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One-phonon calculation of atom-surface inelastic scattering of the He-Cu(111) system
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With use of the distorted-wave Born approximation derived from an ab initio time-independent
scattering theory, an expression for the differential reAection coefficient for one-phonon transitions
is presented. In addition, the relation between the truncation of the interaction potential and the
Debye-Wailer factor is discussed. Numerical calculations are carried out for the He-Cu(111) sys-
tem. The copper surface is taken to be a slab of 80 layers with nearest-neighbor interactions for the
computation of the phonon dispersion relations and polarization vectors. The plate modes corre-
sponding to the lowest two nearly-degenerate dispersion curves are mapped onto the Rayleigh
modes. With use of a pair potential proposed by others, the differential reAection coefficient for
one-phonon transitions corresponding to the Rayleigh modes is calculated. The phonon wave vec-
tors are chosen to lie along the (110) direction, with magnitudes ranging from 0.05 to 0.60 A
The shape of the differential reAection coefficient is in good agreement with experiment. It is found
that the projectile mainly interacts with the vibrational motion of the atoms in the first layer of the
crystal and that the interactions involving the displacements of the second or deeper layers only
reduce the differential reAection coefficient slightly. The change in the differential reAection
coefficient due to the Debye-Wailer factor is found to be small, as the temperature increases from 60
to 300 K. Further, it is found that the differential reAection coefficient increases with increasing
temperature due to the Bose-Einstein distribution of the phonons and is larger for phonon annihila-
tion than for phonon emission because of the density of the final states of the projectile and the kine-
matic conditions of the scattering.

I. INTR@DUCTION

Scattering of therma1-energy helium atoms from a non-
rigid crystal surface has been a useful technique to probe
surface structure and defects. ' From the conservation
of energy and parallel crystal momentum derived from
scattering theory, phonon spectra can be obtained by
measuring the energy gain or loss and scattering an-
gles. Many theories of surface lattice dynamics have
been developed to calculate the dispersion relations and
the polarization vectors. ' The surface force constants
between the crystal atoms can be inferred by comparing
the dispersion curves calculated from theoretical models
of the lattice dynamics with those determined from ex-
periment, especially in the region of short phonon wave-
lengths. ' The intensity of the peaks provides infor-
mation of the atom-surface interaction involving pho-
nons.

Recently there have been several theoretical ap-
proaches of the scattering processes including the
distorted-wave Born approximation iDWBA), '

DWBA with normalization, the close-coupling calcula-
tion of scattering matrix, ' and the unitary one-phonon
approximation. In addition, a semiclassical scheme has
been employed for phonon inelastic collisions, ' and
the optical-potential method has been developed with in-
clusion of phonons. A systematic ab initio
quantum-mechanical formulation with realistic approxi-
mation schemes was derived by Choi and Poe for phonon
inelastic collisions based on a time-independent scattering
theory.

While various atom-surface interaction model poten-
tials involving thermal vibrations of the crystal surface
have been employed to calculate the inelastic scatter-
ing, our present formulation is applicable to an arbi-
trary atom —nonrigid-surface interaction potential. This
Aexibility allows one to understand the atom-surface in-
teraction from a more fundamental point of view than the
phenomenological approach. Further, the three-body
effect can be included in a straightforward manner in our
approach, if necessary.

In most other formulations the one-phonon inelastic
scattering was defined in terms of the ionic displacement
operator from the equilibrium position, i.e., the phonon
creation or annihilation operators, in a first-order expan-
sion of the atom-surface interaction potential. We adopt
here a more physical point of view that the initial and the
final phonon states of the scattering matrix element con-
tain the same occupation numbers except in a certain
mode, in which the occupation numbers differ by 1. We
then say that the transition between these phonon states
takes place in that mode. The expression of the
diA'erential refIection coef5cient to be used in this paper
contains no sum of different transition modes. In view of
the Aexibility of the input potential and more physical
treatment of the phonon process, we employ this formula-
tion in the present calculation.

There have been discussions of the temperature depen-
dence of the atom-surface scattering intensities involving
creation or annihilation of phonons. ' ' However, a
direct atom-surface analogy of the Debye-%aller factor
of neutron scattering from a bulk crystal is not available
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except in some limiting cases. In practice, the form of
the relevant factor usually depends on the potential used.
We keep the Debye-Wailer factor in a general form suit-
able for the formulation with any pair potential, and
define from this form the temperature-dependent Debye-
Waller coefficients for a numerical evaluation.

In this paper we investigate one-phono n inelastic
scattering of helium atoms from the copper (111)surface.
We examine how the atom-surface interaction through
Rayleigh modes affects the differential reflection
coefFicient. The differential reflection coefficient is calcu-
lated as a function of phonon wave vectors along the
(110) direction. The shape of the differential reAection
coefFicient from our calculation is in good agreement with
experiment. We find the interaction of the projectile
with the surface layer to be the most important quantity
to consider, especially for phonon wave vectors greater
than about 0.60 A '. In addition we find that the tem-
perature dependence of the differential reflection
coefficient is mainly determined by the Bose-Einstein dis-
tribution and any changes due to the Debye-Wailer factor
alone are small as the temperature increases from 60 to
300 K. Also we find that the kinematic conditions of the
scattering favor phonon-emission processes at high tern-
peratures.

In Sec. II we first outline the calculation of the surface
lattice dynamics. We then briefly review the transition
matrix of the atom-surface inelastic scattering and derive
an expression for the thermally averaged transition ma-
trix for one-phonon transitions. The effect of the transi-
tion on the reflection coefficient calculated to the first or-
der of the displacement of the crystal atom is also dis-
cussed. In Sec. III we present numerical calculations of
the dispersion relations, the Rayleigh modes, and the
Debye-Wailer coefficients for a slab of 80 layers of Cu
atoms. The atom —rigid-surface potential is obtained nu-
merically from the helium —metal-atom pair potential. By
specifying the kinematic conditions of the scattering, we
calculate the differential reflection coefficient and analyze
the interaction depth between the projectile and the vi-
bration of the crystal atoms. The effect of the surface
temperature is also examined. A summary of our calcu-
lation is presented at the end of this paper.

II. THEORY

A. Lattice dynamics of crystals with a surface

The relevant vectors defining the projectile-crystal sys-
tem with the origin on the surface and the positive z axis
along the outward normal to the surface are shown in
Fig. 1. We assume that the crystal is of infinite extent in
the x and the y directions with translational-invariance
symmetry in the x-y plane. We treat the slab crystal as
two dimensional, with each unit cell containing atoms
distributed down through all the layers. These unit cells
are referred to as surface unit cells. We assume one atom
per surface unit cell in a given layer. We denote by RG
the two-dimensional direct-lattice vector parallel to the
surface and Cs the corresponding parallel reciprocal-
lattice vector generated by A. Thus RG=m A, +n A2

jectile

equilibrium position

0 0 It =1

o z
Iz

l =2

o 1=3

crystal atom

FIG-. 1. The vectors de6ning the projectile-crystal system.

and Cx=IB&+n82 where A& and A2 are the primitive
direct-lattice vectors and B& and 82 are the correspond-
ing reciprocal-lattice vectors with A, .B =2+6,-. . When
used as superscript or subscript, Ci is denoted simply by
G. We choose the surface unit cells to be primitive cells
and denote the equilibrium position of an atom in the Ith
layer of a surface unit cell corresponding to RG by the
vector RG + rt . The Ith-layer equilibrium atomic
configuration is obtained from that of the first layer by a
translation vector rI —r&. The vector rI is uniquely deter-
mined up to RG. The displacement of the atom from its
equilibrium position is denoted by u (RG ) which can be
put in the operator form,

u (RG)= 1

v'~ q, 2', (Q)

X e,'(Q)e

' 1/2

(a&, +a o, )

employing normal modes with the second quantization,
where Q is the two-dimensional phonon wave vector
parallel to the surface, co, (Q) the frequency and e, (Q) the
polarization vector corresponding to mode s. Q's lie in
the first two-dimensional Brillouin zone. We impose the
orthonormality condition

g e,'*(Q) e,' (Q)M„=5„
1

(2)

where M„ is the mass of the crystal atom. Here a&, is
the annihilation operator for the mode (Q, s) and its ad-
joint operator aQ, the creation operator. They satisfy
the Boson commutation relations [aq „a&., ]=5&&5„.,
[a& „a&,. ]=[a&„a&., ]=0. We impose the two-
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dimensional Born —von Karman boundary condition with
N—:N, N2 being the total number of unit cells on the sur-
face. The portion of the crystal containing the X unit
cells is sometimes called the "large primitive cell" since it
repeats itself along the surface of the crystal. The Hamil-
tonian of the harmonic crystal H„ is expressed in terms
of the displacement u'(RG ) and the corresponding
momentum. In terms of the normal modes the crystal
Hamiltonian is given by H„= g&,A'co, (Q)(a&,aQ +

~ )

with the phonon eigenstates denoted by ~. . . , n& „.. . ),
where n&, is the occupation number of mode (Q, s). To
simplify the notation we define ~n ) = ~. . . , n& „.. . ).
The phonon states satisfy the orthonormality rela-
tion ( n

~

n' ) =5„„and the completeness relation
g„~n )(n~ =1. The energy of ~n ) is given by
@„=g~, fi~, (Q)(n&, + —,'). The total parallel crystal
momentum operator fiR„ is defined by

QQ Qa &,a &, with eigenvalue Q„= go, Qn Q

B. The atom-crystal surface scattering

and

UG VUG —V (3a)

UGHUG =H

for all G, where

(3b)

H—:— V, +H„+V
2M

(4)

I

In what follows we adopt the method of scattering dy-
namics and notations described in Ref. 35. The position
of the' atomic projectile relative to the origin will be
denoted by r, its projection on the crystal surface by R,
the initial (final) momentum of the projectile by k; (k&),
and K; (K&) the projection. The projectile-crystal in-
teraction potential V and the total Hamiltonian of the
system H satisfy the two-dimensional translational invari-
ance,

with M the mass of the projectile and

P.RG i%' RG i (P/A+% ).RG

H P(+'(r) =EP(+ '(r)

where E—:A' k; /(2M)+ 6„ is the total energy and
l

g(+'(r) is the phonon-dependent wave function of the
system. From Eq. (3b) we see that K=K;+Q„ is a good

l

quantum number up to G. The wave function is required
to satisfy the asymptotic behavior of an incident wave
plus scattered waves. Using Eqs. (3a) and (3b) the wave
function and the interaction potential V can be written,
respectively, in the forms

g'+ '(r) =—P'+ '(r )

= y q(„+, '(z)~n)e'
n, G

V= y ~n)V„'„,(z)(n'~e'
n, n', G

(7a)

(7b)

where each term in the sum of Eq. (7a) is referred to as a
channel, which we will denote by (n, o) If V.becomes
large compared with the vertical kinetic energy of the
projectile as it approaches the surface, then l('„a'(z) de-
cays rapidly to zero. We approximate this requirement
by the boundary condition that g'„G'(zo)=0 where zo is
the point below which the wave functions are essentially
zero. Substituting Eqs. (7a) and (7b) into the Schrodinger
equation (6) we get a close-coupling equation for g'„G'(z)
involving the potential matrix V„„.(z). The asymptotic
behavior of the incident plus scattered wave then be-
comes

with P being the projection of the momentum operator of
the projectile onto the surface. The time-independent
Schrodinger equation of the system takes the form

y(+) ( )

~ knO

knG
1/2

n,.O S „'G'„oe " (closed channel),

1/2

(e "G 5GO5„„—S„'G „' Oe
"

) (open channel),

as z goes to infinity, where uo(z)—:—f g u(~r —RG —rl~) d R,=1
G1

(10)

k„G —— (E —6„)—(K—Q„+Ca)$2

If knG & 0, we write knG = —~„G with ~„~ & 0.
The coupled difFerential equations are difficult to solve

numerically and we introduce an approximation based on
the two-potential formalism. We write V =uo(z)+ V
where V—:V —uo(z) and is expected to be small com-
pared with uo(z). In our calculation uo(z) is chosen to be
the laterally averaged potential (see Sec. III C)

which satisfies the unperturbed Schrodinger equation

+H +uo(z) X~ G(r)=EXK+„G(r) (12)

where the integration is over the unit cell (u.c.). For each
channel we consider the wave function distorted by uo(z)
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with the boundary condition y„'g+'(zo) =0. Then g„'g+'(z)
has the asymptotic behaviors

go{+ )(z)
e " —s„'g 'e " (open channel)

e " —s '„g'e " (closed channel),
(13)

(+) 215 6where s„'G'=e " with 5„G being the phase shift from
the potential Uo(z). Also we define the wave function

XK „g(r )
—=y„'g '(z) l)i )e

with g„'g '(z) :=y„'g+"(z) so that it satisfies Eq. (12) and
has the asymptotic behavior with incoming scattered
waves. For the channel (n;, 0) we have k„o= —k;, )0

?

and for (n&, Cx&) we have k„g =kI, from the conserva-"f
tion of the parallel crystal momentum. For the open
channel we choose k&, )0 so that kn G =k&, . Thenf f
close-coupling equations mentioned before can be
transformed to an integral equation. Combining the
asymptotic behavior given by Eq. (8) and the integral
equation, we have the following expression of the scatter-
ing matrix:

fi(k g k o)'iL '"f f
nf Gf n,.O

(14)

The transition matrix is defined by

~'(k„, k„,)'"
nf Gf, n. O iMI. nf Gf, n,.O (15)

eK, ;0(r) +K, ;0(r)

In the distorted-wave Born approximation (DWBA), we
set

~ dRI=p; v; d0&,
f

(21)

where I is the number of particles entering the detector
per unit time, p; is the number density of the incident
beam, v; is the speed of the incident particles, and dAI
the differential solid angle in the direction of the detector.
For projectiles satisfying the momentum conservation

and therefore

"d.y'„'-, )*(z)V „'„(z)y'„',+)(z),f f' ' L p f f f' (17)

K~ —K; =+Q+Cx~

and the energy conservation

E? E; = + fico, ( Q—),

(22a)

(22b)

where

V „„. (z)—:V„„(z)—Uo(z)5„„.5gg (18)

the thermally averaged differential reflection coefficient
for the one-phonon transition can be written as

for n&An;. The initial and the final states are open chan-
nels.

dR
dA~

ML 2 k ( I Tn g, n. OI ?'

2)rh' Ik;, I
I

1 (fi/2E? )Vrco,—(Q) K~I

C. Application to one-phonon transition

The q-phonon transition between the initial and the
final phonon state In; ) and InI ) is in general defined
such that their occupation numbers n; and n& satis-

Q', s' Q', s'

fy

y In~ n, I=—q .
)$

(19)

This includes any changes of the occupation numbers in
every mode (Q', s') of In; ) and In&). We consider one-
phonon transitions in mode (Q, s) between In; ) and In&).
Then from Eq. (19) with q= 1

n~ —n,, =+$qq, $„, .
7 7

(20)

We use the upper sign to denote phonon emission and the
lower sign phonon annihilation. In our formulation only
the initial and the final states are physically observable.
We include only transitions defined in the above so that
for either phonon emission or annihilation the final pho-
non state is uniquely determined, once the initial phonon
state is specified. The differntial reflection coefficient is
defined by

(23)
where the angled brackets denote the thermal average
over the initial phonon states. There is no sum over the
final phonon states in the above equation.

D. The thermally averaged transition matrix

We denote by u (r) the pairwise representation of the
interaction potential between the atomic projectile and
the atoms of the crystal. Assuming the sum of this pair-
wise form of interaction over the atoms in the crystal
provides an adequate description of the realistic system,
we can write the interaction potential between the projec-
tile and the surface as

V= V(r, u'(Rg))= g u Ir —Rg —r) —u'(Rg)] . (24)
G, l

To carry out numerical calculation we outline the steps
and the approximations used to obtain ( I T„g „oI )? forf f) "i
the one-phonon transition. We expand u (r) in the
Fourier series

u (r) = g u), e'"' .
1

k

Taking into account Eqs. (24) and (1) we have
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= 1V„„(z)= 3 g uk exp[i [k,z+(Q„—Q„).RG.—kG rI]I n exp+ ( —aalu, +a*a&, ) n'
a, r, a, Q, s

where kG:—k, z+G+Q„.—Q„and
1/2

k e'*(Q)e
2Nco, (Q)

(26)

(27)

1a+a ~ a r~~ ~~
For convenience we denote the mode (Q, s) by g. Using the Baker-Hausdorff identity e =e e e, we have

(n«~e
-« '«~n«) =e —

~

~'~' y (n«~(at«)'(a«)j~n«& .
j1

i, j=O

Therefore, the potential matrix element can be written as
I

1
1/2

l(k z —kG ~ z&) ~n
—g

~

max( n«, n «)!V„„(z)= gu e ' ' + y
min( n «, n «)!

(28)

«

min(n«, n«)! ( 1)j~a~2J

j![min( n «, n «) —j]! ( n « n« ~

—+j)!
(29)

where

2', (Q)

e,'*(Q), n«) n«
kG-

e, (Q), n«&n«
(30)

l

L 3 gk, e,"(Q)u,. ~
f

The products are taken over all modes in the first Brillouin zone. For one-phonon transition we need only V„„(z)f' i

with Eq. (20) satisfied. Then Q„—Q„=+ Q which is limited to the length of the first Brillouin zone at most. If G& isf i

large, then uk and thus V„„(z)will be small. We consider scattering which does not involve large G/. In addition,
Gf nf, n.

if co, (Q) is not close to zero and uk decreases fast enough to allow early truncation of the sum over k„ then ~a~ is of
Gf

the order of 1/N «1. Moreover, if the average occupation numbers (n«)T are not large at the temperatures con-
sidered we approximate 1+x + . by e" for x~ ((1 in the sum over j in Eq. (29) for small ~a~ . Then for one-phonon
emission between

~ n; ) and n& ) we obtain

G
A'N(n;q, +1) 1/2

i (k z —kG 1
—Wl(kG

V„~„(z)=- e (31)f' i 2COz

where

(n;O, + —,
' )A'

Q, s
(32)

with kG =k,z+G& —Q=k, z+KI —K;. As one can see W'i(kG ) depends on the phonon state ~n,.&, ). For each 1 inf Z i Gf
Eq. (31) the factor exp(n;&, a~ /2) with a corresponding to the transition mode (Q, s) has been approximated by unity
due to the smallness of ~a . The potential matrix element for one-phonon annihilation can be obtained simply by
changing n;O, +1 to n;O, and e,*(Q) to e,'(Q) with kG =k,z+G&+Q where G&=KI —K; —Q. The factor

2
f

exp[(n;O, + 1) a
~ /2] is taken to be unity.

Assuming PA'co, (Q) ))
~
a~ (P—= 1/k~ T where k~ is the Boltzmann constant) one can show that

—
Wi (kg ) —

WI (kg ) —( WI, (kg )) T
—( WI(kg )) T

((n, O, +1)e ~ e ~ ) =T((n, O) T+1)e r e (33)

By substituting the potential matrix element Eq. (31) into Eq. (17) and noting that the wave function and kG are in-f
dependent of the phonon occupation numbers, the thermally averaged transition matrix element can be written as

f d. X...,*(z)X.;( )
+1)

S

kg 'rI ) ~ WI(kg
2

X f dk, g kG .e,*(Q)uk e ~ e
OO

1
f Gf

(34)
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where we have made the substitution gk ~(L/2~) f" dk„and
z

1
lQ, s T @geo (Q)

e ' —1

is the Bose-Einstein distribution for the mode (Q,s). The exponential factor

exp[ —( Wl(kG ))T]=exp[ i (k—G e'(Q)) T]=expI —
—,'([kG e', (Q) j ) T] (36)

can be interpreted as the square root of the Debye-Wailer factor of the system for one-phonon transitions containing the
integration variable k, . We write in the form of a second-order polynomial in k,

where AK =—Kf —K; and

&nQ, &T+ —,
''

Ie,', (Q)l',
~s

&nQ, &T+-,'
[Re[e,', (Q)]Re[e,' (Q)]+Im[e,', (Q)]lm[e,'„(Q)j],

Q, s s

(nQ, ) T+ —,
'

I Re[e,', (Q) ]Re[e,' (Q) ]+1m[@,', (Q) ]Im[e,'~(Q) ]j,~s

&nQ, &T+ —,
'' I.,'.(Q)l',

~s

(nQ, ) T+ —,
'

IRe[e,' (Q)]Re[e,' (Q)]+Im[e',„(Q)]lm[e,' (Q)] j,
Q, s s

&nQ, )T+ —,
'

I e,'y(Q) I'
~s

A'(T) —=
2X Q,

B (T):1

B,'( T)—:—g1V Q,

CI (T)=
2X Q,

C'(T) —=—
2

C~(T) —=

Q, s

( Wi(kG ))I= A (T)k, +[BI(T)bK„+B2(T)bsK ]k, +CI(T)(bK„) +C2(T)bK bK +C'3(T)(bsK )f (37)

(3g)

We will refer to these temperature-dependent coefficients as the Debye-Wailer coefficients. Then the integration over k,
in Eq. (34) can be done analytically and the thermally averaged one-phonon-emission T-matrix element between states
satisfying conservation of parallel crystal momentum can be written as

Nfi («Q, .&7+1
(39)

with

A = pe 'exp[ —CI(T)(bK ) —C2(T)bK bK~ —C3(T)(bK ) ]
l

X exp
[Bi(T)bK„+B2(T)bK ]

4A'(T) A (T)

(z r„—z')—
X f "dzg„' G'*(z)g„'o '(z) f dz'exp

BI (T)bsK +B2(T)b,K
X exp i — (z r&,

—z') uK(z')—
2A (T)

X [ B(T)bK B(T—)bK +i(z —r —z—')]I I e,',*(Q)
1 x 2 g Iz

2A I( T)
+bK e *(Q)S

2

where u~K(z) is the two-dimensional Fourier transform of u (r) =u (R,z),

u, „(z)=—f u (R,z)e '~~ "d'R .
whole surface

(41)
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We see that (n, &, ) T is not the only temperature-dependent factor in the T-matrix element. For one-phonon annihila-
tion, the T-matrix element is obtained by replacing ( n;&, )T+ 1 by ( n;&, ) T and e, (Q) by E(Q').

E. Comment on the one-phonon transition

In the case of a three-dimensional bulk crystal the one-phonon transition has been studied by truncating the interac-
tion potential between the incident particle and the atoms in the crystal to the first order of the displacement vectors.
We consider similar truncation in our atom-surface case. The term u [r—RG —

r&
—u (RG)] in Eq. (24) can be expanded

in a series of u'(RG ). If the temperature is not too high we need only to keep up to the first-order term of u'(RG ). This
is equivalent to expanding the exponentials in the Fourier series Eq. (25) and keeping only up to the first-order term of
u'(RG ). Using the V truncated at the first order of u'(RG ) the potential matrix element V„„(z)becomes the same as in

Eq. (26) except that the factor ( n
~ exp[ g&, (

—aa &,+a'a &, ) ] ~
n ' ) is replaced by

ikG
i k G

—( n
~

u'( RG ) ~
n ' ) =-

2co,

1/2

[(n~aq, ~n'),e'(Q)e +(n~a&, tn')e,'*(Q)e G
] . (42)

The matrix element (n a&, ~n') can be nonzero only if n and n' satisfy n&, . n&. , =——5qq.5„ for a particular mode
(Q, s). Similarly (n~a&, ~n') can be nonzero only if n&, n&, =—5qq5„ for a particular (Q,s). In either case this is
the only nonzero term in the sum over (Q, s). Setting n =nI, n'=n;, and G=GI, we see that the potential matrix ele-

ment V„„(z)can be nonzero only if ~n& ) and
~ n; ) satisfy the one-phonon transition Eq. (20). If there were no higher-f' i

order terms of u'(RG) other than the first, then there could be no multiphonon processes. However, the reverse is not
true. Higher-order terms of u (RG ) can yield one-phonon processes. We can see this by writing V„„(z)with the trun-f' i

cated Vin the form

GV„~„(z)= g u„ei(k z —kG -rl ]

( i)—
2NÃ0, (Q)

e,'*(Q)(n;&, + 1)' (emission)
kG .

f e(Q)(n;&, )' (annihilation), (43)

and comparing it with the "complete" potential matrix
element given by Eq. (29), where the same n;, n&, and G&,
for one-phonon transitions are substituted. The only
difference between these two potential matrix elements is
that the last product in Eq. (29) is absent. This product
represents higher-order interactions of u'(RG) in V for
one-phonon transitions. The approximation made in Sec.
II D on the sum over j in Eq. (27) does contain informa-
tion from u'(RG) of orders higher than the first. From
this factor we also see that if V contains u'(RG) only up
to the first order, there would be no Debye-Wailer factor
in Eq. (31). The Debye-Wailer factor results from an ap-
proximation of higher-order interactions of one-phonon
processes.

III. CALCULATIONS AND RESULTS

A. Surface lattice vibration of the crystal

To obtain the dispersion relation and the polarization
vectors we approximate the semi-infinite crystal by a slab
of 80 layers. Since the computer time required to diago-
nalize the dynamical matrix increases rapidly with the
number of layers and a large number of dynamical ma-
trices needs to be diagonalized in the Debye-Wailer
coefficients given by Eq. (38), an 80-layer slab is a reason-
able choice. For the Cu(111) surface, we choose a simple
model of nearest-neighbor interaction between crystal
atoms and neglect surface relaxation and reconstruction.
We further assume that the pair potential is minimum

when the distance between the two atoms is equal to the
nearest-neighbor separation. Due to the existence of the
surface, the force constant between the atoms on the two
surfaces of the slab is not the same as that in the bulk.
For the intralayer surface force constant k, we adopt the
value obtained by Mohamed et al. , k, =0.85ko where
ko=2. 49X10 dyn/cm is the bulk force constant. The
phonon wave vectors under consideration vary from the
I point along the ( 110) direction in the two-dimensional
first Brillouin zone. The surface and the direction are il-
lustrated in Fig. 2.

Since the dispersion relations are intimately related to
the differential reAection coefficient of the phonon transi-
tion, we examine their behavior obtained from our model.
Figure 3 shows the lowest three dispersion curves for
Cu(111) from Q=0.05 to 0.60 A ' along the (110)
direction. The lowest two dispersion curves are so close
that they are nearly degenerate except near the origin.
The corresponding polarization vectors e', (Q) and ez(Q)
correspond to the antisymmetric and symmetric plate
modes, respectively, in the continuum slab dynamics.
The third lowest dispersion curve lies some distance away
above the first two and does not mix with them. If the
number of layers is increased, it is found that the splitting
of the lowest two dispersion curves decreases. For a
semi-infinite crystal, the lowest dispersion curve is ex-
pected to be doubly degenerate for all Q. For a slab of 80
layers, since the lowest two dispersion curves are nearly
degenerate, their contributions to the difFerential
reAection coefficients can be treated as additive.
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reAection coefficient. Since the lowest two modes are
nearly degenerate, we define

(44)

where on the right-hand side the polarization vectors are
normalized according to Eq. (2) and ez(Q) is multiplied
by a phase factor so that the phase of the complex num-
ber ez, (Q) is the same as the phase of e",,(Q). In our case
we found that for each l in the upper half slab e'„(Q) and
ez, (Q) then become parallel in the complex plane and in
the lower half slab antiparallel. The corresponding pho-
non frequencies are approximated by the averages of the
lowest two frequencies. e+(Q) are then regarded as de-
generate eigenvectors of the dynamical matrix with these
phonon frequencies as eigenvalues in the region of Q
where the splitting is negligible. For Q(0.2 A, which
is within the range of splitting of the slab modes, this
mapping is considered to be an approximation. We will
refer to the phonon transition in the mapped modes by
simply specifying the values of Q. In Fig. 4(a) we plot
~e'+, (Q)~ against the layer index l. We see that ~e+, (Q)~
decreases as the depth is increased. For larger Q the ex-
ponential decay is more obvious and faster. This is the
Rayleigh mode for the top surface. ~e', (Q)~ is the "mir-
ror image" of

~
e'+, (Q) ~

about the center plane of the slab,
i.e., it is the Rayleigh mode attached to the other surface
and therefore is negligible for the first few layers of the
top surface.

Since the z component of the polarization vector con-
tributes differently from the x and y components to the
scattering refiection coefficient, we also plot in Fig. 4(b)
~e+, (Q)~ as a function of Q for the first five layers. The
behavior of ~e'+, (Q)~ on the surface is to be compared
with the linear behavior obtained from the continuum
model that treats the crystal as semi-infinite and is valid
in the long-wavelength limit. The derivation of ~e+, (Q) ~

from linearity is due to the finite thickness of the crystal
that we took. We tested a 200-layer slab and found that
e+, (Q) ~

approaches linear form. We also note that the
orthonormality condition is always satisfied in our
discrete-lattice calculation while in the continuum model
it is not considered.

B. The Debye-&aller coem[cients

The sums in the expression of the Debye-Wailer
coefficients given by Eq. (38) are to be taken over all
modes in the first Brillouin zone. It can be shown that in
the harmonic approximation for the surface the eigenval-
ue M„co,(Q) =0 is threefold degenerate at I . We believe
that in a real crystal where anharmonic terms exist,
co, (Q) does not decrease to zero at Q=O. Thus we ex-
clude the co, (Q) =0 points in order to approximate a real
crystal.

Through the boundary condition the number of the
unit cells X determines the number of Q points in the first
Brillouin zone and the proximity of some of these points
to I. Numerically these may affect the values of the
Debye-Wailer coefficients. We examine how to choose a
reasonable length for the large primitive cell and how to

carry out the summations in order to evaluate the
Debye-Wailer coefficients. For a microscopically large
crystal with perfect two-dimensional translational sym-
metry, a very large number of Q points must be summed
over. Since for small Q the value of co, (Q) may approach
zero and some co, (Q) has the form co,(Q)=cQ+
along a certain direction, we find the Debye-Wailer
coefficients diverge as Q~0. Therefore if we replace the
summation over Q in Eq. (38) by integration, we need to
know where to truncate the integral near the origin. This
truncating range will be crucial; yet it is unknown. We
found that for 80 layers ~e„(Q)~ of the lowest three
modes is not zero at the origin, and so the divergence is
certain to happen. On the other hand, we found numeri-
cally that the polarization vectors, when normalized by
Eq. (2), decrease as the number of layers is increased. If
this number is large, the polarization vectors may be
compatible with the phonon frequencies at small Q.
Then the contribution of terms near the origin in the sum
may not be important. In this respect, the Debye-Wailer
coefficients may remain some finite values which are not
large even in the harmonic approximation, as long as we
remove those singular points. However, the decrease in
the value of the polarization vectors is too slow and the
large dimension of the dynamical matrix makes the nu-
merical calculation very difficult. Therefore we cannot
replace summation by integration in evaluating the
Debye-Wailer coefficients.

A "perfect" real crystal is never periodic over an
infinite size. The "Oat" area is a few hundred angstroms
in dimension. We assume a large square primitive cell on
the surface with cell length equal to 50 times the nearest-
neighbor distance (2.56 A). This choice avoids using the
unknown behavior of co, (Q) near I . The terms in the
sum in Eq. (38) are symmetrical about the origin. For the
cell length chosen above, a summation over about 1440 Q
points in half of the first Brillouin zone is calculated [i.e.,
the (3 X 80) X (3 X 80) dynamical matrix is diagonalized
about 1440 times]. The sum is also over all modes at
every Q. Then the result is multiplied by a factor of 2 us-
ing the symmetry of co, (Q) and e,'(Q) about the origin.
Finally terms corresponding to Q=O are added. Here we
used much more Q points than usual and expected to
obtain a better approximation. In all the sums the
co, (Q) =0 modes are excluded. The Debye-Wailer
coefficients are symmetrical about the central plane of the
slab crystal, but no more than five layers are needed for
evaluating the differential reAection coefficient. The ab-
solute values of the Debye-Wailer coefficients increase by
a factor of 3—4 as the temperature is raised from 60 to
300 K. This shows that the Debye-Wailer factor is more
important at higher temperatures. However, we found
that in general these coefficients are all small
[B', 2(T), C2(T)=10 and A'(T), C', i(T)=10 ]. This
implies that the effect of the Debye-Wailer factor on the
reflection coefficient is small in the temperature range
60—300 K considered here. The smallness of the
coefficient A (T) is worth some attention. In Eq. (40) the
small A (T) gives the z component of the polarization
vector a heavy weight; this enhances the dominance of
e„(Q) over other components.
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C. The interaction potentials

(z)erG. R

G
(45)

The Fourier components UG(z) can be expressed in terms
of u (r) as

vG(z)= —f g u(~r —RG. —rI~) e ' d RS U. C.
7

1 —IG R)
e 'uG z —rI,

I

(46)

where S is the area of the unit cell. The uG(z) can be
changed to a., one-dimensional integral

uG(z)=2m. j dR u [(R +z )' ]Jo(GR)R (47)

where Jo(x) is the zeroth-order Bessel function of the
first kind. In our numerical calculation we choose to use
the pair interaction potential obtained by Eichenauer
et at. 4'

D. The kinematic conditions

We describe the relations among the energies and mo-
menta for calculating the reAection coefficient. We con-
sider only the Gf =0 case when no diffraction takes
place. In addition, we choose k;, (0 and kf, )0. The in-
cident energy E; is fixed so is the sum of the incident an-
gle 0; and the outgoing angle Of. The phonon wave vec-
tor Q and the direction of K; are input variables. From
Eqs. (22a) and (22b) the final energy of the projectile Ef is
obtained to calculate K;, which in turn is used to calcu-
late all components of the momenta of the projectile k; f.
If Ef ~ 0 or if there is no solution for K, , no phonon tran-
sition in the mode Q corresponding to scattered final

ikf .r
states e nf ) occurs because the conservation laws
and/or the scattering conditions cannot be satisfied. This
procedure is used for both phonon emission and annihila-
tion processes.

We choose the incident energy E; at 9.15 meV and
0;+Of fixed at 90' to be consistent with the experimental
conditions. The phonon wave vector Q of the transi-
tion is in the opposite direction to K; corresponding to
in-plane scattering. Since the phonon wave vectors are
input, we can select the modes of the transition. To
stimulate phonon transition with Q varying from 0.05 to
0.60 A along the (110) direction, the incident angle 8;
increases from about 46' to 58 for phonon annihilation
process and decreases from 43' to 17 for phonon emis-
sion process. The corresponding energy range of E;,
varies from 4.34 to 2.55 meV for phonon annihilation and
from 4.83 to 8.37 meV for phonon emission. The corre-
sponding values for Ef, vary from 5.17 to 11.8 meV and

Based on the pair potential u (r)=u (r) between the
projectile and a crystal atom, the interaction potential be-
tween the projectiles and a rigid (static) crystal can be ex-
panded in a two-dimensional Fourier series,

U(r)= V(r, u'(RG)=0) = g u (~r —RG —rI ~)

G, 1

from 4.00 to 0.163 meV, respectively. The outgoing pro-
jectile has higher Ef, if it annihilates a phonon rather
than emits one. Here Ef, is not necessarily always larger
than the incident energy E; even in the phonon annihila-
tion case, since the phonon energy can be transferred to
the projectile in the horizontal direction and contributes
to the momentum in that direction.

E. The difl'erential reflection coe%cient
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FIG. 5. The differential reAection coefficient corresponding
to e'+(Q) (the upper branches) and e' (Q) (the lower branches)
along the (110) direction.

In this section, we present and analyze the calculated
differential reAection coefficient based on the results of
the previous sections and on Eqs. (23), (39), and (40). In
our calculation, the difFerence of the phonon frequencies
between the second and the third lowest modes is larger
than the value that can usually be resolved by the conser-
vation laws and so we do not include the differential
reAection coefficient correspnding to the third lowest
mode. The differential reAection coefFicient with the pho-
non transition mode Q for both emission and annihilation
are calculated as a function of the phonon wave vectors
extending from I in the first Brillouin zone along the
(110) direction, as in the case of co, (Q). Figure 5 shows
the calculated differential reAection coefFicient. We use
the convention that negative Q represents phonon annihi-
lation in the mode Q and positive Q phonon emission in
the same mode. The crystal temperature is chosen at 300
K. The unit of the differential reAection coefficient is ar-
bitrary in the sense that a constant prefactor is dropped
in the calculation. On a logarithmic scale, this allows an
arbitrary upward or downward translation of the curves
on the graph. In the figure the upper two branches corre-
spond to the surface modes associated with the polariza-
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tion vectors e+(Q) and the lower two correspond to
those associated with e' (Q). The lower branches are
small compared with the upper branches and can be
neglected. The curves in each branch show the
differential reflection coefficient containing the sum over I
in Eq. (40) down to the first, the second, . . . , the fifth
layer. Thus they show different degree of perturbation
due to the corrugation and the thermal motion in the first
few layers. In the same figure the rigid potential Uo(z)
used to calculate the wave functions includes all the lay-
ers. The shape of the differential reflection coefficient is
in good agreement with experiment. We note that since
the transformation from eI(Q), ez(Q) to e'+(Q), e' (Q) is
unitary as seen in Eq. (44), the reflection coefficient
summed over s= 1,2 is the same as that summed over the
two Rayleigh modes. Since the lowest two dispersion
curves are (nearly) degenerate, we can see from the con-
servation laws Eqs. (22a) and (22b) that for two modes
with the same Q, the solutions of the momenta of the
projectile k; f are identical. We expect that from the
measurement of the initial and the final energies and mo-
menta of the projectile one cannot distinguish these two
modes. The measured quantity is the totality of the cor-
responding differential reflection coefficients. Therefore
we should add the differential reflection coefficient of the
two modes and treat them as a whole. However, since
e' (Q) is attached to the other surface, this summation
becomes unnecessary.

We study the multiplicative factor A in the T-matrix
element defined in Eq. (40). In Fig. 6(a) we plot A on a
linear scale corresponding to the curves for e+(Q) in Fig.
5 against phonon wave vectors. We see that the interac-
tion on the surface is most important. This factor de-
creases when the vibrational motion of the atoms in the
second layer is added to that of the first. Vibrations of
deeper layers do not change this summation significantly
although they reduce it further. Overall the interference
from the vibration of more than one layer leads to a
reduction in A. This can be interpreted by the fact that
the motion of the crystal atoms in deep layers in the in-
teraction with the projectile allows more degrees of free-
dom to respond to the pair potential and therefore weak-
ens the rigid interaction. For ~Q~ close to 0.60 A the
contribution from the second and deeper layers becomes
very small. Thus deeper layers contribute less and a pro-
jectile with parallel momentum transfer greater than
about 0.60 A ' can barely affect the second layer.

We examine the shape of the curves in Fig. 5. For
comparison we also plot A on a logarithmic scale in Fig.
6(b). The differential reflection coefficient becomes large
when ~Q~ approaches the origin, since the phonon fre-
quency approaches zero while A approaches finite values.
As pointed out before, co, (Q) does not approach zero in a
real crystal. Also if there is a large number of layers, the
normalized polarization vectors for each layer may be
small so that ~e,'„~,(Q)~/co, (Q) remains finite. Thus the
peak at small ~Q should be narrowed. The two tails of
the reflection coefficient decrease faster than those of A.
This is attributed to the increasing co, (Q) in Eq. (39) and
indicates that it is more difficult to create or annihilate
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FIG. 6. (a) The factor A in Eq. (40) corresponding to the
upper branches of the differential reflection coefficient in Fig. 5.
(b) The factor A on the logarithmic scale.

phonons with higher frequencies. From the Bose-
Einstein distribution, lower-frequency phonons are more
abundant and therefore increase the chance for transi-
tions of long-wavelength phonons.

The Debye-Wailer coefficients are small for all the tem-
peratures so the Debye-Wailer factor is expected to have
a small effect on the differential reflection coefficient. To
examine this, we exclude the factor I/Iexp[pIIf~, (Q)]—1] from the differential reflection coefficient for the
phonon annihilation branch and I/Iexp[pIIIco, (Q)]—I ]
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+ 1 for the phonon emission branch and plot the remain-
ing parts for temperatures between 60 and 300 K. The
results are shown in Fig. 7, where the sum over the first
five layers is used. We find that there is a 5%%uo —10%%u~ in-
crease for different Q. Since the Debye-Wailer
coefficients were obtained by making an approximation to
the higher-order terms of the crystal-atom displacements
in the interaction potential V (see the discussion in Sec.
II E), this increase shows roughly how the displacements
contribute to the interaction between the helium atom
and the crystal as the temperature is increased.

We examine the asymmetry of the differential
reAection coefficient on the two sides of the origin in Fig.
5. From Fig. 6(a) we see that A is larger for annihilation
at any ~Q ~

than for emission at the same ~Q~. For Gf =0
we observe the fact that the product of factors involving
b, K in QI . . in Eq. (40) for phonon emission with wave
vector Q is equal to the negative complex conjugate of
that for phonon annihilation with the same Q. Thus the
difference in A between the two branches is solely due to
the wave functions. We note that these wave functions
are different due to the kinematic conditions. The term"+1"in "(n;&, ) T+ 1" in Eq. (39) is due to the fact that
for the emission process the final phonon state has one
phonon more than the initial state in the transition mode.
This accounts for the emission of phonons at low temper-
ature. To see which of the above two competing factors
is stronger we plot in Fig. 8 ( ~T„O „o~ )z. at 60, 140,

220, and 300 K., The sum over I is down to the fifth lay-
er. Both branches in the figure are lowered as the tem-
perature is decreased. This is mainly due to the Bose-
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FIG. 8. (~T„O„O~ )r. The temperatures are at 60, 140, 220,f i

and 300 K. The higher curves correspond to higher tempera-
tures.

Einstein distribution of the phonons. The shape of the
curves remains the same as the temperature is changed.
We see that the kinematic conditions are dominant at
high temperatures. The annihilation curve drops faster
than the emission one and this dominance is suppressed
because at low temperature there are not many phonons
to be annihilated. This has been experimentally observed
for the system He-Cu(100) with T=16 K and E, =22.6
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FIG. 10. The differential reAection coefticient at 60, 140, 220,
and 300 K. The higher curves correspond to higher ternpera-
tures.

meV. The finite values of (
~ T„o„0 ) T for the emissionf ' i

branch at low temperature indicate that phonons can be
created at any temperature regardless of how many there
may be initially in thermal equilibrium.

There are other factors that affect the differential
reflection coefticient. The factor I' —= 1/ 1 — . in Eq.
(23) is due to the conservation laws. If its denominator is
close to zero the differential reAection coefficient will be
peaked at the corresponding Q. Figure 9 shows that F
for phonon annihilation is always larger than that for
phonon emission at the same ~Q~. The density of the final
states of the outgoing atom allows more states for larger
outgoing energies and therefore a larger chance for pho-
non annihilation. The factor I/~k, , ~

decreases as Q goes
from the phonon annihilation branch to the phonon emis-
sion branch. Both factors also depend on the kinematic
conditions. So the conservation laws for a given incident
energy tend to annihilate phonons rather than to create
them under the kinematic conditions described in Sec.
III D. We note that the functions 3, I", the density of the
final states of the projectile, and k,, are independent of
the temperature. Overall the "+1" term in
"(n;&, ) T+1" in Eq. (39) is the only factor that favors
phonon emission. In Fig. 10 we show the differential
reflection coefFicient at 60, 140, 220, and 300 K. Compar-
ing with Fig. 8, we see that the phonon annihilation
branch is very much enhanced by I', the density of the
final states, and k,, From Fig. 10 we can infer that if the
crystal is below —100 K, i.e., the temperature of a
volume of helium gas with average kinetic energy equal
to the incident energy of the scattering, the phonon an-
nihilation branch would still be much higher than the
phonon emission branch.

IV. SUMMARY

Based on the DWBA scheme within the T-matrix for-
mulation, we have computed He-Cu(111) one-phonon
transition reAection coefficient. This was derived from a
time-independent ab initio scattering theory in which the
interaction potential between the projectile and the crys-
tal atoms can be an arbitrarily input and the one-phonon
transition is treated more physically. With approxima-
tions the T-matrix elements for one-phonon transitions
are written in a form in which we introduced the inelastic
Debye-Wailer coefficients to describe the thermal motion
of the surface. Also we have examined the effect of trun-
cating the atom-surface potential to first order of the dis-
placements of the crystal atoms. We conclude that the
Debye-Wailer factor contains higher-order interactions.
The truncation can be used as an approximation to multi-
phonon scattering but does not represent the complete in-
teraction of one-phonon transitions.

We have calculated the lowest two dispersion curves
and the polarization vectors of Cu(111) in the long-
wavelength region (Q ~ 0.60 A ') along the ( 110) direc-
tion based on a model of an 80-layer slab with nearest-
neighbor interaction. The force constant on the surface
is taken to be 85% of that in the bulk. We find the
lowest two dispersion curves are nearly degenerate. The
corresponding plate modes are mapped onto the Rayleigh
modes employing a linear (unitary) transformation given
by Eq. (44). These modes show an exponential decay be-
havior into the slab. The squared absolute value of the
normal component of these modes is roughly linear with
respect to the length of the phonon wave vector.

The Debye-Wailer coefficients are calculated, assuming
the length of the "large primitive cell" to be 50 times the
nearest-neighbor distance. We have used discrete sum-
mation instead of continuous integration. We find the
values of these coefficients increase as the temperature is
raised. Their effects on the differential reAection
coefficient are small as the temperature of the surface is
changed.

The interaction potential between the projectile and
the surface is taken to be a sum of the pair interaction.
We have adopted the parameters of the He-Cu pair in-
teraction obtained by Eichenauer et al. The incident
energy of the He atom is chosen at 9.15 meV and the sur-
face temperature at 300 K. The scattering is in-plane and
the sum of the incident and the observing angle is fixed at
90 for the purpose of comparison with experiments in
Ref. 43.

We have presented the calculated results of the
differential reAection coefficient of inelastic scattering of
helium atoms from copper (111) surface. The one-
phonon transition is in the Rayleigh modes. The shape of
the differential reflection coefficient is in good agreement
with experiment. We find that the interaction of the
projectile with the surface layer is most important. When
the thermal motion of crystal atoms down to more layers
is included in the interaction with the projectile, the
differential reAection coefFicients reduce only slightly.
Further we find that the He atom with parallel momen-

0 ]turn transfer greater than about 0.60 A barely affects
the second layer. The peak in the differential reflection
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coefficient near Q=O is due to the singularity of the pho-
non frequency and may be narrowed if the number of lay-
ers of the slab model is increased. The decreasing tails
are partly due to the increasing phonon frequencies.

We have examined the temperature dependence of the
differential reflection coefficient due to the Debye-Wailer
coefficients. The contribution of Debye-Wailer coeffi-
cients corresponds to an increase of up to 10%%uo as T in-
creases from 60 to 300 K.

The asymmetry of the two branches of the sum over
layers for phonon emission and annihilation is solely due
to the wave functions in the normal process (Gf =0).
The emission process is favored by the phonon states.
The kinematic conditions governing the wave functions
suppress the phonon emission process at high tempera-
tures. At low temperature, the phonon annihilation pro-
cess is reduced due to the lack of phonons while the pho-
non emission process is always possible. The kinematic
conditions, together with the density of the Anal states
and k;„are independent of the temperature and favor
phonon annihilation. Due to the Bose-Einstein distribu-

tion the differential refIection coefficient decreases if the
surface temperature is lowered.

Compared to experiments, there are other contribu-
tions to the differential reAection coefficient correspond-
ing to the lowest dispersion curve, e.g. , the multiphonon
transition, closed-channel effect in phonon-mediated
selective adsorption and desorption, and transition in
higher modes involving the bulk band. These contribu-
tions may be small in general and would involve higher-
order approximations, which could be very complicated
for making theoretical estimates due to the large amount
of phonon channels involved. These problems are under
further investigation.
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