
PHYSICAL REVIEW B VOLUME 43, NUMBER 10 1 APRIL 1991
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A model of the electron-stimulated desorption of physisorbed species is proposed in which the
excited-state surface potential is due to a chemical rather than image force acting on the adsorbed
particle after the initial electron excitation is completed. The equilibrium positions of the excited-
and the ground-state potentials nearly coincide and desorption is a purely quantum-mechanical
eftect. A one-dimensional model is systematically derived from the three-dimensional theory. The
oscillatory structure of the resulting kinetic-energy distributions of the desorbing species is predict-
ed in certain cases. It is demonstrated that, unlike in the commonly accepted Antoniewicz model,
both the kinetic-energy distributions of the desorbing neutral particles and the total desorption yield
calculated in the present model are consistent with the experimental data for Ar and N&O phy-
sisorbed on Ru(001).

I. INTRODUCTION

Photon- or electron-stimulated desorption (PSD or
ESD, respectively) belongs to a wide class of processes in
which the desorption is induced by electronic transitions
(DIET). ' In particular, photons or electrons can cause
desorption by promoting a solid-adsorbate system to such
a localized metastable electronic state, which decays by
converting the electronic energy into nuclear motion.
Other related processes of this kind include surface rear-
rangement, fragmentation, and chemical reactions in-
duced by electronic transitions. In laboratory practice
one must account for DIET in any experiment involving
the impact of energetic particles on solid surfaces, e.g. ,
for surface diagnostic purposes. Studies of DIET are in-
teresting also in their own right: Monitoring the desorp-
tion products (their kinetic energy, angular distributions,
and state of internal excitations) one can gain insight into
the initial binding states and into the dynamics of the
relevant chemical processes.

Detailed microscopic mechanisms of desorption vary
depending on the adsorbate-solid system involved. Ac-
cording to the commonly accepted view, the desorption
process is a temporal sequence of a few independent pro-
cesses (steps): (i) Initially, the system (electrons and
atomic particles) is promoted by an external probe to a
metastable electronic state with the excitation energy lo-
calized in the vicinity of the adsorbed particle. Creation
of this initial excited state may be a quite complicated
multistep process completed within some 10 ' s. (ii) Ac-
tual atomic positions of the adsorbed species may no
longer be those for which the energy of all electrons is the
lowest. Therefore, displacement of adsorbed particles
occurs lasting some 10 ' to 10 ' s during which a slow
adiabatic energy Row from electrons to adatoms takes
place. The latter gain a substantial amount of kinetic en-
ergy provided a lifetime of the excited state is sufficiently

long. (iii) If the initial electronic excitation weakens the
adsorbed particle-surface bond, then the atomic displace-
ment and the related increase of the kinetic energy of the
adatom may lead to its desorption directly [Menzel-
Gomer-Redhead (MGR) scenario of desorption]. ' It is
also possible that the initial excitation strengthens the
bond with the surface. In such a case p finite lifetime of
the excited state is, in fact, a necessary condition for
desorption. The kinetic energy gained during step (ii) is
used to break the surface bond. A well-known example is
the Antoniewicz scenario of desorption for physisorbed
species. (iv) Finally, the species escaping from the sur-
face may still be modified and if this happens, theh the
analysis of the desorption process based on the properties
of the desorption products becomes a very delicate prob-
lem.

The interactions and the excitations involved in ESD
of physisorbed atoms are expected to be the simplest to
describe theoretically. Experimentally, the physisorbed
systems are the most difficult to deal with because of their
small binding energy. However, some experimental re-
sults are now available ' allowing one to test the exist-
ing theoretical models. In all these attempts the use is
made, in one way or another, of various versions of the
Antoniewicz model in which the physisorbed particle is
ionized in the process of the initial electronic excitation
mentioned above. Created in this way, the ion experi-
ences an image force which attracts it towards the sur-
face. Consequently, the ion moves towards the substrate
[step (ii) above] and its reneutralization probability in-
creases due to the large density of occupied electronic
states of the metal which leak out of it. Therefore, the
particle will finally undergo a transition [step (iii)] back to
the repulsive branch of the electronic ground-state poten-
tial curve without changing its kinetic energy gained dur-
ing step (ii). Step (iv) follows, during which the particle
moves towards the surface, bounces back, and moves
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away from it. It then may desorb provided it gained [in
step (ii)] enough kinetic energy to avoid retrapping in the
ground-state potential.

The Antoniewicz process was theoretically studied by a
few authors, either in purely classical, ' "" fully
quantum-mechanical, ' ' or approximate quantum-
mechanical' ' approaches. An attempt was also made
to use the same model to describe ESD from chemisorbed
layers. A common problem with all these attempts is
their difFiculty in accounting simultaneously for the total
desorption yield and for the average kinetic energy (or,
more precisely, the kinetic-energy distribution) of desorb-
ing neutral particles: Usually, fitting the shape of the dis-
tribution to the experimental ones leads to calculated to-
tal desorption yields that are too low. Such a difhculty
occurs for all physical systems for which the experimen-
tal data exist N20/Ru(001), "' ' ' ' ' '

Ar/Ru(001), '"' ' ' ' and Kr/Ru(001). ' ' ' An agree-
ment between theoretical results and the experimental
observations can only be improved by assuming physical-
ly unjustified very strong position dependence of the elec-
tronic deexcitation (neutralization of the ion) probabili-
ty ' ' ' ' or by assuming the binding energy of a phy-
sisorbed atom weaker than experimentally determined. '

A detailed review is given in Ref. 21.
It becomes clear from the above that an alternative to

the Antoniewicz model mechanisms of ESD of phy-
sisorbed atoms should be considered. One such possibili-
ty is suggested by Jennison et al. Their cluster calcula-
tions for He adsorbed on Cu indicate that the image po-
tential does not describe properly the adsorbed particle
binding to the surface in the excited state of the system.
Hybridization of the excited atomic orbital (like 2s in He)
with the substrate allows it to be filled with a screening
electron immediately (i.e., within 10 ' s) after the phy-
sisorbed atom is ionized. Therefore, the rare-gas atom is
not bound to the substrate by a strong image force but
rather by a chemical bond similar to that experienced by
an alkali atom which follows the rare-gas atom in the
periodic table. Jennison et al. have shown that He
with a 1s hole binds to a Cu atom in a manner almost
identical to that of Li. The force experienced by He in
the excited state is substantially weaker than the bare im-
age force, the excited state surface potential is substan-
tially narrower than the one in the ground-state
configuration, and the equilibrium positions of both po-
tential curves nearly coincide. No calculations of the
excited-state potential curves were performed for other
physisorbed systems. This state is also inaccessible to
direct experimental probes. However, one might specu-
late that in the metastable electronic state produced as a
result of the initial excitation, the particle is, also for oth-
er systems, bound to the surface by a potential which, al-
though narrower than the ground-state surface potential,
has its equilibrium position only slightly closer to the sur-
face. One might ask then whether the ESD yields and en-
ergy distributions calculated in such a model are con-
sistent with the experimental observations. We will show
in this work that this is indeed the case and hope that our
findings will stimulate discussion on the mechanism by
which physisorbed species are desorbed upon initial elec-

tronic excitations.
Before studying the implications of the above model,

we must realize that the scenario of desorption described
at the beginning of this section must be modified: In step
(i) the system is promoted to the electronic configuration
in which the atom is bound to the surface by a potential
V&(r), which is deeper and narrower than the ground-
state potential VQ(r) but has nearly the same equilibrium
position. During step (i) the wave packet of the atom ad-
justs its width and phase to the potential Vz(r) but little
or no atomic displacement occurs. Step (iii) must then in-
volve some kind of intra-atomic Auger process in which
the screening electron fills the electronic ground state of
the atom and another electron is released into the contin-
uum. Some degree of interatomic electronic transfer
must occur because the atom should end up as neutral.

In contrast to all standard models of stimulated
desorption, the atom almost does not change its position
during the lifetime of the excited state and it acquires lit-
tle or no classical momentum. Consequently, a fully clas-
sical model predicts that no desorption takes place and if
it occurs nevertheless it must be a purely quantum effect.
One might ask then whether any substantial desorption
can be achieved at all considering the fact that the results
of the quantum-mechanical and of the classical approach
almost coincide' for the Antoniewicz model. Part of the
answer follows. Consider the time-dependent wave pack-
et representing a particle evolving on the excited-state
potential-energy surface. At t =0 it is a minimum uncer-
tainty wave packet and its time-dependent average kinet-
ic energy can be written as

The first contribution at the right-hand side varies in time
according to classical mechanics, whereas the square of
the momentum uncertainty represents a purely
quantum-mechanical contribution. In the Antoniewicz
model the initial wave packet of the adsorbed particle is
placed on a steep section of the excited-state potential.
Its width subsequently increases, at least during the ini-
tial stages of its time evolution. Therefore, bp(t) de-
creases or remains constant at best. The increase of the
kinetic energy is achieved because the average momen-
tum increases and this effect is well described by classical
mechanics. Not surprisingly, quantum effects in the An-
toniewicz model are rather small. In contrast, in the
present model (p(t) ) is insignificant but the width of the
packet decreases because it is initially placed near a bot-
tom of a very narrow potential surface. Consequently,
the momentum uncertainty increases, leading to the
necessary desorption increase of the average kinetic ener-
gy, and this effect can only be described by a quantum
theory.

In the remainder of the paper, Sec. II is devoted to a
detailed formulation of the theory. The general theoreti-
cal framework is presented in Sec. II A. Usually, a one-
dimensional approach to ESD is used without any
justification. We remedy this shortcoming in Sec. IIB
where the one-dimensional approach is justified and we
show how the angular distributions of desorbing species
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can be theoretically described in such an approach. The
model is then specified in Sec. II C. Expressions for the
desorption yield and the kinetic-energy distribution of the
desorption products are derived there, adopting Morse
potentials for both surface potentials, and Heller's
method is used to describe a time evolution of the ad-
sorbed particle's wave packet. In Sec. IID some addi-
tional approximations are made, leading to simple expres-
sions for the kinetic-energy distributions and desorption
yields. General features of these results are also dis-
cussed there. Numerical results are presented in Sec. III.
First, various types of kinetic-energy distributions which
can be obtained from our model are presented and dis-
cussed in Sec. III A. Application to ESD of N20 and Ar
physisorbed on Ru(001) is done in Sec. III B. We demon-
strate that, unlike the commonly accepted Antoniewicz
model, both kinetic-energy distributions of desorbing
neutral particles and the total desorption yields obtained
in our model are consistent with the existing experimen-
tal data. A short summary of the present model and a
preliminary discussion of its results for the above two sys-
tems were already reported. A final discussion and
summary follows in Sec. IV. Additional lengthy formulas
and derivations are given in three Appendixes.

III. THEORY

V + Vz(r) g(r, t)=i' g(r, t),
2m Bt

(2.1)

Similarly,

P„=~f dt e (2.3)

is the probability that the particle A does not desorb but
is merely retrapped in a particular eigenstate of Hp local-
ized near the surface (a particle in such an eigenstate be-
longs to the adsorbate). In Eq. (2.3), n denotes a set of
quantum numbers needed to specify such a state; the cor-
responding eigenfunction and the energy eigenvalue are
P„(r) and e„, respectively. Obviously, P„and P form a
complete set of states; therefore, the total desorption
yield is equal to

subjected to the initial condition g(r, t =0)=yz(r).
The quantity of immediate interest is the probability

P(q) that the particle A in its electronic ground state
desorbs with momentum A'q. If P&(r) is the continuum-
state eigenfunction of the Hamiltonian

Ho=( —A' /2m)V' + Vo(r)

corresponding to the eigenvalue 8q —the kinetic energy
of the detected particle —then P(q) is given by

P(q) =~f «e "I ~ 4, 1
4(t) & I' . (2.2)

A. General formulation Y= 1 gP„=Q—P(q) .
n q

(2.4)

Full quantum-mechanical theory of ESD was formulat-
ed a few times in the past, most recently in Ref. 16.
In a nutshell, following the initial excitation caused by
the electron beam, the adsorbed particie is placed at t =0
on the excited-state potential-energy surface Vz(r). We
denote by A and A * the adsorbed particle in the elec-
tronic ground and the excited state of the entire system,
respectively (the superscript e suggests that the excita-
tion should be localized in the vicinity of A). The initial
wave packet of A * is yz(r) and it is usually approximat-
ed by the ground-state wave function of A in the surface
potential VD(r). The following time evolution of the
wave packet yz(r, t) of A* is controlled by the time-
dependent Schrodinger equation which, in 'addition to
Vz(r), contains an imaginary optical potential
V, ,(r) = —iA'Alr)/2, accounting for the electronic deex-
citation processes (i.e., transitions from A to A) and
acting as a drain on the probability amplitude of A *.
A,(r) is a position-dependent deexcitation probability per
unit time (deexcitation rate). The results of the standard
Antoniewicz model are very sensitive' ' to the details of
the position dependence of A, (r) (which in this case is
often referred to as the reneutralization rate). In the
present model, in which the center of the wave packet
yz(r, t) does not move by any substantial amount, we ig-
nore this position dependence, setting A ( r ) = A, =const.
Consequently,

y& ( r, t ) =exp( —At/2 )g( r, t ).
with P(r, t ) satisfying a standard time-dependent
Schrodinger equation,

For the isotropic surface P(q)=P(Q, q), where q=q,
and Q =(q +q~ )', and the z axis is normal to the sur-
face pointing toward the gas phase. The number of parti-
cles detected per second within a unit solid angle in the
direction (0,$) and having kinetic energy within the unit
energy interval around E is given by

dN(E, H)

dE dQ
3/2

1 LA 2m

4~

X&EP[Q =(&2mE/A')sin8, q =(&2mE/fi)cos8],

(2.5)

where L and A are, respectively, the length of the gas
container along the z axis and the area of the container
perpendicular to it.

B. Reduction to a one-dimensional theory

The main task is a calculation of P(Q, q ) and P„. It re-
quires, first of all, a solution of the time-dependent
Schrodinger equation (2.1) and of the stationary
Schrodinger equation for the eigenfunctions of Hp for
both the gas and the adsorbed phase. With certain plau-
sible assumptions about the surface potentials Vo(r) and
Vz(r), the problem can be considerably simplified. Start-
ing with the ground-state surface potential, we split it
into the z-dependent average surface potential Vo(z) and
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y, (r) = W
-'"e'q "p,(z),

8 =A' (Q +q )/2m, (2.6)

for the particle in the gas phase with momentum
iriq=A'(Q, q ) and

P„(r)=P„ i(r) =a (R—Ri )P„(z),

(2.7)

for the particle adsorbed at the adsorption site R&. The
eigenvalue D„corresponds to the one-dimensional eigen-
function P„(z), whereas a (R) is a function which, owing
to assumption (iv), is the solution of the two-dimensional
Schrodinger equation

A2 B2 B2+ +Vo(R) a (R)=A' a (R).
Bx By

the remainder AVO(R, z) accounting for the surface cor-
rugation:

Vo(R, z)= Vo(z)+b, VO(R, z) .

As usually, R is a component of r along the surface. One
can use the basis formed by the bound [P„(z)] and the
continuum [P (z) ] state eigenfunctions of the one-
dimensional Hamiltonian containing only the average po-
tential Vo(z) to expand the eigenfunctions P(r) of the
three-dimensional Hamiltonian containing full surface
potential. For the localized adsorption one can assume in
the lowest-order approximation that (i) the off-diagonal
matrix elements of b, Vo(R, z) in the above basis vanish,
(ii) the particle in the gas phase does not experience any
corrugation (i.e., &P ~AVo~g & =0), (iii) &P„~AVo~g„&
does not depend on n, and (iv) tunneling of the adsorbed
particle from one adsorption site to any other can be ig-
nored. With all these approximations, the eigenfunctions
P(r) and the corresponding energy eigenvalues can be
written as

Convenient analytical representations of the potentials
in Eqs. (2.9) and (2.10) allowing for analytical solutions
for P„(z), P~(z), and a (R) are the Morse potential for
the average surface potential Vo(z) and the two-
dimensional harmonic-oscillator potential for Vo (R).

Turning our attention to the time-dependent
Schrodinger equation (2.1), we observe first that, within
the approximation in which the initial wave packet is just
the ground state of Ho, it has the form (2.7)

g(r, t =0)—:Po(r) =ao(R)go(z), (2.1 1)

g2 B2 B
, + V„(z) p(z, t)=iirt g(z, t)—,

2m Bz2 Bt
(2.12)

with the initial condition P(z, t=0)=go(z). A similar,
but two-dimensional equation determines the time evolu-
tion of the R-dependent factor for which the initial wave
function is ao(R). The latter equation can be solved
analytically if the lateral potential Vo (R) is approximat-
ed by the two-dimensional harmonic potential which, in
general, can be difFerent than Vd(R). We will assume,
however, that Vo (R)= Vd (R) because (i) no information
on corrugation (and on its dependence on electronic exci-
tation) is available and (ii) this simplification affects only
the angular distributions but not the kinetic-energy distri-
bution of the desorption products in the forward direc-
tion. With this assumption the R-dependent factor of the
time-dependent wave packet P(r, t) is stationary and the
probability P(q) given by Eq. (2.2) reduces to

&(q) =+(Q)&'"(q), (2.13)

where the subscripts 0 denote the ground states in each of
the potentials into which Vo(r) is split in Eq. (2.10). If
we assume that similar splitting is justified for the
excited-state surface potential Vd(r) = Vd(z)+ Vd (R),
then the time-dependent Schrodinger equation (2.1) yields
two equations. The time evolution of the z-dependent
factor of the wave packet is determined by

(2 g) where

The potential Vo(R) in Eq. (2.8) is defined by [cf. (iii)
above]

& y„~V V, ~y„& =y V,'(R —R, )

P'"(q) =A f dt e -"~
& P, ~g(t) & I'

(2.14)

(2.15)

V.(r) = V, (z) (2.9)

and the assumption is made that Vo has the same form
for each adsorption site. Note that the eigenfunctions
(2.6) for the particle in the gas phase are orthogonal to
the eigenfunctions (2.7) of the adsorbed particle, and that
the orthogonality holds within each set also. The approx-
imations leading to the above solutions are equivalent to
the assumption that the surface potential Vo(R, z) can be
written as

is the probability of detecting the particle with a momen-
tum Aq which would be obtained in the entirely one-
dimensional theory: The matrix element in Eq. (2.15) is
an integral of the wave functions which depend only on z.
In addition, the lack of tunneling between adsorption
sites allows one to define the one-dimensional retrapping
probability I', into one of the excited states of the one-
dimensional surface potential Vo(z). In analogy to Eq.
(2.3), it reads

for the particle in the gas phase and as &.'"=~J «e "l&y. lq(t)&l' (2.16)

Vo(r) = Vo(z)+ Vo (R) (2.10)

for the particle adsorbed at the RI =0 adsorption site.
The two-dimensional plane waves form a complete set of
functions in their own right; therefore, g+(Q)=1. In
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addition, P (z) and P„(z) also form the complete set of
functions of z. Consequently,

'

Eq. (2.4) for the total
desorption yield reduces to

y 1 y p(1)—y p())(q)
n

(2.17)

indicating that it is entirely determined by the one-
dimensional theory.

Turning our attention to the kinetic-energy distribu-
tion of desorbing particles, we note first that within the
one-dimensional theory it is obtained from P")(q) by
multiplying it by the one-dimensional density of states.
One gets

dN '"(E)
dE

I
2'

1/2
2m P"'(q =&2mE /A')

(2.18)

Consequently, owing to the factorization (2.13) of
P(Q, q), the three-dimensional angular energy distribu-
tion (2.5) can be written as

dN(E, 9)
dE dA

2m

4~
F[Q =(&2me /A)sing]

dN '"(E')
dE' E cosO,

E'=E cos 9
(2.19)

(4/~ )E
dN (1)(E)

L gE
(2.20)

indicating that, within a constant factor, the kinetic-
energy distribution is just the one-dimensional distribu-
tion multiplied by E. This result was anticipated in Refs.
15 and 16. The factor 4/ficoL in Eq. (2.20) is obtained
after taking for ao(R) the ground state of the two-
dimensional isotropic harmonic potential with the angu-
lar frequency coL.

To summarize, we have been able to express the three-
dimensional energy distributions in terms of the distribu-
tions usually obtained in the one-dimensional approach.
The essential step was the ability to factorize P(q) ac-
cording to Eq. (2.13). There are essentially three approxi-
mations which make this factorization possible: (i) negli-
gible tunneling in the adsorbate between adjacent adsorp-
tion sites (i.e., lack of band effects), (ii) negligible surface
corrugation as seen by the particle moving away from the
surface, and (iii) negligible dependence of the surface cor-
rugation on the electronic excitation of the system
[Vo(R)= Vz(R)]. Whereas approximations (i) and (ii)
seem to be well justified for particles as heavy as Ar

where we have anticipated that F(Q) =F(Q) for the iso-
tropic ground-state wave function ao(R). Note the
Knudsen-law factor cos8 in Eq. (2.19). For desorption in
the direction normal to the surface, one gets from Eq.
(2.19) (after multiplying it by 2~ to account for all azimu-
thal directions)

dN(E) 3 2m dN ' "(E)
dE 2' p dE

atoms, the approximation (iii) might be questionable.
This approximation is, nonetheless, the easiest one to re-
lax. There is no need to do this, however, as long as the
distributions in the forward direction are of main con-
cern.

C. Specification of the model

To proceed, we must specify the physical model we
want to consider. In the standard Antoniewicz approach
the potential Vo(r) is the Van der Waals potential hold-
ing the physisorbed particle 3 near the surface. The in-
coming electron beam ionizes the adsorbed particle
which, in the simplest approximation, is subsequently
acted upon by the additional Coulomb image force.
Thus, in the majority of works investigating ESD for
physisorbed species, "' ' ' ' the potential Vz(r) is
assumed to be a sum of the original potential Vo(r) and
of the Coulomb interaction potential of the ion 2 * with
its image. Forces somewhat weaker than those caused by
the image interactions were also considered. ' A corn-
mon feature of all these approaches is the fact that the in-
itial wave packet y&(r) of 3 * is centered at a position
much farther away from the surface than the equilibrium
position of V&(r) and that the lifetime of A [determined
by V, , (r)] is much shorter than the time 3* needs to
travel to the inner turning point of V&(r). Therefore, the
only important characteristic of Vz(r) is its slope at the
initial position of the wave packet. The classical theory is
usually adequate to describe the process. '

As already discussed in the Introduction, the argu-
ments were forwarded that the image potential might
not have anything to do with the process considered here
because the lifetime of the ion created by the incoming
electron beam is too short for any displacement of the ion
to occur. Instead, the initial excitation is followed by an
almost immediate electron relaxation leading to creation
of the metastable excited electronic configuration in
which 3 ' can be considered to be a chemisorbed particle
experiencing a surface potential Vz(r) which is much
deeper and narrower than Vo(r) but having its minimum
almost at the same position as that of Vo(r). Classical
effects are negligible in this case and a quantum approach
must be used to study it.

To calculate P")(q) given by Eq. (2.15), one needs the
stationary continuum-spectrum wave functions P (z) in
the potential Vo(z). These wave functions describe states
in which the desorbing particles are detected. One also
needs the solution P(z, t ) of the time-dependent
Schrodinger equation (2.12). The initial wave packet for
this equation is the ground-state wave function $0(z) in
the potential Vo(z). To solve the necessary Schrodinger
equations, we must specify both one-dimensional poten-
tials. We chose Morse potentials for both Vo(z) and
Vg (z):

(2.21a)

(2.21b)

The analytical expressions for the eigenfunctions P„(z)
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and Pq(z) are known and are listed in Appendix A. Also,
the analytical form of the WKB approximation to P (z)
is given there. It is more useful for our purposes than the
exact one (cf. Sec. II D).

Heller's method is used to solve the time-dependent
Schrodinger equation (2.12). One assumes that g(z, t)
has a form of G-aussian,

g(z, t ) =exp —[a(t)[z —z(t) ]~

+p(t)[z —z(t)]+5(t)], (2.22)

where a(t) and 5(t) are in general complex. Expanding
the potential Vd(z) in a Taylor series around the instan-
taneous position z(t) of the center of the wave packet,
keeping only quadratic and lower-order terms in this ex-
pansion, and using the Schrodinger equation (2.12), one
arrives at the set of ordinary differential equations for
z(t), p(t), a(t), and 5(t) One. usually assumes that z(t)
and p (t) represent just the classical motion that, for the
Morse potential Vd(z), can be obtained analytically.
Im[5(t)] is fixed by the overall normalization, Re[5(t)]
determines irrelevant overall phase factor, and the equa-
tion for a(t) is

low-energy oscillation frequencies, and the mismatch of
their equilibrium positions, appear in it.

Combining the results (2.15), (2.18), (2.20), and (2.24a)
and (2.24c), we obtain the following expression for the
(dimensionless) kinetic-energy distribution of particles
desorbing in the direction normal to the surface:

L, dN(E) c,

4 dE W 0

(2.25)

where w =cod /A, . Similarly, from Eqs. (2.16), (2.17),
(2.24b), and (2.24c), we get two alternative expressions for
the total desorption yield:

Y=1— g f e '~ R„(r)dr= f 8 'R(E)dE .
1

W „0 0

(2.26)

The factor E in front of the integral in Eq. (2.25) converts
the one-dimensional distribution into the three-
dimensional one, as seen in Eq. (2.20). It is canceled by

in the integrand of Eq. (2.26) because the total
desorption yield is entirely determined by the one-
dimensional theory. The integrands in Eqs. (2.25) and
(2.26) are

a(t)= ——a (t) —
—,
' Vd'(z(t)) . (2.23)

R(E, r)= f dg+(E, j)f(g, r) (2.27)

For all potentials Vd(z) for which analytical solution of
the classical equations of motion for general initial condi-
tions exist, Eq. (2.23) can be solved analytically. Details
are given in Appendix B [Eq. (B5)]. The initial wave
packet g(z, t =0) is the ground-state wave function Po(z)
in Vp(z). In the method used here it must be replaced by
the Gaussian (2.22) with z(0) =z„, p(0) =0, and
a(0) =ap=imcpp/2, where cop=yp+2Vp/m is the angu-
lar frequency of oscillations at the bottom of Vo(z). Both
the exact analytical form of Pp(z) and its Gaussian ap-
proximation are given in Eq. (Bl).

In general, all wave functions needed can be expressed
in terms of dimensionless functions of dimensionless posi-
tions (g=ypz, go=bozo), energy (E=A' q /2mVp), and
time [r=codt, where cod=yd+2Vd/m is the angular fre-
quency of oscillations at the bottom of Vd(z)]:

I /2

Q (z)= 2
L,

@(& I—ko» (2.24a)

0.«) =&)'o@.(k —Co»

g(z, t ) =Qypf (g —
gp, r) .

(2.24b)

(2.24c)

The functions N„(g) and 4&(E,g) along with the WKB
form for the latter are listed in Appendix A. We note
that the only parameter needed to specify the states of
the physisorbed particle of mass m trapped in the poten-
tial Vp(z) is crp=+2mVp/(A'yp). The function f(g, r) is
given in Appendix B. Besides o.

&, three other system pa-
rameters, p =pp/pd P:( Voto/Vd pd ) =cop/cod and
s =exp[ —yd(zp —zd )], accounting, respectively, for the
ratio of the widths of both potentials, the ratio of their

and

n!(2 cr o2n —1 )R„(r)=
I (2cro —n )

X f dgexp( —crpe ~)(2crpe ~) '

XL„' (2crpe ~)f (g, r) . (2.28)

~&2 cosh[(r 77/2)w ]R R E, rdr
o w sinh(vr/2w )

(2.29)

alld

~l& cosh[(r —n/2)/w] R ( )d (2 30)
o w sinh(vr/2w )

respectively, allowing us, when z0 =zd to carry on the nu-

merical calculations for larger values of w than in the
general case of zpWzd.

The explicit form of 4„(g), Eq. (Al), was used in Eq.
(2.28). &P(E, g) and f(g, r) are given in Eqs. (A2), and
(B2), respectively. In the particular case in which the
equilibrium positions of both potentials coincide (zo =zd ),
the function f (g, r) is a periodic function of time [cf. Eqs.
(B2) and (B10)]. This periodicity can be used to trans-
form the r integration in Eqs. (2.25) and (2.26), which
now reads
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D. Approximations and special cases

Any physical system to be considered within the model
presented here is characterized by m, Vo Vg po pg zo,
z&, and k being, respectively, the mass of the adsorbed
particle, the depth, the range parameter, and the equilib-
rium position of each of the potentials, and the electronic
deexcitation rate. They combine into five dimensionless
parameters,

I /2
Vo

70

p s d 0 1XO —y (z —z )

Xd

Vo

V~

' 1/2
go COp

(2.31)

It is worthwhile at this stage to take a note of the physi-
cal meaning of these parameters. The first one, o.

o is the
usual strength parameter of the ground-state potential.
The next three parameters express three parameters
specifying the excited-state potential (Vz, yz, and zz) in
terms of the parameters of the ground-state potential.
Thus, P is the ratio of the oscillation frequencies at the
bottoms of both potentials. For P&1 the excited-state
potential is, at its bottom, narrower than Vo(z). The pa-
rameter p measures the width of the excited-state poten-
tial and )Lt & 1 if the latter is globally narrower than Vo(z).
Finally, s is determined by the position of the minimum
of the excited-state potential. For s =1 the equilibrium
positions of both potentials coincide and for s (1 the
excited-state potential binds the particle closer to the sur-
face than Vo(z) does. In all physically interesting situa-
tions all three parameters are smaller than 1. Note that
the ratio of depths of both potentials is Vz/Vo=(p/P) .
The last parameter w is proportional to the lifetime of the
metastable excited state. For m =1, the lifetime is of the
order of the oscillation period at the bottom of V&(z).

Typical systems for which the kinetic-energy distribu-
tions were measured are N20, ' " and Ar, and Kr (Ref.
14) physisorbed on Ru(001) for which Vc =430, 109, and
162 meV, respectively. Little is known about the range
parameter yo. Taking yo=1 A, one gets, respectively,

0

o.o=95.48, 45.8, and 80.6. Incidentally, the surface po-
tential for Ar/Ru (001) calculated by Walkup et al. us-

ing the local density functional (LDF) method has
Vo 65.7 meV and yo=0.792 A, resulting in o o=44.9,
almost the same value as the one given above for this sys-
tem. The remaining parameters will be specified later on.

Desorption yields can be calculated from Eqs. (2.26)
and (2.28) without any further approximations. Howev-
er, calculation of the distribution R(e) is a very demand-
ing numerical task because of rapid oscillations exhibited
by the continuum wave function @(c,, g) and the fact that
the Gaussian f ( g, r ) becomes for some values of r a quite
sharply peaked function of g. This makes the calculation
of R(e, r) numerically unstable and time consuming, par-
ticularly for the large values of o.

o considered here, even
if the WKB form (A5) or (A8) is used for the continuum

N(E, g) = A (E)sin[oo&E+ if+ 5(E)], (2.32)

for all positions g for which the value of the Gaussian is
significant. In Eq. (2.32) o'ov E+1 is the (dimensionless)
de Broglie wave number of the particle at g=g'o=—0. The
amplitude A(E) and the phase shift 5(c, ) can be deter-
mined by comparing the above form with the WKB ap-
proximation (A8). This is done in Appendix C [cf. Eqs.
(C2)—(C4)]. The form (2.32) might be termed SWKB,
standing for a simplistic WKB approximation. The in-
tegral in Eq. (2.27) can be now calculated analytically and
the result is proportional to N(e, (=0). Inserting this re-

cr,=47.74 P=0. 1

10-
M

L

U

u)

0N

U

e 0-
O

1 0 5 0.0

)=To(z—z,)

1.5

FIG. 1. Surface potentials Vo(z) and Vz(z), continuum wave
function 4(E,g) [Eq. (A2)] for v=2.0, and real parts of Craussian
wave packets f( g, r) [Eq. (B2)] for r=0, 1.0, and 1.5 for the case
zo=zq. For this case only the curvature of Vq(z) at its bottom
a6'ects the time evolution of the wave packets so this potential is
represented by a parabola. The wave functions and wave pack-
ets are displaced vertically in order to avoid their overlapping.

wave functions.
However, a very simple algebraic approximation for

R(c,, r) can be obtained. This approximation not only re-
sults in manageable numerics but also allows us to gain
additional insight into the obtained results. We discuss
this approximation in some detail for the case of poten-
tials with coincident minima (s = 1; we can set zo =z& ——0
in this case), but it can and will be also used in a more
general case. The approximation is suggested by analyz-
ing Fig. 1 in which both potentials, the continuum wave
function 4(a=2, $), and the real part of the Gaussian
wave packet (B2) [with F(r) given by Eq. (B10)] for three
values of ~ between 0 and m/2 are plotted. The center of
the time-dependent wave packet remains at z =zo =z& =0
and Vz(z) can be represented by a parabola in Fig. 1 be-
cause only the curvature of this potential at its bottom
(i.e., P but not p) determines the time evolution of this
wave packet [cf. Eq. (2.23)]. The wave packet has the
largest width at ~=0 and never penetrates regions close
to the classical turning point in Vo(z). In such a case,
Fig. 1 suggests that 4(E,g) can be approximated by a
simple sinusoidal standing wave,
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suit into Eq. (2.25) together with @(E,/=0) obtained
from Eq. (A8), we get

R (E)=sin o o &s sinh '(V'E) —V E+ 1+—+—
2 4

where

2E ~» cosh[(r —~/2)/w ]X—
&rr(E+ 1) w sinh(~/2w )

X [cr+~ (r) ]' exp[ —(v+ 1)rroF~ (r) ],

r q 1+tan rF (r} 2

p'+t a'nr

(2.33}

(2.34)

for s= 1 [cf. Eq. (B10)]. Similar results are obtained for
zoWz& (s~~l) but the result is a bit lengthy and we quote
it in Appendix C, Eq. (CS).

Anticipating the discussion in Sec. III, we note that for
our numerical work the SWKB approximation (2.33)
and/or (C5) is used unless stated otherwise. This approx-
imation becomes unreliable for (i) very small values of cro

because then the continuum spectrum wave function can-
not be approximated in any g interval by a sinusoidal
standing wave. It also fails when (ii) a significant part of
the time-dependent wave packet ltd(z, t) penetrates re-
gions close to or beyond the classical inner turning point
in Vo(z). This may happen for a certain choice of system
parameters —for example, when the theory is applied to
the standard Antoniewicz situation and V&(z) is very
wide. In such cases more numerically involved calcula-
tions employing Eqs. (2.2S), (2.27), (A5), and (B2) are
necessary. Such calculations were also occasionally done
to verify the accuracy of the SWKB approximation in
cases in which it was used.

We pause to discuss few features of the result (2.23) ob-
tained for zo=zz. The energy distribution R(E) factors
out into a product of the E-dependent time integral times
the square of the continuum wave function C&(E, /=0)
taken at the position of the center of the wave packet,
i.e., at the equilibrium position of both potentials. The
continuum wave function is a standing wave resulting
from the interference of the incoming and rejected waves
with positions of its nodes depending on c. One thus ex-
pects that the energy distribution R(E) will exhibit, as a
function of E, quite rapid oscillations as the nodes and the
antinodes pass through /=go=—0: No particles are
desorbed at energies corresponding to the Ramsauer-
Townsend resonances at g =0. These oscillations are
contained in the sin ( ) factor in Eq. (2.33). The spac-
ing between the resonances (i.e., the period of the oscilla-
tions) is inversely proportional to oo (it is roughly equal
to 2m/oo) and increases slowly with increasing energy.
When the equilibrium positions of both potentials are
somewhat mismatched (zz (zo, i.e., s (1; cf. Appendix
C), the position of the center of the wave packet depends
on time r and the integration (2.27) results in R(c., r),
which again is an oscillatory function of c. The explicit
form of R(E, r) in this case in SWKB approximation can
be easily extracted from Eq. (CS) by comparing it with
Eq. (2.25). The oscillation period and the phase of R (E., r)

where erfc is a complementary error function.

III. NUMERICAL RESULTS

A. Flexibility of the model
and comparison with earlier calculations

We start our analysis of the numerical results by
presenting in Fig. 2 typical kinetic-energy distributions
obtained for some model potentials. All distributions

o',=95.48 P=0. 1 p, =0.3 w=1.0

0.04-

0.03-

CQ

0.02-

0.01-

0.00
0.0 0.5 1.0 1.5 2.0 2.5

FIG. 2. Typical kinetic-energy distributions obtained in the
present model for various values of zo zg. Dimensionless pa-
rameters are listed at the top of the figure. Numbers beside the
curves are the values of s=exp[-) „(zo—zz)] and of the overall
desorption yield Y.

depend now on ~ so that the oscillating term cannot be
pulled outside of the time integral in Eq. (2.25) as seen in
Eq. (CS). The amplitude of the oscillations of the result-
ing distribution R (E) is now diminished due to the
smoothing-out efT'ect of the time integration. For smaller
values of o.

o and/or s close to 1, the smoothing out is not
complete. For larger oo and/or significantly mismatched
equilibrium positions of both potentials, the oscillations
of R ( E) may be, and indeed are, entirely washed out.

Returning to the case of zo =z&, we note that the entire
factor in the second line of Eq. (2.33) forms a slowly vary-
ing envelope on which the oscillations just discussed are
superimposed. The envelope function increases linearly
for small c, reaches a maximum, and then decreases
roughly exponentially. It is interesting to note that the
dominant dependence on the parameters o o and P in the
envelope is through the product p =ooP . The additional
dependence on P in the denotninator of Fz is much less
important for p (( l. Instead of calculating the desorp-
tion yield from Eq. (2.30), one can estimate it averaging
R(E) over the oscillations by replacing the sin ( ) fac-
tor in Eq. (2.33) by its average value of 0.5 and integrat-
ing the result over c. according to the right-hand side of
Eq. (2.26). The result is

cosh[(r —m/2)/w ] f [Q ~ ( ) ]
o w sin(vr/2w )

(2.35)
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were calculated using SWKB approximation, i.e., Eq.
(C5) for sX1.0 and Eq. (2.33) for s = 1.0. For P ( 1.0 po-
tential Vd(z) is narrower at its bottom than Vo(z) and for
the particular parameters chosen it is (p/P) =5.6 times
deeper than the latter. For s=1.0, equilibrium positions
of both potentials coincide and, as expected, the resulting
distribution exhibits strong Ramsauer-Townsend oscilla-
tions as a function of c.. For s & 1.0, the equilibrium posi-
tion of Vd(z) is closer to the surface than that of Vo(z)
(i.e., zd (zo), but the shift is small enough for the SWKB
approximation to be still valid. Indeed, it was checked
that the results obtained without SWKB using Eqs.
(2.25), (2.27), (A5), and (82) cannot be distinguished
within the accuracy of the graph from those in Fig. 2.
We note that even for a small mismatch of the equilibri-
um positions of both potentials (s = 1) the amplitude of
the Ramsauer-Townsend oscillations is drastically re-
duced. The absolute desorption yield increases from 2%%uo

for s=1.0 up to 12% for s=0.5, whereas the position of
the maximum of the distribution is weakly affected by s.
Additional calculations for other sets of parameters re-
veal that, in general, the energy at which the distribution
peaks increases with decreasing s and/or with increasing
p. The distributions in Fig. 2 are for w=1.0, i.e., the
lifetime of A' is of the order of the oscillation period
2~/cod at the bottom of Vd(z). Increasing the lifetime
above w=1.0 does not change the shape of the distribu-
tions and leads to an increase of the overall desorption
yields by a factor not larger than 1.5 above those in Fig. 2
(of course, the yield tends to zero the limit w~0). This
feature is in a sharp contrast to the results obtained in the
standard Antoniewicz model in which the increase of the
lifetime substantially increases desorption yields and
shifts distribution maxima towards higher energies. ' '
For s=1.0 (zo=zd ), the results do not depend on p [cf.
Eq. (2.33)] and the oscillation period seen in Fig. 2 is
roughly equal to 2m. /o. o. Therefore, smoothing out the
oscillations by decreasing s is less effective for smaller o.

o
than it is for larger ones. It was checked that for
o.

o
= 120 the Ramsauer- Townsend oscillations totally

disappear for s as close to unity as 0.8.
There is not a priori any limitation on widths, depths,

and equilibrium positions of both potentials which can be
used in the present model. Therefore, the model contains
the standard Antoniewicz desorption scenario (with the
position-independent reneutralization rate A, ) as a partic-
ular case. We can, therefore, test the adequacy of the
Ciaussian wave-packet approach by applying the present
model to cases previously studied in Refs. 15 and 16. In
these papers the classical and exact quantum-mechanical
approach to the Antoniewicz model using Morse poten-
tials for both Vo(z) and the image potential Vd(z) was
developed. Analytical, numerically manageable results of
the exact quantum-mechanical approach could be ob-
tained only for yd =go (i.e., p=1) and f3=s. ' ' This
was not a serious restriction for the Antoniewicz model
because the time-dependent wave packet has just enough
time (before the reneutralization occurs) to probe the po-
tential Vd(z) only in the immediate vicinity of z=zo.
Thus, beside o.

o and w, the only other system parameter
in this version of the Antoniewicz model is the slope of

o,=95.48 P=s=0.3496 p, =1 w=0. 1 6'l 9

0.6-

0.4-
CL

0.2- "

Antoniewicz model

0.0
0.0 0.5 1.0 1.5

FIG. 3. Kinetic-energy distributions of desorbing N&O mole-
cules from Ru(001) surface in the Antoniewicz model (with
position-independent neutralization rate) obtained using
different approximations: exact quantum theory of Refs. 15 and
16 (dotted curve); present approach without SWKB approxima-
tion (solid curve); present approach with SWKB approximation
(short dashes); classical theory of Refs. 15 and 16 (long dashes).
Experimental results (normalized to match the exact quantum-
mechanical distribution at the maximum) are also shown. Pa-
rameters (the same as in Refs. 15 and 16): Vo =430 meV, go=1,
o 0A, zo —z; +1.5 A (z is the position of the image plane), and

A, =2.4X10' s ', resulting in the dimensionless parameters list-
ed above the figure. The overall calculated desorption yield
=10 "% is about 3 orders of magnitude lower than observed
experimentally.

Vd(z) at the initial position z =zo. Other details of Vd(z)
are irrelevant. The requirement that this slope be equal
to the slope of the Coulomb image potential at the same
point fixes the value of/3 (and of s). We compare now the
results of the present approach applied to the An-
toniewicz model with the results of Refs. 15 and 16 using
exactly the same system parameters as theirs. Naturally,
such a comparison can only be done for the position-
independent deexcitation rate A, .

In Fig. 3 the kinetic-energy distributions of desorbing
neutral N20 molecules physisorbed on Ru(001) are
shown, calculated using the classical and the exact
quantum-mechanical versions of the Antoniewicz mod-
el, ' ' and the present approximate quantum-mechanical
approach. The parameters used are those of Ref. 15 and
16. We note that the results of the exact quantum-
mechanical approach (dotted curve) and these of the
present one without SWKB approximation (solid curve)
are for all practical purposes identical, whereas use of the
SWKB approximation (short dashes) results in yields that
are too low, although the latter results are also not too
far off the mark. This inadequacy of SWKB in the
present case is not surprising because for the potentials
used in this calculation a substantial portion of the time-
dependent wave packet can penetrate regions close to and
beyond the classical turning point

[yo(z —zo ) = —ln( 1+1/1+ c. ) ]

of Vo(z) for almost all energies c of interest. We note
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FIG. 4. Same as Fig. 3, but for He/W system: exact quan-
tum theory {dotted curve); present approach without SWKB ap-
proximation (solid curve); classical theory (long dashes). Pa-
rameters (the same as in Refs. 15 and 16): V0= 5.23 rneV, @0=1
A, zo —z; +2.83 A, and A, =2.4X 10' s ', resulting in the di-
mensionless parameters listed above the figure.

also that the classical approach results in the distribution
(long dashes), which becomes indistinguishable from the
exact quantum-mechanical one (dotted) after both are
normalized to a common value at their maximum. Ex-
perimental results are also shown in Fig. 3. We point
out, however, that although the shape of the theoretical
distribution matches quite well the experimental one, the
calculated overall desorption yield is three orders of mag-
nitude too low (for a detailed discussion of this point, see
Refs. 15, 16, and 21).

Results of a test similar to the above one done for
He/W, another system theoretically investigated in Refs.
15 and 16, are shown in Fig. 4. Here, SWKB approxima-
tion entirely fails because for all interesting energies the
center of the time-dependent wave packet penetrates into
the classically forbidden region of Vo(z) and also because
o.

o is very small. The results shown in Fig. 4 (solid curve)
are thus obtained without employing SWKB approxima-
tion ti.e., WKB approximation (A5) along with Eqs.
(2.25), (2.27), and (B2) are used]. We note gentle oscilla-
tions of the kinetic-energy distribution which for such a
small value of oo are not entirely washed out despite
quite substantial mismatch of the equilibrium positions of
both potentials (s much smaller than 1). Interestingly,
the exact quantum-mechanical theory of Ref. 15 (dotted
curve) not only does not show any of the Ramsauer-
Townsend oscillations, but also predicts that the distribu-
tion peaks at energies much lower than those predicted
by both the present model and the entirely classical ap-
proach (dashes). Indeed, as seen in Fig. 4, the latter two
distributions peak at approximately the same energy, pro-
vided the Ramsauer-Townsend oscillations are ignored.
There might be two possible reasons for the discrepancy
of the results obtained in the exact quantum and in the
present approximate quantum-mechanical approach: (i)
One can argue that the Ciaussian approach, being quasic-
lassical in nature, should result in predictions closer to

the classical than to the exact quantum-mechanical ones.
Such an explanation remains on rather shaky ground:
For NzO/Ru(001) discussed above, just the opposite hap-
pens. We are rather encouraged to believe that (ii) the ex-
act quantum-mechanical approach of Ref. 15 is faulty for
the He/W system because of the following reason. In the
exact quantum-mechanical approach a tacit assumption
is made' that wave functions of the bound states Vd(z)
form a basis complete enough to expand faithfully the
time-dependent wave packet P(z, t ). Continuum-state
wave functions are never included in this set. This ap-
proximation works perfectly for a majority of the cases.
For example, for NzO/Ru(001) this (bound-states-only)
basis contains 270 functions' ' but about 150 of them,
corresponding to the lowest bound states, su%ce to ob-
tain the accurate results. For He/W the corresponding
number is 134, but leaving out even few of them alters the
results substantially, indicating that the basis should
probably also contain the continuum spectrum of V&(z).

B. Application to Ar and NzO on Rn(001)

As mentioned already in the Introduction, the stan-
dard Antoniewicz model fails when confronted with the
experimental data. Therefore, we want to apply the mod-
el considered in this paper to ESD of N20 and Ar from
Ru(001). The results of this section were already report-
d 24

The only relatively well-established parameter is the
binding energy of the physisorbed particles to the mono-
layer covered surface: 109 and 430 meV for Ar (Ref. 14)
and NzO (Ref. 15), respectively. Consequently, these
values for Vo [cf. Eq. (2.21a)] were used in al/ calcula-
tions. The parameter yo is far less certain so we have de-
cided to do our tests for yo=1.0 and 0.5 A '. The pa-
rameters zo and zd enter the theory only through the
difference zo-zd present in s. Adopting the view that
Vd(z) binds the adsorbed particle stronger and closer to
the surface than Vo(z) does, we have set the restrictions
zo zd )0 Vd ) &o and yd )yo on the parameters of
Vd(z), but did not try to restrict them otherwise. In
terms of the dimensionless parameters defined in Eq.
(2.31), these restrictions read f3& 1, p & 1, and s & 1. Fi-
nally, the electronic deexcitation rate A, was chosen to be
of the order of 10' s ' implying w of the order of 1.

The representative fits for y0=1.0 A ' resulting in the
highest yield we were able to obtain are given in Figs. 5
and 6 for Ar and N20, respectively. The potentials used
to obtain these particular fits are plotted in Fig. 7, and
the dimensionless parameters (2.31) are listed in respec-
tive figure captions. The experimentally determined
yields are known with a substantial uncertainty: They
are estimated to be less than some 10% for N20 and
about 60 Jo for Ar although the arguments were forward-
ed' that the value of 20% would not be unrealistic in the
latter case. Our theoretical yields are certainly lower:
0.83% and 24% for N20 and Ar, respectively. However,
they represent a remarkable improvement over the best
results the Antoniewicz model was ever capable of:
0.005 —0.01% for NzO (Refs. 15 and 16) and 1 —3% for
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FIG. 5. Theoretical (solid curve) and experimental (crosses)

results for the kinetic-energy distribution of Ar atoms desorbing
from a monolayer physisorbed on Ru(001). Parameters used:

o o

Vo = 109 meV, yo= 1 A, Vd = 857 meV, yd = 1.43 A
0

zo —zd =0.32 A, A, =0.97X10' s ', resulting in the dimension-
less parameters o.0=45.8, P=0.25, p, =0.7, s=0.63, w=3.0.
Both distributions are normalized to 1 at their maximum.
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FIG. 6. Same as Fig. 5, but for N~O physisorbed on Ru(001).
o

Parameters used: V0=430 meV, yo=1 A, Vd=2. 26 eV,
o —] 0

yd =2.5 A, zo —zd =0.07 A, A, =3.9X 10"s ', resulting in the
dimensionless parameters o0=95.48, P=0.175, @=0.4, s=0.84,
to =2.0.

for Ar. ' The higher values quoted here were obtained
assuming rather unrealistically strong position depen-
dence of the reneutralization rate A, . In our present ap-
proach A, is constant. Further improvement is expected
once A, 's position dependence is accounted for.

For almost all best fits (including those for which we
have used y0=0. 5 A ', not shown here) we have ob-
tained for both systems, the value of zo —z, is between
0.3 and 0.4 A for Ar and between 0.06 and 0.12 A for
N20. The ratio p=yo/yd stays between 0.5 and 0.7 for
Ar and between 0.2 and 0.4 for N20. Once the value of
yo was chosen (0.5 or 1.0 A '), then the shape of the dis-
tribution determines the ratio of frequencies at the bot-
tom of both potentials P=aio/cod, uniquely. As discussed

FIG. 7. Morse potentials Vo(z) and Vd(z) used in the calcula-
tions presented in Figs. 5 and 6. In dimensionless variables
adopted here Vo(z) is represented by the same curve for both
systems.

in Sec. III A, the overall shape of the theoretical distribu-
tions (i.e. , the position of the maximum and the high en-
ergy tail) is quite insensitive to A, (i.e. , insensitive to w).
Also, the total yield, although initially becoming larger
for longer lifetime (smaller A.), does not increase any more
once A,

' becomes equal to or larger than about half of
the oscillation period at the bottom of Vd(z) (about 10
s for both systems) i.e. , once w becomes equal or some-
what larger than 2. For comparison, even small varia-
tions of A, in the Antoniewicz case (again around
10 ' —10' s) drastically affect the shape of the distribu-
tions and yields. We also note that the kinetic-energy
distribution for NzO exhibits remnants of the Ramsauer-
Townsend oscillations while they are almost absent in the
distributions for Ar. Responsible for this difference is the
quite different mismatch of the equilibrium positions of
Vo(z) and Vd(z) in these two cases, as seen in Fig. 7,
which nullifies the effect of smaller o.

o for Ar.
Before concluding, we must mention here the attempt

by Hubner and Bennemann, ' who, using the An-
toniewicz model, could obtain a reasonable shape of the
energy distribution and the yield approaching 60% for
Ar/Ru(001). To do this, they were forced to assume a
steplike position dependence of X=X(z), which is difficult
to justify physically. An interesting analysis of such a
possibility was also given by Gortel and Tsukada. On
the other hand, Walkup et al. ' were able to fit the distri-
butions for the same system and obtain the yields of the
order of 11% using the Antoniewicz model with both po-
tentials calculated using the local density functional
method. However, their high yield is a direct result of
taking Vo =65.7 meV (Ref. 29) instead of the experimen-
tally determined 109 meV. It happens because the theory
predicts a sharp increase of the yield with increasing (di-
mensionless) kinetic energy E,„=E,„/Vo at which the
theoretical distribution has a maximum. The experimen-
tal distributions peak around 56 meV. With V0=109
meV, the system parameters must be chosen such that
the theoretical distribution peaks at c. ,„=0.51, whereas
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for Vo =67.5 meV, the corresponding value is c. , =0.83.
Not surprisingly, the latter corresponds to higher yield.
Using Vo =67.5 meV, we were able to reproduce the ex-
perimental distributions and get the yield as high as 15%
using the standard Antoniewicz model and assuming a
position dependence of A, much weaker than that which
Walkup et aI. ' had to use. With Vo=67.5 meV our
model would certainly predict the yields close to the ex-
perimental value of 61%. We feel, however, that the ex-
perimentally determined 109 meV is better justified and
should be used in all calculations instead of the LDF
value of 67.5 meV. The latter is probably appropriate for
an isolated Ar atom physisorbed on a perfect Ru surface
but the experiments are done at coverages close to a
monolayer. Even at much lower coverages, desorption
proceeds from islands where the binding energy is again
closer to 109 meV (Ref. 31) and for such Vp the An-
toniewicz model cannot predict yields higher than about

21

APPENDIX A

for

n =0, 1,2, . . . , n~~ Oo

where o p=+2m Vp/(flump). The corresponding wave
functions can be written as

where g=y'pz, gp=ypzp are dimensionless positions, and

1/2n!(2o. p
—2n —1)

@„(g)=
I (2o.p

—n )
exp( —o.pe ~)

X(2crpe &) ' L„(2cr pe &) . (Al)

Bound-state energies of a particle moving in the Morse
potential Vp(z) given in Eq. (2.21a) are equal to

6„=—
Vp [(o p

—n —
—,
'

) /o.
p ]

IV. FINAL COMMENTS AND CONCLUSIONS

We have proposed in this work a new model for
electron-stimulated desorption of species physisorbed on
solid surfaces. In contrast to the standard Antoniewicz
model, we assume that the initial electronic excitation of
the system leads to a chemical bond with its equilibrium
distance from the surface not far away from that for the
Van der Waals surface potential. Some indication that
such is the nature of the excited-state potential follows
from the cluster calculations of Jennison et al. but
more work is needed to identify this state uniquely. The
necessary desorption increase of the kinetic energy of the
particle evolving on the excited-state potential energy
surface is achieved due to the increase of the momentum
uncertainty of a squeezed wave packet. Therefore,
desorption is a purely quantum-mechanical eA'ect unlike
in the Antoniewicz model in which a classical theory
suffices. A remarkable consistency between the experi-
mental data and the predictions of the model, was ob-
tained for all systems for which accurate experimental re-
sults exist: both the overall desorption yield and the
shape of the kinetic-energy distributions of desorbing
neutrals are correctly accounted for. We predict and dis-
cuss the origin of oscillations which may occur on the
kinetic-energy distribution curves. In this paper we give
also a microscopic justification of one-dimensional mod-
els used usually to describe the electron-stimulated
desorption. To our knowledge, no such justification was
ever attempted. The present formulation allows generali-
zations to real three-dimensional models to be done and
also allows us to calculate the angular distributions in
ESD (ESDAD). Work on ESDAD is now in progress.

ACKNOWLEDGMENTS

This work has been supported by an operating grant
from the Natural Sciences and Engineering Research
Council of Canada.

Pq(z) =&2/L @(E,g —gp),

where c. =(A'q) /2m Vp and

I ( —,
' —o p

—i opv s).
4(E,g) =

21 (2io.p&E)
(2

—
g)

—I /2

X IV, ~-(2o.pe ~), (A2)

with IV, „(x)being the Whittaker function. The above
form, although very useful for analytical calculations, is
numerically unstable for o.

p larger than about 20 (or
somewhat higher depending on the computer used). In
such cases it is more convenient to find @(s,g), integrat-
ing numerically the (dimensionless) Schrodinger equation

d2
+cr p[E e~(e ~ ——2)] N(E, g) =0,

d g2
(A3)

with the boundary condition

lim 4(c,, g)=cos op&E[g —ln(2crp)]
g—+ oo

I ( —2io p&E)—alg
I ( — cTp i op+6)

The decay of @(E,g) for negative g is so rapid that the
numerical integration can be started assuming that %=0
at g of the order of —2.0. However, for all cases of in-
terest the WKB form is an excellent approximation to
&b(c,, g). It allows not only for faster numerical calcula-
tions but it also can be a starting point for further ap-
proximations used in this work. For the Morse potential
it reads

I (x) and L„(x) are, respectively, Euler's y function and
the generalized Laguerre polynomial of degree n.

The wave functions for the continuum spectrum can be
written as
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(I)(e, g) = g(g)
E+2x —x

1/4

Ai[ —g(g')], (A5)

g(g) —=g(+)(g)

x+e+Vs(e+2x —x )
—,
' o.

o sin
x e+1

where x =exp( —g), Ai(z) is the Airy function, and
g(g) is given by

with the dimensionless parameters and variables defined
above Eq. (Al). For t)0 the wave packet has a form
(2.22) in which z(t) and p(t) represent a classical motion
in the potential Vd(z) with the initial conditions z(0) =zo
and p(0) =0. Introducing the dimensionless time r =

comdt,

where cod =y dQ( 2Vd lm) is the angular oscillation fre-
quency at the bottom of Vd(z), it is convenient to write

4(z, t) =&1'd'(k ko &—) .

The explicit form off(g, r) is

x —1+cos a+I
2/3

f((,&) = Oo
F„(r)

1/4

(A6)
X exp

—o () —,
' F( & ) [g' —~P & ) ]

in the classically permitted region to the right of the clas-
sical turning point g ) —In( 1+& I +e ) ], and by

——b, g'(r) [g—&g(r) ]

g(k):g( —)(k)

x —1+&x'—2x —e
2 cTo ln &e+ I

in which the classical motion and the classical momen-
tum are represented by

b,g(r) —=yo[z(t) —
z() ]

+ (/E cos
x+6

x e+1
2/3

—V'x' —2x —e
and

(A7

1+( 1 —s )cos[v's(2 —s )r]
2 s

hg'(r): ddt(r)/dr=(yo—lmmd )p(t),

(83)

in the classically forbidden region to the left of it
g'& —ln(1+&I+e)]. Due to the extreme steepness of
the repulsive part of Vo(z), the asymptotic form of the
WKB function can be used in most cases. We need it
only for g) —ln(1+ & I +-e) in this work and it reads

1/4

respectively. Three system parameters [cf. Eq. (2.31)] ap-
pear here: p=yolyd, P=(yo/yd )+VOIVd =~0/~d,
and s =exp[ —) d(zo —zd)] accounting, respectively, for
the ratio of the widths of both potentials, the ratio of
their low-energy oscillation frequencies
(coo=yo+2Vo/m), and the mismatch of their equilibri-
um positions. The dimensionless function F(r) in Eq.
(82) is related to a(t ) in Eq. (2.22) as follows:

(I)(v., g) =
c+2x —x

sin —', [g(+)(g)]' +—
F(r):F,(r)+iF;(r) =—i—2 a(t) .

(A8)
The dilferential equation (2.23) for a(t) has the following
solution:

APPENDIX B
a(t) =

—,
' 2a(,

0p

~po zo

Bp
'BZ

O

At t =0 the wave function of 3' is just the ground-
state wave function (i)0(z) in the surface potential Vo(z).
It is given by Eq. (Al) and in Heller's method it is ap-
proximated by the harmonic-potential ground-state wave
function:
f(z, t =0)

=V'y, [r(2a, —1)]-'"

az
X 2oo

a
BZ

BZO
(8&)

where ao=a(t =0) and [z(zo,po;t), p(zo, po', t)] is a clas-
sical motion in Vd (z) for general initial conditions
(zo,po). For the Morse potential Vd(z) and ao=im coo/2,
we get

Xexp( croe o—)(2aoe '
)

'g{)~ ( g' g'o) 0'o 1 /2

=V po(ao/vr)'~ exp[ —(To(g —go)2/2], (81)

F(r) =&(r )/&(r ),
where

(86)
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X S(r) [2s(2—s) —1 —(1 —s) C(r)] —r(1 —s) [1—s+C(r)]3 2

&s(2 —s) (87)

D(r) = [(s—1)[(s—1)&s(2—s)rS(r) —2]+ [2—s(2 —s)]C(r) I +iP&s(2 —s)S(r),2 s (88)

and

S(r)=sin[+s (2 s)r]

C(r)=cos[&s(2 —s)r] . (89)

classical position g=b, g(r). We can, therefore, expand
the argument of sin(. . .) in Eq. (A8) in powers of
g —b,g(r), neglecting all terms beyond the linear one and
keeping only the lowest-order term in the amplitude.
The result (referred to as SWKB in Sec. II D) is

P+i tanr
P(1 +iP tanr)

(810)

In a particular case when the equilibrium positions of
both potentials coincide, z0 =zd, we have s = 1, so
b,g(r) =bg'(r) =0 in Eq. (82) and

@(s,g)= A(E, r)sinIoori(s, r)[g hg(r)—]+6(E,r)I, (Cl)

where

g(c, , r)= [8+2 exp[ —Ag(r)] —exp[ —2bg(r)]I ', (C2)
' 1/4

Note that in this case f(g, r) does not depend on p;
P(z, t) is a periodic function of time (period equal to
2'/cad); and if Vd(z) is narrower than Vo(z) (i.e. , if
P(1), then the wave packet narrows down during the
first quarter of the oscillation period. Such a case is illus-
trated in Fig. 1.

A(E, r)=
g (E,r)

&(Eq&)=
3 [g(+)(kg(r)] +

(C3)

(C4)

APPENDIX C

To get an approximate expression for R(E, r) for the
case when zoWzd, we observe that the function f(g, r) in
Eq. (2.27) is a Gaussian (82) strongly peaked around the

with g1+~(g) defined in Eq. (A6). The form (2.32) is ob-
tained setting b,g(r) =0. The integration in Eq. (2.27) can
be done analytically. Inserting the result in Eq. (2.25), we
obtain

„[~oF~(r)1'"R(&)= — I d&e ' exp( —uo[g (E,r)+[bg'(r)IP]~)Fz(r))+'rrw o g( , E)7

2 0
~ 2 0X sinh bg'(r)g(E, r)F~(r)+5(s, r) +sin bg'(r)q(s, r)FI(~) (C5)

where

F, (r)=F„(r)/(F(r)[', F,(r)=F, (r&/[F(r&(' . (C6)

For zd=zo we have bg(r)=bg'(r)—:0, zi(E, r) =&E+1, Fz(r) assumes a simple analytical form (2.34) and Eq. (C5)
reduces to the expression (2.33). We note that in Eq. (C5) a smooth funtion of E [i.e., sinh( . ) term] is added to the os-
cillating one and both depend on r. Therefore, the oscillations of R(E) present in the case of potentials with coincident
equilibrium positions get somewhat washed out in the general case.
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