities. Furthermore, precipi-
tates are very useful systems for studying size effects.
The inAuence of precipitate size on the magnetic proper-
ties of the SP has recently been evidenced through mag-
netic measurements carried out in the very-low- (0.07—1-
K) temperature range. ' Magnetic and specific-heat mea-
surernents have evidenced that the SP aggregates become
antiferromagnetic below T& =0.2 K. Besides the antifer-
romagnetic contribution, an anomalous superimposed
susceptibility depending on Mn + concentration was ob-
served. This behavior was explained in terms of precipi-

0
tate size, which should be about 1000 A for the systems
under study.

The aim of this work is to investigate, by small-angle
neutron scattering (SANS), the existence, shape, and size
of these precipitates in NaCl:Mn + single crystals. A
salient feature of the present work is that information

about sizes of precipitates is obtained using SANS, but in
the region in which the Guinier law does not hold. In
fact, since the smallest q scattering vector available in
these experiments is 10 A ', only precipitates having a
size smaller than —500 A can be determined through the
standard method using the Guinier law. It is also shown
that SANS allows us to detect precipitate shapes display-
ing slight differences from a pure cube. The advantages
of SANS with respect to other techniques are the follow-
ing: (a) The Suzuki phase provides larger contrast for
neutrons (b M„= —0.373,bN, =0.363 X 10 ' cm) than
for x-ray and light scattering. (b) In contrast to small-
angle light scattering, SANS allows one to determine
sizes down to 10 A. (c) SANS is a nondestructive tech-
nique in contrast to electron-microscopy techniques and
x-ray scattering where radiation-induced damage is una-
voidable for these materials. The usefulness of SANS for
exploring precipitate formation in these materials has
been successfully tested previously. '

EXPERIMENT

NaC1:Mn + single crystals were grown by the Czo-
chralski method in an argon atmosphere, employing
Merck Suprapur base compounds in the Laboratorio de
Crecirniento Cristalino at the Universidad Autonoma de
Madrid. Cleavage samples in the (100) plane of about
10X 10X 2 mm with different Mn + concentrations were
used in these experiments: 5.000 ppm (sample A), 3.300
ppm (sample B), 1.300 ppm (sample C), and pure NaC1
crystals (sample D). These concentrations were deter-
rnined by atomic absorption spectroscopy and the pres-
ence of Suzuki-phase precipitates evidenced by optical
and EPR techniques. The inAuence of thermal treatment
was also analyzed in two samples of type (B): one sample
(B, ) was annealed at 250 'C for 2 h while the other one
(B ) was quenched from 550 C to room temperature on
a copper block.
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SANS experiments were carried out on the D11 instru-
ment at the I.L.L (Grenoble) under the following experi-
mental conditions: neutron wavelength A, = 10.25 A,
sample-detector distances 20 and 35 m, and scattering-
vector range (q =K—Ko ), 10 & q & 10 A '. Experi-
ments were performed at room temperature. The intensi-
ties of the scattered neutrons have been corrected using
pure NaC1 single crystals as a reference.
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RESULTS

Figure 1 shows the two-dimensional contour intensity
plots of NaCl:Mn + samples A, 8, and C. These con-
tours were not observed in the pure NaC1 sample D:
Only a Hat background was detected in this sample. It is
worth noting the anisotropic character of these contours
revealing fourfold symmetry. Within the same q range,
these starlike patterns become sharper as the Mn + con-
centration increases. The dependence of the corrected in-
tensities along the [100] direction in q space is presented
in Fig. 2 for different Mn + concentrations. From in-
spection of both Figs. 1 and 2, two facts come out: (1)
The scattered neutron intensity increases with Mn + con-
centration, and (2) the decay behavior of I(q) depends on
the q direction, with [100] and [110] being the extreme
cases. In no case is a linear dependence of lnI(q) versus
q (Guinier plot) observed along any direction. However,
a clear linear behavior is seen in the lnI(q) versus ln q
representation, as is shown in the insert of Fig. 2 and in
Fig. 3. A dependence I(q) o-q " with n=2 5for [. 100]
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FIG. 2. Intensity dependence on the scattering wave vector q
along the [100] direction, for samples A, B, and C. Intensities
are corrected for sample transmission and detector efficiency us-
ing the pure NaC1 intensity as background reference. The inset
shows the logarithmic representation 1nI(q) vs lnq along the
[100] q direction. Straight lines with —2. 5 slopes are drawn
through the experimental points.

direction and n =3.5 for [110],appears in all the samples
studied of types A, 8, and C.

The thermal treatments of annealing and quenching
carried out on sample 8 have different effects on both the
intensity contours and q dependence. While the annealed
sample (B, ) displays the same contour plot as B, the con-
tour plot corresponding to the quenched one (B~) is
clearly modified. The contour pattern becomes isotropic
and the intensity is strongly reduced for low q, showing a
maximum at q =4X10 A ' (Fig. 4). For q values
greater than 5 X 10 A ', the intensity of 8 is higher
than that of sample 8.

ln I(q)
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0
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FIG. 1. SANS intensity contour plots, I(q) =const, for
NaC1:Mn + samples A, B, and C. The incoming neutron beam
is directed along the [001] crystal axis {z direction). The [100]
and [010] crystallographic directions (x and y directions, respec-
tively) are oriented parallel to the multidetector. The external
contours correspond to relative intensities I(q„,q~)=100 for
samples A and B, and 50 for sample C. The intensity doubles in
value for successive internal contours. The rectangle at the
center represents the beam stop. Uncorrected data.

-6
-6.5 -5.5 -5 -4.5
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FIG. 3. 1nI(q) vs lnq representation for sample A along the

[100] and [110]q directions. Linear dependences with slopes of—2.5 and —3.5, respectively, are found in these directions.
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FIG. 4. Variation of the SANS intensity I(q) upon thermal quenching of sample B. q is taken along [100] for sample B and its
modulus for Bq (isotropic contour). The inset displays a magnification of the intensity for sample B~ using a lnI(q) vs q representa-
tion.

ANALYSIS AND DISCUSSION

The strong correlation between the Mn + concentra-
tion and the corrected scattered intensity displayed in
Fig. 2 clearly indicates that SANS is due to the presence
of Mn +. Therefore, the contour plots of Fig. 1 are com-
pletely associated with the SP microcrystals in
NaCl Mn +.

In this situation the small-angle scattered intensity
I (q) due to the presence of precipitates is proportional to
the scattering cross section d o (q)/d0, which is directly
related to the distribution, shape and size of the precipi-
tates. ' In the case of identical particles,

der(q)/d0=@S(q)lF(q)l2 .

@=X/V is the density of particles, S(q) is the interfer-
ence function due to correlations between particles, and
F (q) is the form factor of the particle defined as

F(q)= f [p(R) —po]exp(iq R)d R . (2)
P

The integral extends over the whole particle volume
V, p and po are the locally averaged scattering length
densities for the particle and host matrix, respectively,
which are constant for homogeneous particles. ' In di-
lute systems, where L ))2m/q;„(L being the mean in-

terparticle distance and q;„ the smallest scattering vec-
tor available in the experiment), S(q)=1. It follows
directly that the scattering cross section do. (q) ld 0 is the
squared modulus of the Fourier transform of the particle
shape. Assuming that the present case is a dilute system,
as will be justified later, the form of the bidimensional
contour plots of Fig. 1 directly reAects the symmetry of
the precipitate. These contours clearly indicate that the
SP precipitates are not isotropic (spheres), but display the
same cubic symmetry as the host NaC1 crystal, along the
z direction of the incoming neutron beam ([001] direc-
tion).

In order to obtain more insight into the shape and size
of the SP microcrystals, it is necessary to propose an ade-
quate model which can explain our experimental results.

The simplest particle model which can account for the
starlike contour form is a cube with (100)-type faces
parallel to the corresponding ones in NaC1. The form
factor of a cube with an edge length ao is given by

F(q) =F(Q) = V(sing, sing sin Q, /Q„g Q, ),
with Q; =q, ~, u=ao/2, i =x,y, z, and V =ac is the cube3 .

volume.
In our experiments with incoming neutrons along the z

direction, i.e., q, -=O, the contour plots defined in the
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(q„,q ) plane are roughly explained by the form factor
given in Eq. (3). The fact that no maximum is observed
in the I(q) curves, as expected from ~E(q)~, is mainly at-
tributed to the different sizes of SP precipitates in our
samples (polydispersity) as well as to the q resolution of
the multidetector (1 X 1 cm element size) and the wave-
length resolution (9%).

An outstanding point concerning these anisotropic pre-
cipitates is the possibility of determining their mean size
outside of the Guinier approximation even without know-
ing the extrapolated I(q) values at q =0. This is the
present case, where the experimental results in Figs. 1 —3
show that Q ) 1 and thus we are not in the Guinier re-
gion corresponding to Q «1. In fact, for the limit
Q «1, I(q) o- 1 —(u /3)~q~ leading to a linear q depen-
dence: lnI(q) ~(~ /3)q . This expression is similar to
that obtained in the case of spheres substituting u for RG
(gyration radius). In this region a direct estimation of u
can be derived from the slope of the Guinier plot, and
also isotropic contour plots should be expected for the
cube in this limit. This is obviously not the present case
in view of the experimental results given above. Assum-
ing Q =q~) 1 and given size distribution of cubes in our
system, the intensity I(Q), averaged over the diFerent
particles, leads to

I(Q 100]) cc ( P2(sin2Q100)/(Q 100)2)

1
( 1/(Q [100])2

I(Q [110])~ ( y2(st 4Q 110)/(Q110)4)

—,'(1/(Q[" ')

(4)

where V =8~ and Q
" is the x component of Q along

the [hk0] direction. These intensity dependences give
rise to the same contour plots presented in Fig. 1 ~ The
starlike form becomes sharper for higher Q values, that is
to say, for higher particle sizes. Furthermore, it is possi-
ble to obtain a first estimation of the cube size ~ from
these figures from the ratio I[]pp]/I[»p] for any value of
~q . From Eqs. (4), ~ is given by

cz = +3/2q 1M]/(q [110])2(I[ ] /I[110 )1/2

where I[100]=I (q '
) and I[110]

By taking only one of the intensity contours,
I(q) =const, where I[100]/I[110] =1, the particle size u is
easily calculated through the maximum q„' ~ and
minimum Q„[" ] experimental values of the contour by
~=+3/2q[' ]/(q[ "0]) . The mean values of the cube
edge ap=2u of SP precipitates deduced in this manner
are 2700, 2000, and 1400 A for samples 3, B, and C, re-
spectively (Table I). An important conclusion is that
larger particle sizes correspond to higher Mn + concen-
trations. However, this model fails when this estimation
is extended to other intensity contours, and in particular,
different sizes are derived for the same samp1e using the
contours taken at a detector distance of 35 m. This fact
is evidenced in Fig. 3, which shows an intensity q depen-
dence of q along [100] and q along [110] instead
of the —2 and —4 exponents characteristic of perfect
cubes. In order to obtain reliable values of ~ from the in-
tensity contour plots according to the real variations of
I(q), it would be necessary to know the scale factor C,
connecting Q

[' ] and Q
[" ] within the same contour:

(Q„[' ]) ' /(Q[" ]) =C. In perfect cubes with
dependences of [Q[' ]] and [Q,["]],the scale fac-
tor C is —,'.

At this stage of the analysis, it is worthwhile to investi-
gate whether slight modifications of the cube, leading to
other cubic forms, could give rise to q dependences in the
scattering intensity with nonintegral exponents in the
framework of our independent-particle model [S(q)=1].
In this sense cube deformations tending to smooth off the
edges and corners of the cube might lead to intensity
variations I(q), which would correspond neither to a
cube nor a sphere with intensity varying with q, but
would preserve the cubic symmetry of the particle.

Before treating three-dimensional particle
modifications, we have explored the simpler two-
dimensional case of modified squares, in order to check
the existence of linear lnI versus lnQ behavior with

TABLE I. Sizes a0=2~ of the Suzuki-phase precipitates in NaCl:Mn + for different Mn concen-
trations. The sizes are given for two types of particle: perfect cube and deformed cube. In the first

o
model the value of ao has been deduced for the contour with q~»0~ =3X10 A and Dao represents
the difference of sizes ao, calculated with the contours corresponding to q~»o~ =2X10 and 5X10o —1A, respectively. The sizes ao in the deformed cube model have been obtained by using a scale factor
C =—' characteristic of a monodisperse system of particles with N=50, N, =10, and P=0.45. The table
includes the ratio of Mn + on surface to Mn + in bulk.

NaC1.Mn2+

sample

Mn + Concentration (ppm)0
ao (A) Perfect cube
Dao (A)
ao (A) Deformed cube
Mn + on surface

(%)Mn2+ in bulk

5000
2700
1000
3000

3300
2000

800
1600

1300
1400
500
700
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nonintegral exponents along the [10] and [11]directions
in q space.

Figure 5 portrays the two squares ([10] forms) with

[ 11} form modification (case a ) and the simple [h, k ]
form (case b), respectively. Intensity calculations as a
function of the parameter p, defined in Fig. 5, indicate
that there is a linear dependence of lnI versus lnQ with
nonintegral exponents for a wide range of p. The ex-
ponent n along [10] and [11]varies with p as depicted in
Fig. 5. For the extreme cases /3=0 and 1, the values of n

change from 2 and 4 to 4 and 2, respectively, as expected
for two squares rotated 45'. In any case, small changes in
p give rise to nonintegral n values less than 4 and greater
than 2, respectively. In case a both exponents are close
to 2.3 for P=0.59, which represents the octagon. Except
for the perfect square, the present bidimensional results
cannot be extrapolated to the real cubic three-
dimensional case because they would represent particles
with tetragonal symmetry. However, these results clearly
suggest that it would be possible to reproduce the experi-
mental values with an adequate three-dimensional parti-
cle model.

Two models of cubic particles have been worked out:
(a) a cube with rhombododecahedric deformation ([100]
+ [111]forms) and (b) a cube with tetrahexahedric de-
formation ([100] + [hk0] forms). The scattered intensi-
ty was calculated for both a monodisperse system and a
Cxaussian distribution of particle size (polydispersity),
maintaining the same shape of the particle. The form
factor F(Q) was determined for different degrees of parti-
cle deformation. Details of the calculation of F(Q) are
given in the Appendix.

The first model cannot explain the observed intensity
decays I(q) because it leads to small variations along the
[100] direction. But the second one, illustrated in Fig. 6,
gives the desired results. The linear dependence of lnI
versus lnQ is presented in Fig. 7 for three different parti-
cle shapes. The exponents n (I o- Q ") were obtained by

a least-squares fitting in the range 1 &lnQ &4; they are
also represented in Fig. 7 as a function of P and N, O. ur
experimental results are well reproduced for P=0.45,
N, =10, and N=50, leading to a scale factor C =—,

' so
that, for one intensity contour,

( Q [100])—2.5/( Q [110])—3.5 —t

1
(

[100])2.5/[ [110]]3.5
6 X

Since the same exponents ( —2. 5 and —3.5) have been
observed within the experimental accuracy for samples
3, 8, and C, it is assumed that their particle shape and,
therefore, the scale factor are the same. The sizes of the
SP precipitates have been obtained over the whole q
range studied using Eq. (6), and they are given in Table I.
It is worth mentioning that these values obtained with
the adequate scale factors do not differ very Inuch from
those estimated assuming perfect cube shapes, though
small deformations lead to notable changes in the decay
of I(q).

Another interesting result concerns the inAuence of
thermal treatments on the shape and size of the SP pre-
cipitates presented in Fig. 4. In contrast to annealing,
quenching tends to dilute the Mn + ions initially aggre-
gated as SP in the NaCl crystal. The SANS technique
has been especially useful for studying this phenomenon.

P =b/a

)

ao ~2a

[100] a

3

ggQ
~ W C5

Og~ mmmL]u~Lj

I
I
I~I~I
I
I
I
I
I

h~N) 2b

0.4
I

0.8
I

04 0.8

N=4 Nt =2 =0.4
FICx. 5. Variation of the exponent n relating the intensity Q

dependence, I(Q) ~ Q
" (Q =q~), with the parameter P, for

the two square forms given at the top of the figure. The values
of n are calculated for the [10] aud [11]Q directions. The dot-
ted lines in the square form [hk ] indicate that nonlinear depen-
dence ]nI vs lnQ has been found in this interval of p.

FIG. 6. Three-dimensional cubic form [100]+[hk0]. This
form is generated from a perfect cube by adding N, paral-
lelepiped steps of height 2b; interstep distance is l =~/N, where

is the cube semiedge. The parameter P is defined as
P=28/I =h /~Ã/N, .
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FIG. 7. Calculated values of the SANS intensity I(Q ) with Q„=q„~ along the [100] and [110]Q directions for the cubic form
given in Fig. 6. The three figures at the top show lnI(Q„) vs lnQ„representations, using %=50, %, =10, and P=O, 0.3, and 0.6, re-

spectively. Black dots represent the simulated values, and straight lines are the least-squares fit within the interval 1 & lnQ & 4 inter-
val. The figure below represents the variation of the exponent n with P (right side) and N, (left side) for X, =10 and P=0.5, respec-
tively. %=50 in both cases. The dotted line at P=0.45 indicates the best fit to the experimental values of 2.5 and 3.5 for the [100]
and [110]Q directions, respectively.

Both the intensity contours and the I(q) curves (Fig. 4)
differ substantially for the samples B and B . The cubic
contours of B become isotropic for B, indicating that
precipitates are still present in this sample after quench-
ing, but have diA'erent shapes and sizes. Even in the sim-
plest case of spherical particles, the occurrence of a max-
imum in the I(q) curve for 8~ clearly indicates particle
correlations: S(q)&1. A mean interparticle distance
d -=1500 A is derived with d -=2~/q, „. This correlation
distance can be explained by the decrease in the precipi-
tate size and thus an increase in the number of precipi-
tates. For samples 3, 8, and C, without thermal treat-
ments, a rough estimation of the interparticle distance d
can be made knowing the precipitate sizes and the Mn +

concentration. Distances much greater than 3000 A are
obtained. from the values of ~ given in Table I, and thus
the independent particle assumption employed in our
model is well justified.

As a final remark, we wish to point out that the present
results confirm the interpretation given in Ref. 14 to ex-
plain the magnetic behavior of the SP. This interpreta-
tion was based on the assumption that the size of precipi-
tate increases with increasing Mn + concentration, which
is clearly demonstrated in the present work. In particu-
lar, the view that the anomalous magnetic contribution
can be related to surface effects is corroborated by com-
paring the ratios of Mn + on the surface to Mn + inside
the precipitate (Table I) obtained in this work and from
the magnetic measurements of Ref. 14.

ACKNOWLEDGMENTS

This work has been supported by the CICYT.

APPENDIX

The calculation of the SANS intensity due to a mono-
disperse system of homogeneous particles involves the
Fourier transform (FT) given by

9(Q)= I ~p(R) —po~e
'"' d R .

vol
(Al)

Assuming a constant value of the contrast within the
particle, p(R) —

po, this integral becomes very simple in
the case of parallelepiped particles:

singx singy singz
Qx Qy Qz

(A2)

with Q, =q,-~, , i =x,y, z, ~, =~,8, c the semiedges of the
parallelepiped, and V is the particle volume, V=S~de.
In the present case of particles with I 100] + I hkO] forms
(Fig. 6), we have built up the IhkOI form by using paral-
lelepipeds of height h =28 and square base of semiedge
~-L, L, decreasing with the number of steps, n, as
L =~n/IiI. Though this form leads to flat (hkO) faces in
the limit X~~, a more realistic description of this pre-
cipitate is obtained by using steps when the mean size of
the precipitate is about 10 A.
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P(Q) = &'(Q)+ P'(Q), (A3)

The FT of a given particle defined with the parameters
N, (number of steps), l =ca/N (interstep distance), and 28
(step height) becomes

where 7'(Q) is the FT of the perfect cube with edge
a0=2u and Ã(Q) is the contribution of all the steps.
V'(Q) can easily be evaluated by using the symmetry
transformation of the particle. For a given direction OZ,
the V,'(Q) becomes

sin[q„(u —nl) ] sin[q (u —nl) ] sin(q, 8)
V,'(Q) = 8 g exp [iq, [~+(2n —1 )8] j

qx q,qy

and the total FT,

sinq, 8
9'(Q) = 16 g cos[ [u+(2n —1)/]q, ]sin[q„(u —nI) ]sin[q~(~ —nl) ]

qxqyqz n=l

sinq„8+ g cos[[u+(2n —1)8]q jsin[q, (u —nl)]sin[q, (~ —nl)]
qxqyqz n=

sinq 8
+ g cos[[~+(2n —1)/]q„jsin[q (u nl )—]sin[q, (~ nl—)]

qxqyqz n=

(A4)

(A5)

w here the summations are from n = 1 to N, .
We are interested in the limits q ~0 and q ~q„, both with q, ~0, to explore the intensities along [100] and [110]q

directions, respectively.
Expression (A5) becomes

9'(Q)= P/N g (1 n/N)—sinIQ„(1 n/N) j+sin — g (1 n/N) —cos[Q„[1+P(2n —1)/2N] j, (A6)2V PQ.
2N

for [100],and

p t PQ9'(Q)=2V/Q„g sin [Q„(1 n /N)—j+2sin g (1 n/N)cos[Q„[1+—P(2n —1)/2N] j2N „ 2N

=sin I Q, ( 1 —n /N) j

(A7)
for [110],where Q„=q„~ and P=28/l.

The total FT of the particle must also include the term V, (Q) of the perfect cube which is VsinQ„/Q and
Vsin Q„/Q„along [100] and [110],respectively.

The intensity is simply proportional to the square modulus of the V(Q). This intensity shows oscillations because of
the sine and cosine dependences. However, even in the case of monodisperse systems, such oscillations are modulated
by the experimental q resolution. In the D11 instrument at ILL, the spatial resolution of the multidetector is 1 X 1 cm,
which corresponds to Aq=3X10 A for L, =20 m and A, =10.25 A with AA, =1 A. In our case the intensity
I (Q) =

~ P(Q)
~

has been averaged over the Q„ interval b, Q, =+1. The values of the intensity I (Q) calculated following
this procedure are represented in Fig. 7 with N=50, N, =10 and p=0, 0.3, and 0.6. The values I(Q) represent
( ~

V '9'(Q)~ ) with V=8m and Q being the x component of the scattering vector Q along [100] and [110],respective-
ly.

We have also analyzed the e8'ect of polydispersity on these calculations, assuming Gaussian size distributions. It is
interesting to point out that polydispersity mainly gives rise to a more pronounced smoothing of the lnI versus lnQ
curve. There is also a slight increase in the scale factor, depending on the distribution, which leads to greater values of
the particle size. This increase in the scale factor is attributed to the fact that the greatest contribution to the scattering
comes from particles outside the distribution center. As a result, the scale factor C for a monodisperse system is C =

—,',
while C =

—,
' is found for systems having Gaussian distributions of full width at half maximum y =0.5~, where ~ is the

cube semiedge of the particle corresponding to the maximum of the Gaussian distribution.
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