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Some published NMR spin-lattice relaxation data for H in ScH, metal solid solutions below 100
K [Lichty et al., Phys. Rev. B 39, 2012 (1989)] have been reinterpreted in terms of local tunneling
motion in two-well potentials rather than classical over-the-barrier hopping. The asymmetry A4 be-
tween the wells strongly influences the electron- and phonon-induced tunneling transition rates and
also the intensity of the relaxation in the two-level system. The fit to the data uses distributions of
A that broaden with increasing concentrations of H. For the local motion of H in Sc, we find the
barrier V;,/kp=3200 K, the ground-state tunnel splitting AE,/kgz~0.37 K, and coupling con-
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stants to electrons and phonons that have the same orders of magnitude as those for H in Nb.

I. INTRODUCTION

Barnes and co-workers!'2 have recently reported mea-
surements of hydrogen spin-lattice relaxation times T'; in
very pure scandium-hydrogen solid solutions ScH, with
x=0.57, 0.11, and 0.27 at several NMR frequencies w,
and at temperatures 7 from 6 to 625 K. After the Kor-
ringa relaxation, 7', 7=123 s K, induced by the conduc-
tion electron spins has been subtracted, two relaxation
rate maxima due to hydrogen motion stand out. (i) A
large maximum centered near 520 K can be ascribed! to
classical over-the-barrier hopping of H between well-
separated interstitial sites in the hcp Sc lattice, whereby
this motion gives the long-range diffusion. (ii) A second,
much weaker maximum 7'j;! near 60 K can be ascribed?
to local H motion between two closely spaced sites that
are arranged in pairs along the c axis.

The experimental data by Lichty et al. ,? partly repro-
duced in Fig. 1, show that the relaxation maximum near
60 K displays a behavior as a function of w, and T which
cannot be fitted by a Bloembergen, Purcell, and Pound
(BPP)-type formula’? T ;'ar/(1+w3r?) with a single
correlation time r=74exp(E, /kgT) for classical hopping
over a fixed barrier E,. Furthermore, one has to account
for the fact that the relaxation-rate maximum near 60 K
is anomalously small.

Lichty et al. fitted the 60-K relaxation peak by assum-
ing wide distributions of small activation energies E, for
the local motion, and with asymmetries 4 between the
potential wells in a site pair that would lead to depopula-
tion of the upper well. However, classical barriers with
E,/kp <1000 K are hard to reconcile with the greater H
oscillation energy from recent inelastic-neutron-
scattering experiments.’

In this paper we present an alternative interpretation
of the NMR results based on a detailed model for the
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FIG. 1. Spin-lattice relaxation rates T';;' of H in ScH, where
the Korringa contribution is subtracted. The symbols are T
as measured by Lichty er al. (Ref. 2) at wy/27=24 MHz (+),
40 MHz (x), and 90 MHz (@) for the concentrations x=0.27 (a),
and x=0.11 (b). The lines are the calculated fits from the pa-
rameters listed in Tables I and II, as described in the text.
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hopping and tunneling motions of H in Sc where we show
the observed relaxation rates can be explained quantita-
tively and consistently with a reasonable choice of param-
eters. The present reinterpretation of the data is justified
by the similarity between the low-temperature motion of
H in a two-well potential in Sc, and the tunneling of H in
the two-well potential near oxygen or nitrogen impurities
in niobium, a problem which has been investigated suc-
cessfully by inelastic neutron scattering* ¢ and other’ ~1°
methods.

The local motion of H in ScH, appears to be an excel-
lent model system for testing the theories of hydrogen
tunneling, for which several very different approaches
have been proposed in the literature even for the simplest
two-well system. Some theories of tunneling motion that
have been applied to H in Nb focus on self-trapping'!'!?
or strong-coupling!® effects. However, the most success-
ful approach®!° to this system appears to be the direct in-
teractions with electrons that have been used for two-
level tunneling systems'*!* in disordered metallic glasses.
For H in Sc we will use the two-level approach where the
transitions are made possible by the tunneling overlap of
the symmetrized wave functions and where the asym-
metry A between the wells can be very important for the
calculated rates. We will also include the related two-
phonon transition rates, which seem to explain'® the ordi-
nary diffusion of H in Nb, V, and Ta above 100 K.

II. STRUCTURE OF SCANDIUM
WITH DISSOLVED HYDROGEN

Scandium has the hexagonal cell shown in Fig. 2(a)
with dimensions a=3.31 A and ¢=5.27 A. The dissolved
hydrogen is believed to occupy tetrahedral (T') interstitial
sites that are arranged in pairs along the ¢ axes. Some
pairs of T sites A-B, C-D, and E-F in the a-c crystal plane
are shown in Fig. 2(b). The distance 4B between the
sites in a pair is only about ¢ /4=1.32 A, and the short-
range repulsion between the hydrogens therefore means
that an A-B pair of sites is very unlikely to contain two
H. One H in the A4-B site pair is expected to hop or tun-
nel rapidly between the 4 and B positions in a localized
motion. .

The distance BE to the nearest T site in another pair is
2.34 A. The hopping or tunneling between sites in
different pairs is therefore expected to be hindered by a
higher barrier than the motion within a pair. Hence such
motion will be much slower than the local motion, but
transitions to other pair sites are necessary for the long-
range H diffusion. It has been suggested that the
diffusion of H in the similar yttrium metal occurs by hops
via metastable octahedral (O) sites that have small proba-
bility for being populated. The shortest distance between
the T and O sites in Sc is 2.02 A, and the diffusion path
T-O-T may be easier for H than the direct 7-T transi-
tions.

There are forces between the hydrogens from the elec-
tronic clouds, from the shielded Coulomb interactions
and from the lattice deformations, that give asymmetries
A in the potentials between otherwise equivalent T wells.
The asymmetries influence the populations of the wells,
and as we will see, also the tunneling rates between the
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FIG. 2. (a) Hexagonal lattice of Sc (solid circles) showing the
location of the tetrahedral interstitial sites for H (solid trian-
gles). Sites A and B (and also C and D, etc.,) form a closely
spaced pair separated by about 0.25¢, but the ordering of H
below 160 K is assumed to be on pairs of sites like B and C. (b)
Cross section in the bc plane of the lattice showing both the
stable tetrahedral (solid triangles) and the metastable octahedral
(open circles) sites for H.

two wells in a close pair. Hence A is a very important
parameter in our theory, and there will be a distribution
Z(A) of A values between the wells in a given sample.

Blaschko et al.!” have shown with neutron diffraction
that the deuterons in ScD, tend to order in pairs of type
B-C in the c direction across the Sc atoms at 7 between
200 and 150 K. A similar ordering also occurs'® 2! in
the solutions LuD, and YD,. The ordering below 170 K
of the hydrogens in ScH, in pairs like B-C in Fig. 2(b) im-
plies an asymmetry A,/kg of more than 200 K between
the closely spaced sites 4 and B. This A, is large enough
to depopulate site 4 and effectively stop the local hydro-
gen A-B motion below 100 K. However, the ordering of
the H in pairs across the Sc is not complete and a small
fraction of the H remains unpaired, as shown by the
NMR relaxation at low temperatures.

Neutron diffraction indicates less order between hydro-
gens on neighboring ¢ axes despite the shorter distance
from the sites B to E than to C shown in Fig. 2(b), so the
contribution A, to the asymmetry between A4 and B
caused by a H sitting on E or equivalent sites, must be
smaller than 150 K. The various interactions between all
hydrogens contribute to the total symmetry 4 in a pair of
sites, and we will try to fit the NMR relaxation for H in
Sc below T=160 K with a T-independent multi-Gaussian
distribution of A4 values around maxima at £ A4, and
+4,
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Z(A)=(1/A4)27) 2 ((1—P)exp[ — (A — 4,)2/2 A3 ]+ (1—Plexp[ —(A+ 4,)*/2 43]
+Pexp[—(A4—A,)?/243]+Pexp[—(A+ 4,)2/243]} . (1)

Here the majority fraction P of the hydrogens are or-
dered in pairs B-C with average asymmetry A4;, and the
remaining unpaired fraction (1 —P) have values of A4 dis-
tributed around A4,. We assume for simplicity that the
distribution maxima for both the paired and the unpaired
hydrogens have the same widths 4,. This width is ex-
pected to increase with increasing H concentration. We
have written the distribution with peaks at + 4, and
+ A4, so that it is reasonably shaped near 4 =0 and is
normalized for positive values of A4, f 0 Z(A)dA=1.

III. THEORY OF TUNNELING

We give here a simple but general model for the basic
tunneling motions of hydrogen dissolved in metals, and
we apply it to H in Sc. We use the same approach as has
been used for two-level tunneling systems in disordered
glassy structures, but we can be more specific and assume
that the one-dimensional potentials between all well pairs
have essentially the same sinusoidal shape and height V.
Since the distance d between the wells and the mass m of
the tunneling particle are known, this model gives quanti-
tative numerical results for the H oscillation frequencies
and the tunnel splittings from only one adjustable param-
eter, V. The numbers and the resulting effects can then
be checked for consistency much better than in glasses
where the microscopic nature of the two-level systems is
poorly known. Other theories of tunneling will be con-
sidered only very briefly at the end of Sec. VI.

A. Tunneling eigenstates

We adapt!® the formulas obtained by Das?? for a tun-
neling particle in a sinusoidal periodic potential, to the
double well shown in Fig. 3. The oscillation energies of
the H in one of the wells are E, =a, —a, where

a,=(Vy/kH{Q2n+1Dk—[n*+(n+1)21/4+ -},
)

with k =(d /7#)(2mV)!/2 The tunnel splittings of the
oscillation states are

23nk(n —1/2)e —2k

AEq, =8V, (1+b, /k+c, /k?) . (3)

77.1 /2 n!
If the energy E, of the first excited state is known from
inelastic neutron scattering or otherwise, then V) is
determined from (2), and AE;, can be calculated from
(3). We use the bare mass m of the hydrogen isotopes in
(2) and (3), which seems to give correct results!® for H, D,
and T in Nb, Ta, and V. Thus, the effects of self-trapping
and of the lattice polaron are included in the effective po-
" tential ¥,. The coefficients b, and c, in (3) are small?? for
the lowest states. The approximation (3) breaks down for

—

the higher states near the top of the barrier. Further-
more, the assumption of a one-dimensional potential in-
troduces uncertainties in the calculations of effects that
involve the excited states.

The asymmetry A between the potentials in the two
wells will partly localize the H and its associated polaron
to the left (L) or right (R) well in symmetrized ground
eigenstates Vg, and W ,, that are split in energy by
AE,=[AE%,+ A?]'? with Wg, lowest. We have

Yeo=[(AE,+ 4 )/ZAEO]I/Z\I’RO

+[(AE,— 4)/2AE, V%Y, (4a)
and
VY, 0=[(AEq+ 4)/2AE,) %Y, ,
—[(AEy— A)/2AE ]V Wy, - (4b)

These eigenstates are shown schematically in Fig. 3. The
excited eigenstates Wg, and V¥ ,, are similarly partly lo-
calized and split by AE, =[AEZ, + 4%]'/2, as long as the
asymmetry is not so large that W, and ¥ 4, _;, perturb
each other significantly.

The asymmetry A is caused by the interactions with
neighboring hydrogens and perhaps with other impurities
and defects. It is not caused by the hydrogen self-
trapping, because this energy is the same whether the
particle is in the left or the right well. We assume that
some asymmetry up to A4 of order ¥V, /10 will not change

FIG. 3. Two-well potential with asymmetry 4 for H in Sc.
The symmetrized eigenstates are shown with heavy lines where
the H is likely to be in a state. Some two-phonon transitions via
virtual states (dash-dot levels) are indicated for (a) one absorbed
phonon with energy #w, and one emitted phonon with
(fiw+ AE,) and (b) two emitted phonons #w and (AE,—#iw).
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significantly the well shape that gives E, or the wave
function overlaps that give AE;,. We also assume that
the asymmetries over the well pairs will have the distribu-
tion form (1).

B. Direct tunneling transitions

Phonons and electrons will dynamically perturb the
potential in Fig. 3, and thus induce transitions between
Yo and W 4, by taking up the energy difference AE,.
The transitions shown schematically in Fig. 3 will clearly
take the H from one well to the other when the wave
functions are localized by 4 >AE,,. Motion between
Y and V¥ 4, is also possible via the excited states Wy,
and V¥ ,,. We will review the various transition processes
that are made possible for H by the tunneling and that
may contribute to the total transition rate between Wy,
and V¥ 44, and how they are expected to vary with temper-
ature T and asymmetry A.

The downward direct transition rate for a H in ¥ 4,4 go-
ing to Vg, caused by the free conduction electrons in a
normal metal, is'>

R, =m(K AEy /%) AEro/AEy)? /[1—exp(—AEy /kpT)]
(5)

where K is a dimensionless coupling factor that has to be
fitted by experiments. The asymmetry reduces the over-
lap between Wy, and W ,, and is responsible for the
reduction factor (AE;o/AE,)* in (5). The corresponding
upward rate R,; for a H in W, going to ¥ ,, is slower
than R,, by the Boltzmann factor exp(—AE,/kgT).
The rate (5) and its modification for superconducting
metals have been used'’ for two-level tunneling systems
in metallic glasses, and for H in the two-well potential
near O and N impurities in Nb where K ~0.06.%1°

The downward rate for direct one-phonon transitions
caused by a Debye spectrum of phonons has been used
for two-level tunneling systems in insulating glasses'>

R, =~F,, AEfy AE,/[1—exp(—AE,/kpT)] . (6)

The coefficient F,=(Hgog —Hoo, )X(2v, > +v, %) /8mphi*
depends upon the coupling (Hyyg —Hyo; )* to the pho-
nons, the density p of the metal, and a proper average
over the transverse and lontitudinal velocities of sound v,
and v, but it is independent of T"and A. The matrix ele-
ments of the phonon deformation potential of the ground
states in the right or left well are formally

Hyp, = ( Wor,L 'WCWQR,L )
= [ Wip L (NF (1) Wog , (r)dr . 7

They are caused by the phonon modulations of the wells,
while the modulation of the barrier and thus the tunnel
splitting AE,, will have a smaller effect. Note that the
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dynamic deformations of the potential by the phonons
must be different in the two wells in order to give finite
F,, and R,, and a similar difference in perturbations is
needed for a finite coupling K to the electrons in (5).

The density of phonon modes in the Debye model is
proportional to ®? up to the maximum frequency wj,.
This » dependence counteracts the smaller overlap for
larger values of 4 which implies larger transition ener-
gies, so the one-phonon rate (6) is nearly independent of
A up to kzT. The electron rate R, may therefore dom-
inate in the total rate at small values of 4, while R, may
be faster for large A. The Debye approximation in (6) is
probably good for #w /kyz <150 K in Sc,? but it fails to-
ward wp.

C. Two-phonon and multiphonon transitions

Above 20 K the two-phonon tunneling transitions will
contribute to the total rate. Two-phonon mechanisms
have been treated theoretically in electron®* and nuclear®
spin-lattice relaxation, but they have seldom?® been dis-
cussed in the context of two-level tunneling systems,
despite their importance there. Two-phonon processes
will usually have a T’ dependence for low temperatures,
which decreases to a T? dependence for temperatures
above 6,. But transitions with a 7> dependence are also
possible’” when there is a matrix element connecting ¥y,
and ¥ ,,, and this is also the condition for the one-
phonon processes.

The two-phonon transitions where one phonon i is ab-
sorbed and a phonon j of higher energy is emitted, is
shown as the case (a) in Fig. 3, and this rate is

Ropiay =120, 340,92 /87%0%) [M2D,do . (8)

Here the second-order matrix element connecting the
states Wgoand W  is

(Wol HENW 40 (W 4ol HE W 1)
M,=
fiw
+ <\PSOI7{JC|\IJSO><WSO|?{IC|\I/Ao>
fio+AE,
N (Wgol HE W 4 AW 4y | FFL W 40)
E,—#o—AE,/2+AE, /2
i (Wol HLIWs YW [ H W 40
E,—#o—AE,/2—AE, /2

9
It can be formally written out in terms of Hyyg ; from
(7), or in terms of
Hoipr = Wor L1 #c|¥ig,)
= [WEp L(DFH (0¥, g (1)dr (10)

for virtual excitations to E,. The Debye densities of pho-
non states, the deformations by the phonons and their
thermal probabilities, are contained in the factor
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D — (0+AE, /%) o’ "
¢ [1—exp{ —(io+AEy)/kp T} |[exp(#iw/kpT)—1] (11

The T7 two-phonon rate is the result when the terms with E| >>#w as the intermediate states dominate in (9). This
process have some terms'® proportional to (AE;, /AE,)? that decrease with increasing A. But for larger values of 4 we
find the rates

- 2
Ropra)y =FopAET fo

op—AEy/# . 7
(E,—AE,/2—%w) "D,do—aT’ for small AE,<kzT and T—O . (12)

Here F,, =H3, H3r(2v, >+v,%)?/32mp? is a proper average over all phonons, and R;p(70)y vanishes for
AE,>fiwp. The integral can be calculated numerically with F,,(;) as a coefficient to be determined by the fitting to ex-
perimental data. The variation of R,,7,, with A4 is small. The averaging involved in the integral makes the results
rather insensitive to the details of the phonon spectrum, but the effect of the dispersion is uncertain.

Two phonons may be emitted as in the case (b) in Fig. 3. This requires the factor

(AEy/ti—0)o’
D, =

[1—exp{—(AE,—#w)/kgT}][1—exp( —#iw/kzT)] ’

(13)

and a matrix element M, where the signs of all #iw in (9) have been changed. The resulting rates are

E./#%
Ry, =Fyp7) AEF, fo ° (E,—AEy/2+%#0) *D,dw for AE,<#w) (14)

and

Rp7e), =Fap(7) AEF, fAEl:/ﬁ_m(El—AE0/2+ﬁco)_4D,,dco for fiwp < AE, <2#wy, . (15)

The terms in (9) with Wgy and W ,, as the intermediate states may dominate for small 4. We then find the rates?®

wD—AEO/ﬁ
Rypisary =Fops)(AEg/AE, )2f0

—at® for small AE,<kyT and as T—O0,

with
FZp(S) ~(Hoog +Hoor )Z(HOOL —Hyog )?
X (20, 3 +v, %) /1287 p* % .

This rate decreases rapidly with A4 because of the overlap
factor (AE;o/AE,)*. The analog rates R,,s;, and
R, (s5¢), With two phonons emitted, appears to be unim-
portant for H in Sc compared to R;,(7;); and Ry,(7¢), -

Above 150 K we also expect tunneling transitions via
electron or multiphonon excitations to the states E,. The
simple formula?®

RI:“n':(AETn /ﬁ)exp( -—En/kBT) (17)

for tunneling interference in E, seems'® to fit the experi-
ments in many cases when AEp, * A4 is fulfilled. Asym-
metry will reduce the interference and we write

Rp,,~(AE, /#)(AEy, /AE, Yexp(—E, /kgT) . (18)

At high T or for wide barriers with small AE;, in the
lower n states, the dominant terms from (18) reduce to
the formula for classical hopping over the top of a barrier
E,~Vy,—E, /2, and this rate is little affected by large 4.

We have listed some of the various transition rates that
are made possible by the tunneling in a two-well system,
and the total rates are

[1/o+1/(w+AEy/#%))?D, do

(16)

R =R, +Ry,; +Rypsay, TRyp7ay TR opam)y
+R2p(7c)l +RE1l
=R exp(AEy/kpT) .

The various terms will be dominant in the total rate in
different ranges of T and A, and not all of them will be
important for the low-temperature relaxation of H in Sc.
We have neglected many-electron transitions and possible
interference terms between electrons and phonons, and
the neglect of dispersion makes the phonon rates uncer-
tain for large 4 and T. We also note that the expressions
for R, and Rjps,) that involve only the ground states
may not be valid®>* for small 4 and large T if it leads to
R | > AE,/#, but this case is not relevant for the nuclear
relaxation of H in Sc.

IV. SPIN-LATTICE RELAXATION
IN A TUNNELING SYSTEM

The hydrogen atoms make random tunneling transi-
tions between the wells, and they thus experience a fluc-
tuating local dipolar field that will cause nuclear spin-
lattice relaxation. Note that most tunneling transitions
conserve the nuclear spin state, but the spins will flip in a
small fraction of the transitions determined by the mixing
effect of the dipolar field.?® The problem can therefore be
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treated in the weak-collision approach where we assume
a correlation function in terms of the total transition
rates R | and R calculated in the previous section. The
correlation function for the hopping motion of a particle
between two asymmetric wells has been derived by Look
and Lowe’! in the context of hindered molecular rota-
tions, and by Blinc3? for the hydrogen-bond systems. It
was found to be exponential with a correlation time
7=2/(R | +R;) and with the intensity of the fluctuations
proportional to 4a /(1+a)*=cosh™2(AE,/2kyT) where
a=R;/R =exp(—AE,/kgT).

For H in Sc, the dominant magnetic dipolar interac-
tion for the relaxation is between H and Sc, while the H-
H coupling is much smaller. This leads? to the spin-
lattice relaxation rate for hydrogen making tunneling
transitions between essentially localized states in a two-
well potential with a particular asymmetry 4 >>AE,

" Cli)/2 .
coshX(AE,/2kpT) | 1+ (0y—wg, )

37

+
1+ o}

6t
1+ (0 +wg.)*™

(19)

The frequencies in (19) are (wytwg, ) =wgy(1.0£0.243) in
terms of the measuring frequency wy. For smaller 4 and
partly delocalized states we should probably reduce (19)
by (4 /AE,)? but this factor appears to be equal to 1 for
almost all H in Sc. We also neglect the very small relaxa-
tion?® < (AE;,/AE,)* caused by the coherent hydrogen
tunneling oscillations with very high frequencies
AE /%> wy.

The coefficient C (i) in (19) represents the mean-square
fluctuating local field of the H-Sc dipolar interaction, and
it can be written in terms of a contribution to the second
moment of the resonance line. For an immobile Hona T
site in Sc the total second moment has been calculated by
Han et al.! to be M,(rigid)=~12.2 Oe?. Most of the
M, (rigid) is motionally averaged out only with the long-
distance diffusion jumps that give the high-temperature
relaxation. The fit to (19) of the relaxation maximum
around 520 K required! a coefficient C(diff)
=y} M,(diff)/2~3.1X10° s~ ! that corresponds to the
component M,(diff)~8.8 Oe.? Hence the dipolar field
fluctuations from the local motion must correspond to
the difference M,(local)~3.4 Oe? that give a coefficient
C(local)~1.2X 10° s~ ! in the expression (19) for the low-
temperature relaxation T7;!. Here y g =2.67%x10*
s~ 1/Oe is the gyromagnetic ratio of protons.

The distribution of asymmetries (1) results in a distri-
bution in the correlation times 7 for the different protons
and in a distribution in the intensity in the spectral densi-
ty of fluctuations that each of them experience. These
effects could result in a distribution of spin-lattice relaxa-
tion rates. However, the nuclear magnetization recovery
was found? to be exponential at all temperatures and this
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indicates that all protons are in dipolar contact and relax
with a common spin temperature, as we expect from the
relatively large H concentrations. Thus the measured
spin-lattice relaxation rate is given by the average of (19)
over positive values of 4 with the distribution Z(4)
from (1) where the contributions from the paired hydro-
gens automatically vanish at low temperatures because of
the depopulation factor cosh™%(AE, /2k, T).

V. FIT OF THE RELAXATION DATA

We will first use the oscillation energies of H in Sc to
estimate the barriers against the H motion. From inelas-
tic scattering on ScH,, Udovic et al.® found E, =101
meV for oscillations parallel to the ¢ axis and E |, =148
meV for motion perpendicular to the ¢ axis. In the nearly
perpendicular direction to the nearest O site or a T site in
another pair of sites the oscillation frequency should
therefore be of order E, /kg~1500 K. From the relation
(2) we then calculate the potential ¥V /ky~14000 K for
d=2.34 A, corresponding to an activation temperature
E,/kp=(Vy—E,/2)/kg=13000 K for classical hopping
over the barrier to another T site, angl a somewhat small-
er Vy/kp=11000 K for D=2.02 A, corresponding to
E,/kp=10000 K for hopping over the barrier to an O
site. Both of these calculated barriers are much higher
than the activation temperature E,/kpz =6300 K mea-
sured by Han et al.! from the proton NMR relaxation
maximum around 520 K in ScH,. This means that the
potential barriers against long-range diffusion must have
narrower wells and flatter tops than a sine function. We
note that (3) gives very small tunnel splittings of H in the
lowest oscillation states through barriers of this magni-
tude, and transitions via the states near the top of the
classical barrier is the only way for the H diffusion.

The barrier against the motion along the ¢ axis to the
other site in the pair 4-B is much thinner and lower, and
the tunneling through it will be significant. With d=1.32
A and E, /kp=1170 K in (2) and (3) we calculate for the
localized motion V,/kp=3200 K, E,/kz=2150 K,
AEo/kp~0.37 K, AE;/kg =10 K, and AE,/ky~90
K. These quantities have about the same magnitudes as
have been found!® for tunneling H in Ta, and the tunnel
splittings AE, are slightly smaller than for H in Nb and
V. The calculated second excited state for H in Sc is
reasonably close to the measured? E,,/kp=2090 K and
we conclude that the anharmonicity of the real potential
is slightly greater than for the sine function. We also cal-
culate from (2) that the energy at the top of the local bar-
rier is E,/kp=2560 K, but this number has little
significance for the local motion if the H in ScH, can
tunnel faster through the barrier than by classical hop-
ping over it.

We use the calculated tunnel splittings to evaluate the
transition rates (5)—(18) for the local motion of H in Sc.
The A and T dependencies of the rates are given, while
the couplings to the electrons and the phonons and the
distribution of asymmetries Z( A) are unknown parame-
ters that must be fitted with the relaxation data. The pa-
rameters obtained from T'j;! in Fig. 1 by using (19) and
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TABLE 1. Fitted parameters for the tunneling two-level system H in Sc. The oscillation energy is
E,/kp=1170 K and the tunnel splittings are AE/kp=~0.37 K and AEz,/kp~10 K. The coupling K
is to the electrons from (5), F,, is the one-phonon coupling from (6), F,,(s, and F,,(; are the two-
phonon couplings from (16) and (12), and the deformation potentials are H;,=(Hogr —Hoo ),
H%p(S)z(HOOR +Hop )(Hoor —Hogor ), and H%p17) =Hy g Hoyyy .

Flp sz(s) FZp(7) Hlp/kB H?.p(S)/kB HZp(7)/kB
K (1/sJ3) (s%) (sJ?) (K) (K) (K)
0.06 3.8X107 5.0X107% 1.7X 107120 3700 4100 6800

averaging over the distribution of asymmetries Z( A4)
from (1), are given in Tables I and II. The fitted down-
ward tunneling transition rates are shown in Fig. 4. In
the integrals for the two-phonon rates we have used the
Debye temperature 8, =280 K, which is somewhat lower
than the value 320 K obtained? from specific heat. The
lower Debye temperature approximates better the slow
transverse phonons with average v, =~2700 m /s which
dominate in the two-phonon rates.

It is interesting to see in Fig. 4 how the calculated rates
from the various tunneling processes vary with 4 and T
for the fitted parameters. Below 7=20 K the two-
phonon contributions to the rates are negligible, and this
makes the fitting of the direct processes easier. The
electron-induced rates R, are larger than the one-phonon
rates R, for asymmetries up to 4 /kz=50 K. Above
T=40 K the two-phonon rates begin to dominate at
medium asymmetries 50 < 4 /kgz <150 K, but the one-
phonon rate is important up to 7=150 K for hydrogens
with A close to the Debye energy, because the density of
phonon states is very high there. The rate R,, s, is the
largest of the two-phonon processes for 4 /kgz <30 K,
while R, (7, dominates for greater values of 4 /kg up to
220 K where R,,(7;) and eventually R,,(, takes over.
The contribution Ry, to the total rate from tunneling in
E, is negligible below 160 K, tunneling in E, is negligible
below 250 K, and the over-the-barrier hopping R ¢y, 1S
negligible below 300 K.

The contributions to the spin-lattice relaxation from
the H transitions depend upon how different the rate
771 A) is from the measuring frequency wy, and upon
the intensity factor [cosh®(AE,/2kyT)] ' in (19). The
oy is shown in Fig. 4 in order to indicate the efficiency of
the total motion for the relaxation. The transition rates
in Fig. 4 will give reasonable fits to the measured relaxa-
tion shown in Fig. 1. The frequency dependence of T';;!
below the maximum is less than wg? since the protons

TABLE II. Parameters for the fitted Gaussian distributions
(1) of asymmetries A in the two samples of ScH,. The paired
fraction P of H has maximum for 4 = A4,, the unpaired frac-
tions (1—P) has maximum for 4 = 4,, and both maxima have
widths 4,.

A, /kp 4, /kp Ao/kp
x 1—P (K) (K) (K)
0.11 0.06 > 700 45 25
0.27 0.07 > 700 90 50

that are moving rapidly because of small A4, contribute
less to the spin-lattice relaxation at increasing 7. Most of
the hydrogens must be locked in pairs with large 4, /kp
of order 800 K or more, because a tail below 500 K in the
A /kg distributions would contribute significantly to the
NMR relaxation below T=160 K. The fitted Gaussian
distribution which refer to the unpaired hydrogen frac-
tion (1—P) is shown in Fig. 5. The shape of the high- 4
part of Z(A) around A,; referring to the majority frac-
tion P of paired hydrogens is largely a guess since it can-
not be determined from the low-T relaxation.

|

100 200 500
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L leaagl 1 1

2 5 10 20 50
A/kg (K)

108 L

FIG. 4. Local tunneling transition rates of H in Sc calculated
as function of asymmetry A4 as described in the text, using the
tunnel splitting AEr,/kg=0.37 K and the coupling constants
given in Table I. The solid lines are the total downward rates
R, at T=10, 40, and 160 K. The dashed lines are the electron
contributions R, and the dash-dotted lines are the one-phonon
contributions R ,; at 10 and 40 K. The dash-dot-dot line is the
two-phonon rate R, (sq)) +Rop(sp)y +Rypiseyy and the dash-dot-
dot-dot line is the two-phonon rate R;,74); +Rap76)1 + Roprerl
at 160 K. The dotted lines show the rates corresponding to the
range of measuring frequencies from 24 to 90 MHz. The
hatched region for small 4 shows where the calculated rate may
break down for R | > AE, /%.
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FIG. 5. Gaussian distributions of asymmetries Z ( A) from (1)
fitted to the spin-lattice relaxation T';;' of H in ScH,. Solid line:
fit to sample with x=0.27 using 4,/kp=90 K, 4,/kp=50 K,
and (1—P)=0.07. Dashed line: fit to sample with x=0.11 us-
ing A,/kp=45 K, Ay/kpy=25 K, and (1—P)=0.06. The in-
sert on the smaller scale shows the large fractions P of paired H
with uncertain 4 /kg > 600 K, where the H do not contribute to
the relaxation below =160 K.

The given fit is not unique, and several slightly
different sets of coupling constants may give equally good
fits to the relaxation data. We have used the same elec-
tron coupling coefficient K=0.06 or H in Sc as has been
derived®!® for H in Nb. The two-phonon transitions
R,,(7) are necessary for the fit, while it would have been
almost as good without the contributions R, and R, ).
The numerical values of the derived deformation poten-
tials of the phonons depend strongly upon the average
over the velocities of sound in ScH,. When we use
p=2990 kg/m?> and v, ~2700 m /s <<v,, we calculate the
deformation potentials listed in Table I. The fit requires
that the fraction P of paired hydrogens is about the same
for the two samples, while the width A4, of the distribu-
tions increases with increasing concentration of H, as ex-
pected.

The only part of the data in Fig. 1 that cannot be well
fitted in this way is for 77> 120 K where the calculated
two-phonon processes without dispersion do not increase
rapidly enough with 7. However, we note that for this
temperature range the data represent the vanishing
difference between the measured relaxation and the as-
sumed Korringa electron-induced relaxation, and the er-
ror bars on the experimental points are large here. A
slightly smaller Korringa rate might have changed the
experimental data to agree with our calculated rate also
above 120 K.

VI. DISCUSSION AND CONCLUSIONS

We have reinterpreted the observed? proton spin-
lattice relaxation rate below 120 K in the metallic solid
solution ScH, as caused by the local tunneling of the un-
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paired hydrogen between the closely spaced sites. The fit
of the data leads to a determination of tunneling parame-
ters which appears quite reasonable, and it supports the
two-level approach to describe tunneling of H in metals.

A sinusoidal barrier V,/kg~3200 K between the wells
was chosen for the fit, consistent with the measured first
excited oscillation state £, of H in the single well. The
estimated tunnel splitting AE;,/kz~0.37 K is slightly
smaller than for H in TaH,, and it could possibly be
directly measured by specific heat or by inelastic neutron
scattering.

One-phonon, two-phonon, and electron-induced pro-
cesses are found to be important in determining the tun-
neling transition rates in the two-level system. Some of
these processes are very sensitive to the asymmetry A4 be-
tween the wells, but this has not always been recognized.
The width A, of the distributions of asymmetries was
found to broaden with increasing concentration of H in
Sc, indicating that the interactions with other hydrogens
are more important for 4 than the interaction with im-
purities and defects. The broadening is similar to, but
weaker than the concentration effect found® for H bound
to O impurities in Nb.

The electron coupling coefficient K ~0.06 chosen to fit
the data in Sc is the same value as measured®!® for H
bound to O or N impurities in Nb. This is consistent
with the fact that the Korringa relaxation product® for
H in Nb (T, T=110 sK) is close to the one’ for H in Sc
(T, T=123 sK). The deformation potentials that we
derive for the H interacting with the phonons in Sc, are
comparable to the potential barrier, and (Hy,; Hg g )'"?
from F,, 7, have about the same magnitude as have been
derived'® for H in Nb, although there only phonons with
polarization along [111] were considered.

Two-phonon transition rates with 7> dependence
seems to be necessary to explain the spin-lattice relaxa-
tion of H in Sc. Such rates have been found* before in
proton relaxation from rotational tunneling of NH, ions
in ammonium salts. In comparisons of the two-phonon
rates we note that H,,, connects states of opposite parity
in one well, so we may expect it to be smaller than H g .
However, F,,(;) does not require different deformations
by the phonons in the two wells like F,, s, and F,, do.

The distributions of asymmetries Z ( 4) shown in Fig. 5
and used in fitting the data, are temperature independent
with a fraction of unpaired hydrogens (1—P) of about
6%. This percentage may reflect the thermal equilibrium
concentration of unpaired H at around 170 K where the
long-range diffusion freezes. It is conceivable that the
distributions of A4 should depend upon 7, since the
averaging effect of the increased motion of a given H with
increasing 7T, should decrease its contribution to A for
the neighboring H. The inverse of this effect may lead to
a cooperative freezing of the unpaired hydrogens which is
similar to, but distinct from the order-disorder pairing
transition of the majority of the hydrogens observed!’
around 170 K. A reduction in the width of Z( A4) with
increasing T would cause a faster increase of the NMR
relaxation up to the maximum near 60 K, and a faster de-
crease above, than we calculate from a constant Z( A4).
The apparent increase in the Korringa relaxation term at
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170 K ascribed? to a change in electronic structure with
H pairing, may be due instead to the high-T tail of the re-
laxation from the local motion of the unpaired hydro-
gens.

The derived tunneling transition rates for H in Sc
could possibly be checked with internal friction, ultrason-
ic attenuation, or quasielastic neutron scattering mea-
surements. The heavier isotope D in ScD, should have
local tunneling rates that are smaller than for H by a fac-
tor 100 or more.

The model is probably valid also for the local tunneling
motion of hydrogen in the similar hcp metals yttrium, lu-
tetium, etc., that have been studied with NMR,* ™% neu-
tron scattering,'®~?! and other’® methods. Theoretical
calculations®® on Y metal have recently confirmed the ex-
istence of a double-well potential for H along the c axis,
although the calculated barrier V,/kgz=1800 K appears
too low when compared in Eq. (2) with the measured?®!
oscillation energy E, ~1100 K. Furthermore, the calcu-
lated pairing energy for H in Y leads to predictions about
the fraction of H involved in pairs that are in qualitative
agreement with our findings for H in Sc.

Regarding other theories of hydrogen tunneling we
note that the small-polaron theories!""!? use the coin-
cidence configuration where the self-trapping energy is
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overcome by the phonon deformations, as the intermedi-
ate state, and they do not consider the important effects
of asymmetry. The theory predicting!? that the tunneling
transition rate of H in Nb should decrease with T as
o T2 =1~ 7799 j5 not experimentally proved,?* and it
certainly does not fit the data for H in Sc. A T 7! pe-
havior can perhaps not be excluded in the case where the
calculated electronic transition rate is greater than
AE,/#i. However, we see from Fig. 4 that this occurs
only for A /ky <5 for T below 100 K, and we have found
that only a negligible fraction of the H in Sc are tunneling
between wells with such small asymmetry. Finally, it is
gratifying that the electron rate (5) can be derived also as
the low-temperature limit of the path-integral theory of
tunneling by Weiss and Wollensak.*
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