$\text{NaLa}(\text{MoO}_4)_2$ as a laser host material

S.B. Stevens and C. A. Morrison

Harry Diamond Laboratories, U. S. Army Laboratory Command, Adelphi, Maryland 20783

T. H. Allik

Science Applications International Corporation, 1 710 Goodridge Drive, P. O. Box 1303, McLean, Virginia 22102

A. L. Rheingold and B.S. Haggerty

Department of Chemistry, University of Delaware, Newark, Delaware 19716

(Received 5 November 1990)

Crystallographic and optical properties of $NaLa(MoO₄)₂$ are presented. The positions of the Stark levels are reported for the [LS]J manifolds of Nd³⁺ and Er^{3+} up to the absorption edge in this host material. A least-squares fit to the data was performed to obtain the crystal-field parameters. For Nd³⁺ the following crystal-field parameters were obtained: $B_{20} = 519$, $B_{40} = -695$, $B_{44}=964$, $B_{60}=-190$, and $B_{64}=673+i384$ cm⁻¹, with a root-mean-square (rms) deviation of 7.7 cm⁻¹. For Er³⁺ we obtained $B_{20} = 422$, $B_{40} = -507$, $B_{44} = 839$, $B_{60} = -116$, and $B_{64} = 409 + i158$ $cm⁻¹$, with a rms deviation of 4.8 $cm⁻¹$. Intensity calculations based on fits to the experimental data yield line-to-line and multiplet branching ratios. The results of this investigation indicate that $Er^{3+}:\text{NaLa(MoO₄)}$ and Nd³⁺:NaLa(MoO₄)₂ show promise as diode-pumped laser materials.

I. INTRODUCTION

The development of high-power laser-diode arrays and the successful use of these as pump sources for solid-state lasers have renewed interest in rare-earth spectroscopy.
Rare-earths ions such as Nd^{3+} , Er^{3+} and Tm^{3+} have strong absorption transitions near 800 nm, where $Ga_{1-x}Al_xAs$ laser diodes emit peak powers in excess of 60 W per 1-cm bar. When lasers are pumped with these diodes, efficient output has been demonstrated for Nd^{3+} at 0.9, 1.0, and 1.3 μ m¹⁻³, Er³⁺ at 1.6 and 2.9 μ m, and $Tm³⁺$ at 1.9 μ m.⁴ Strong energy transfer from $Er³⁺$ or Tm^{3+} to Ho^{3+} has also produced lasing wavelengths near 2.1 μ m. Current interests for new diode-pumped solidstate lasers are at eye-safe wavelengths near 1.5 μ m, medical lasers at 1.9, 2.1, and 2.9 μ m, and small singlefrequency microchip lasers for injection seeding laser os $cillators.^{5,6}$

 $NaLa(MoO₄)₂$ (subsequently referred to as NLM) has been studied in the past for its suitability as a flashlamp pumped laser host material.⁷⁻⁹ Because of the relatively low-energy absorption edge around 370 nm (27,000 cm^{-1}), the thermal loading produced by a flashlamp made this material ill-suited for lasing applications. However, the results of this study and previous studies show promise for this host as a diode-pumped laser ma-
terial. The rare-earth dopant (La^{3+}) site in NLM possesses attractive features. Its large size makes it suitable to be doped with rare-earth ions and Nd^{3+} can be fully substituted. The high dopant concentrations produce high absorption coefficients that lead to efficient absorption of light from a diode-laser pump, making this material well suited for the production of thin microchip lasers. The crystal field at the La³⁺ site has S_4 symmetry, and gives rise to smaller crystal-field splittings than

the crystal field in D_2 garnet sites. For Er^{3+} , this weaker crystal field should yield a smaller probability for resonant up-conversion, which acts as a loss mechanism for eye-safe infrared lasers at $1.5 \mu m$.¹⁰

The purpose of this paper is severalfold. First, detailed single-crystal x-ray measurements on NLM are presented. The lattice parameters have been previously report-
ed,¹¹ but detailed measurements, including positions of ed,¹¹ but detailed measurements, including positions of the ions within the unit cell are not available in the literature. Second, we report the experimentally determined energy (Stark) levels for $Nd^{3+}(4f^3)$ and $Er^{3+}(4f^{11})$. Although some spectroscopic properties have been reported earlier for Nd^{3+} , they are for only the low-lying levels, and a discrepancy in the assignments has been seen.^{7,9} Third, theoretical intensity calculations were performed on the experimental energy-level data for Nd^{3+} and Er³⁺. Using the crystal-field components, A_{ka} , the branching ratios for line-to-line transitions are predicted for Nd^{3+} and Er^{3+} .

II. CRYSTAL GROWTH AND STRUCTURE

The NLM crystals used in this study were grown from oriented seeds in the early 1970's at the National Bureau of Standards. The crystals were approximately 1.0 cm in diameter and 2.0 cm long with an optical quality inferior to laser samples such as YAG and YLF. The Nd doping concentrations of six growth runs were 0.1, 1, 5, 10, 20, and 100 at. $\%$ substitution for La. Two boules of 2 and 0.5 at. $\%$ Er were also grown. The optical data presented here are for the 0.1 at. % Nd doping and the 2 at. % Er doping. The x-ray data were obtained with the 0.1 at. $%$ Nd-doped crystal.

The crystal structure analysis was performed at 23(1) [°]C, on an automated Nicolet $R3m/\mu m$ diffractometer

	(a) Crystal parameters		
Formula Space group Crystal system a c V Z	NaLa(MoO ₄) $I4_1a$ (No. 88) tetragonal 5.3433 (11) Å $11.7432(19)$ Å 335.27(12) \AA^3 4	Cryst. dimensions Crystal color D, calculated μ (Mo $K\alpha$) Temperature T(max)/T(min)	$0.2 \times 0.2 \times 0.3$ mm ³ colorless 4.772 g/cm^3 100.24 cm ⁻¹ 23(1) °C $0.042/0.003 = 14$
	(b) Data Collection		
Diffractometer Monochromator Scan technique Radiation 2θ scan range Data collected (h,k,l) Scan speed	Nicolet $R3m/\mu$ graphite Wyckoff Mo $K\alpha$ (λ =0.71073 Å) $4 - 70^{\circ}$ 9,9,19 var. $5-20 \text{ deg/min}$	Rfins. collected independent rflns. R (merg) Independant rflns. Std. rflns. Var. in stds.	451 406 4.61% 143 $3 \text{ std}/97 \text{ rflns}$ $< 1\%$
	(c) Refinement		
R(F) R(wF) Δ/σ (max)	8.51% 9.24% 0.002	$\Delta(\rho)$ N_0/N_n Goodness of fit	$9 - 3$ 2.481 e A 9.53 1.75

TABLE I. Summary of crystallographic data for $NaLa(MoO₄)₂$.

with an incident beam graphite monochromator and Mo $K\alpha$ radiation ($\lambda = 0.71073$ Å). The unit cell was obtained from the least-squares refinement of 25 reflections $(20^{\circ} < \theta < 25^{\circ})$ yielding the lattice parameters
 $a = 5.3433(11)$ Å, $c = 11.7432(19)$ Å, and $a = 5.3433(11)$ \AA , $c = 11.7432(19)$ \AA , and $V = 335.27(12)$ \AA^3 . Systematic absences in the Systematic absences in the diffraction data (hkl, $k+l = 2n + 1$; hk0, h, $k = 2n + 1$; $0kl, k+l = 2n+1; hhl, l = 2n+1; 00l, l = 4n+1; and$ $0k0, k = 2n + 1$ uniquely established the space group as tetragonal $I4_1a$ with $Z = 4$. The structure is isomorphous with those of the minerals scheelite $(CaWO₄)$ and wulfenite (Pb $MoO₄$).¹² Intensity data were collected using Wyckoff scans $(4^{\circ}$ to 70°), with a variable scan rate of 5 to 20 deg/min. Three standard reflections monitored every 97 reflections showed insignificant variation (< 1%). The 143 independent, observed $[F_0 > 5\sigma(F_0)]$ data were used to refine the structure to $R_F = 8.51\%$ and R_{wF} =9.24%. These somewhat high R factors reflect the inherent disorder in the average unit cell due to the variable presence of Na or La, which occupy the same site. Na and La were each refined at half occupancy to ac-

TABLE II. Fractional atomic coordinates.

Ion	Position	x^a	υ ^a	z^{a}
LaNa	4(b)			0.5
Mo	4(a)			
O	16(f)	0.2319	0.1386	0.0746

'Expressed as fractions of the lattice parameters.

count for the stoichiometry of the Scheelite structure formula. All atoms were refined with anisotropic thermal parameters. All computer programs and the sources of the scattering factors are contained in the SHELXTL program library. 13

Table I summarizes the crystallographic data. The positions of the ions in the unit cell are given in Table II. These positions correspond to setting 1 for space group $I4_1a - C_{4h}^6$ (No. 88) in the International Tables for X-ray Crystallography.¹⁴ Figure 1 shows the molecular structure and labeling scheme used for the unit cell.

III. SPECTRAL ANALYSIS

The determination of individual Stark levels of the Nd^{3+} and Er^{3+} ions were determined by recording spectra at 17 ± 3 K with a Perkin-Elmer Lambda 9 spectrophotometer. Fluorescence spectra were also recorded with a Spex F222 or a Tracor Northern TN-6600 specrometer. The ${}^{4}F_{3/2}$ to ${}^{4}I_{11/2}$ fluorescence spectra of Nd^{3+} :NLM and Nd^{3+} :YAG are shown together in Fig. 2 to illustrate the qualitative differences in the spectra. Deailed experimental procedures have been given before
and will not be duplicated here.^{15,16} Tables III and IV list the experimentally determined energy levels for Nd^{3+} and Er^{3+} , respectively.

The free-ion wave functions were calculated by diagonalizing, in a Russell-Saunders basis of $[LS]$ J states, a Hamiltonian containing the Coulomb, spin orbit, L^2 , $G(G_2)$, and $G(R_7)$ interactions.¹⁷ The free-ion parameters chosen were those obtained by Carnall, Fields, and

$2S+1$ L_J							
centroids	Energy $(cm-1)$ Level			Free-ion mixture			
(cm^{-1})	number	$\Gamma_n^{\ a}$	Theor.	Expt.		$(\%)$	
$^{4}I_{9/2}$	$\mathbf{1}$	7,8	-3	$\bf{0}$	99.64 $^{4}I_{9/2}$	$+0.24^{4}I_{11/2}$	$+0.06^{4}I_{13/2}$
(198)	$\boldsymbol{2}$	7,8	100	92	98.79 $^{4}I_{9/2}$	$+1.13^{4}I_{11/2}$	$+0.03\,{}^{4}F_{3/2}$
	$\overline{\mathbf{3}}$	5,6	157	160	99.48 $4I_{9/2}$	$+0.41^{4}I_{11/2}$	$+0.08\,4I_{13/2}$
	4	5,6	246	235	98.89 $^{4}I_{9/2}$	$+1.04^{4}I_{11/2}$	$+0.04^{4}I_{13/2}$
	5	7,8	399	412	99.70 $^{4}I_{9/2}$	$+0.24^{4}I_{11/2}$	$+0.05\,{}^{4}I_{13/2}$
$^{4}I_{11/2}$	6	7,8	1957	1960	99.19 $^{4}I_{11/2}$	$+0.43\,{}^{4}I_{13/2}$	$+0.28^{4}I_{9/2}$
(2060)	7	5,6	1996	1999	98.71 $^{4}I_{11/2}$	$+0.63^{4}I_{9/2}$	$+0.61\,4I_{13/2}$
	8	7,8	2007	2013	99.03 $^{4}I_{11/2}$	$+0.51^{4}I_{13/2}$	$+0.35^{4}I_{9/2}$
	9	5,6	2046		98.62 $^{4}I_{11/2}$	$+0.90^{4}I_{13/2}$	$+0.41^{4}I_{9/2}$
	10	5,6	2 1 4 6		99.20 $^{4}I_{11/2}$	$+0.40^{4}I_{9/2}$	$+0.38\,^{4}I_{13/2}$
	11	7,8	2 1 7 2	2160	$98.80^{4}I_{11/2}$	$+1.00^{4}I_{9/2}$	$+0.14^{4}I_{13/2}$
$^{4}I_{13/2}$	12	5,6	3919	3916	99.25 $^{4}I_{13/2}$	$+0.37^{4}I_{15/2}$	$+0.304I11/2$
(4044)	13	7,8	3952	3946	99.15 $^{4}I_{13/2}$	$+0.42^{4}I_{15/2}$	$+0.36\,^{4}I_{11/2}$
	14	5,6	3968	3967	98.82 $^{4}I_{13/2}$	$+0.62^{4}I_{15/2}$	$+0.44^{4}I_{11/2}$
	15	7,8	4008	4009	98.83 $4I_{13/2}$	$+0.89^{4}I_{15/2}$	$+0.20^{4}I_{11/2}$
	16	5,6	4115	4 1 2 0	98.91 $^{4}I_{13/2}$	$+0.73^{4}I_{11/2}$	$+0.31\,^{4}I_{15/2}$
	17	7,8	4158		99.17 $^{4}I_{13/2}$	$+0.52\,^{4}I_{11/2}$	$+0.22\frac{4}{15/2}$
	18	5,6	4 1 6 1	4 1 6 6	99.26 $^{4}I_{13/2}$	$+0.41\,^{4}I_{11/2}$	$+0.28\,^{4}I_{15/2}$
$^{4}I_{15/2}$	19	5,6	5843	5849	99.49 $^{4}I_{15/2}$	$+0.39^{4}I_{13/2}$	$+0.04^{4}F_{7/2}$
(6084)	20	5,6	5903	5900	99.49 $^{4}I_{15/2}$	$+0.38\frac{4}{13/2}$	$+0.06\,{}^{4}F_{9/2}$
	21	7,8	5949	5944	99.59 $^{4}I_{15/2}$	$+0.31^{4}I_{13/2}$	$+0.05\,^{4}I_{11/2}$
	$22\,$	7,8	6011	6012	99.54 $^{4}I_{15/2}$	$+0.37^{4}I_{13/2}$	$+0.03^{4}I_{11/2}$
	23	7,8	6201		99.55 $^{4}I_{15/2}$	$+0.37^{4}I_{13/2}$	$+0.05\,^{4}I_{11/2}$
	24	5,6	6220	6211	99.51 $^{4}I_{15/2}$	$+0.42\,^{4}I_{13/2}$	$+0.02^{4}I_{11/2}$
	25	7,8	6276		99.47 $^{4}I_{15/2}$	$+0.47$ ⁴ $I_{13/2}$	$+0.03\,^{4}I_{11/2}$
	26	5,6	6304	6313	99.55 $^{4}I_{15/2}$	$+0.38\,^{4}I_{13/2}$	$+0.04\,{}^{4}F_{7/2}$
$^{4}F_{3/2}$	27	7,8	11401	11393	99.34 $4F_{3/2}$	$+0.21^{2}H_{9/2}$	$+0.19 F_{7/2}$
(11444)	28	5,6	11464	11472	98.24 ${}^4F_{3/2}$	$+1.28\,^{4}F_{5/2}$	$+0.21\,{}^{4}F_{7/2}$
$^{4}F_{5/2}$	29	7,8	12406	12418	92.38 $4F_{5/2}$	$+6.62^{2}H_{9/2}$	$+0.56\,{}^{4}F_{7/2}$
(12475)	30	5,6	12454	12456	85.43 ${}^4F_{5/2}$	$+12.17^{2}H_{9/2}$	$+1.41\,{}^{4}F_{3/2}$
	31	5,6	12523	12 508	93.77 ${}^4F_{5/2}$	$+5.26^{2}H_{9/2}$	$+0.69\,{}^{4}F_{7/2}$

TABLE III. Energy levels of Nd^{3+} in $NaLa(Moo_4)_2$.

FIG. 1. Molecular structure of NaLa($MoO₄$)₂. Ellipsoids are at 35% probability.

Rajnak¹⁸ for the triply ionized lanthanide ions in aqueous solution. Using their set of free-ion parameters, we calculated reduced matrix elements of U_2 , U_4 , and U_6 be-
tween all of the intermediate-coupled wave functions representing the multiplets of the electronic configuration $4f^N$ of the free ion.

FIG. 2. Unpolarized fluorescence spectra of the ${}^4F_{3/2}$ to ${}^4I_{11/2}$ transitions in Nd³⁺:NaLa(MoO₄)₂ and Nd³⁺:YAG at room temperature.

$2S+1L_J$							
centroids	Level			Energy $(cm-1)$		Free-ion mixture	
(cm^{-1})	number	$\Gamma_n^{\ a}$	Theor.	Expt.		$(\%)$	
$^{2}H_{9/2}$	32	7,8	12526	12528	99.08 $^{2}H_{9/2}$	$+0.78\,{}^{4}F_{5/2}$	$+0.05\,{}^{4}F_{7/2}$
(12614)	33	5,6	12543	12556	84.04 $^{2}H_{9/2}$	$+15.50\,{}^{4}F_{5/2}$	$+0.26\,{}^{4}F_{7/2}$
	34	5,6	12638	12625	97.72 ² $H_{9/2}$	$+2.11\,{}^{4}F_{5/2}$	$+0.06\,{}^{4}F_{7/2}$
	35	7,8	12657	12674	96.75 $^{2}H_{9/2}$	$+2.58\,{}^{4}F_{5/2}$	$+0.33\,{}^{4}F_{7/2}$
	36	7,8	12728	12711	96.53 $^{2}H_{9/2}$	$+3.21\,{}^{4}F_{5/2}$	$+0.06\,{}^{4}F_{7/2}$
$^{4}F_{7/2}$	37	7,8	13 3 65	13 3 64	98.54 ${}^4F_{7/2}$	$+0.58\,{}^{4}F_{9/2}$	$+0.38^{2}H_{9/2}$
(13439)	38	5,6	13 402	13403	96.33 ⁴ $F_{7/2}$	$+1.36^{4}F_{5/2}$	$+1.27^{4}S_{3/2}$
$^{4}S_{3/2}$	39	7,8	13484	13484	96.14 ${}^{4}S_{3/2}$	$+3.49\,{}^{4}F_{7/2}$	$+0.11^{2}H_{9/2}$
(13489)	40	5,6	13487		83.09 ${}^4S_{3/2}$	$+16.41\,{}^{4}F_{7/2}$	$+0.20\,{}^{4}G_{5/2}$
	41	5,6	13493		84.04 ${}^4F_{7/2}$	$+15.23^{4}S_{3/2}$	$+0.40\,{}^{4}F_{9/2}$
	42	7,8	13517	13517	95.64 ${}^4F_{7/2}$	$+3.35^{4}S_{3/2}$	$+0.52\,{}^{4}F_{5/2}$
$^{4}F_{9/2}$	43	5,6	14633	14624	99.31 ${}^4F_{9/2}$	$+0.32\,^{4}F_{7/2}$	$+0.09^{2}G_{7/2}$
(14712)	44	7,8	14658	14658	99.25 ${}^4F_{9/2}$	$+0.43\,{}^{4}F_{7/2}$	$+0.11\,{}^{4}F_{5/2}$
	45	7,8	14745	14736	99.08 ${}^4F_{9/2}$	$+0.32\,{}^{4}F_{7/2}$	$+0.25^{2}H_{11/2}$
	46	5,6	14746	14758	99.10 ${}^4F_{9/2}$	$+0.37^{4}F_{7/2}$	$+0.31^{2}H_{11/2}$
	47	7,8	14810	14815	99.57 ${}^4F_{9/2}$	$+0.20^{2}G_{7/2}$	$+0.08\,{}^{2}H_{11/2}$
$^2\!H_{11/2}$	48	5,6	15912		99.53 ² $H_{11/2}$	$+0.34^{2}G_{7/2}$	$+0.07^{4}F_{7/2}$
(15939)	49	7,8	15914		99.42 ² $H_{11/2}$	$+0.33^{2}G_{7/2}$	$+0.11^{4}F_{9/2}$
	50	7,8	15937		99.44 ² $H_{11/2}$	$+0.37^{2}G_{7/2}$	$+0.14^{4}F_{9/2}$
	51	5,6	15944	15944	99.58 ² $H_{11/2}$	$+0.17^{4}F_{9/2}$	$+0.14^{2}G_{7/2}$
	52	7,8	15955		99.55 $^{2}H_{11/2}$	$+0.20^{2}G_{7/2}$	$+0.11^{4}F_{9/2}$
	53	5,6	15981		99.29 ² $H_{11/2}$	$+0.32^{2}G_{7/2}$	$+0.19^{4}F_{9/2}$
${}^{4}G_{5/2}$	54	5,6	16989	16984	83.39 ⁴ $G_{5/2}$	$+16.31^{2}G_{7/2}$	$+0.10^{4}F_{7/2}$
(17098)	55	7,8	17040	17050	$88.52\,{}^{4}G_{5/2}$	$+10.94^{2}G_{7/2}$	$+0.18^{4}F_{9/2}$
	56	5,6	17112	17 103	58.01 ${}^4G_{5/2}$	$+41.35^{2}G_{7/2}$	$+0.26^{2}H_{11/2}$
$^{2}G_{7/2}$	57	7,8	17211		98.18 ² $G_{7/2}$	$+1.07^{4}G_{5/2}$	$+0.42^{2}H_{11/2}$
(17212)	58	5,6	17224	17226	95.56 ² $G_{7/2}$	$+3.90\,{}^{4}G_{5/2}$	$+0.39^2H_{11/2}$
	59	7,8	17284	17286	89.29 ² $G_{7/2}$	$+9.97^{4}G_{5/2}$	$+0.40^{2}H_{11/2}$
	60	5,6	17395	17394	53.99 ⁴ $G_{5/2}$	$+45.63^{2}G_{7/2}$	+0.13 ² $H_{11/2}$

TABLE III. (Continued.)

^aIrreducible representation, Γ_n , of the S_4 group.

A separate program then selected the reduced matrix elements between the free-ion multiplets in a truncated basis (13 multiplets for Nd^{3+} and 15 multiplets for Er^{3+}), set up the crystal spaces for the given crystal-field symmetry $(S_4$ for NLM), and diagonalized the crystal-field Hamiltonian in that space of multiplets. The procedure is discussed in more detail by Morrison and Leavitt.¹⁹

The experimentally determined Stark level positions of the rare-earth dopant ion are fit assuming a crystal field of the form:

$$
H_{\text{CEF}} = \sum_{i, k, q} B_{kq}^* C_{kq}(\hat{\tau}_i) ,
$$

$$
(k = 2, 4, 6; q = 0, 4; 1 \le i \le N) ,
$$
 (1)

where the B_{kq} are the crystal-field parameters, and the $C_{kq}(\hat{\mathbf{r}}_i)$ are tensor operators related to the spherical harmonics by

$$
C_{kq}(\hat{\mathbf{r}}_i) = \left[\frac{4\pi}{2k+1}\right]^{1/2} Y_{kq}(\theta_i, \phi_i) \tag{2}
$$

In S_4 symmetry, which is the site symmetry of both Na and La, the crystal-field parameters are B_{20} , B_{40} , B_{44} ,

 B_{60} , and B_{64} . With no loss of generality, B_{44} can be chosen to be real and positive, fixing the rotational degree of freedom associated with the tensor quantities.²⁰ With this choice, B_{64} is in general complex. The crystal-field parameters B_{kq} are then determined by minimizing the squared difference of the calculated and experimental energies. The centroids of each $[LS]J$ multiplet are allowed to vary freely during the fitting and are considered experimental data in the final analysis.

 $Data$ for $Nd³⁺$ in NLM have been previously reported and fit by Onopko.²¹ Because he chose all crystal-field parameters to be real (essentially D_{2d} symmetry), comparisons of the energy levels calculated using his parameters with the experimental data were rather poor. Consequently, the starting values of B_{kq} for both Nd³⁺ and $Er³⁺$ were from CaWO₄.²²

The calculation for Nd^{3+} included 47 experimental levels and 60 theoretical levels and gave a rms deviation of 7.7 cm^{-1} . We obtained the following crystal-field parameters for Nd³⁺: B_{20} =519, B_{40} =-695, B_{44} =964, $B_{60} = -190$, and $B_{64} = 673 + i384$ cm⁻¹. The calculation for Er^{3+} included 52 experimental levels and 76 theoretical levels and gave a rms deviation of 4.8 cm^{-1} . We obtained the following crystal-field parameters for Er^{3+} .

$2S+1$							
centroids	Level			Energy $(cm-1)$		Free-ion mixture	
(cm^{-1})	number	$\Gamma_n^{\ a}$	Theor.	Expt.		$(\%)$	
$^{4}I_{15/2}$	$\mathbf{1}$	5,6	$\pmb{0}$	$\mathbf{0}$	99.98 $^{4}I_{15/2}$	$+0.01^{4}I_{13/2}$	
(136)	$\boldsymbol{2}$	7,8	9	18	99.99 ⁴ $I_{15/2}$	$+0.01^{4}I_{13/2}$	
	3	5,6	40	32	99.97 $^{4}I_{15/2}$	$+0.02\,^{4}I_{13/2}$	
	4	7,8	57	57	99.97 $^{4}I_{15/2}$	$+0.03^{4}I_{13/2}$	
	5	7,8	192	184	99.97 ${}^{4}I_{15/2}$	$+0.02^{4}I_{13/2}$	$+0.01\,{}^{4}F_{9/2}$
	6	7,8	227	227	99.97 $^{4}I_{15/2}$	$+0.01^{4}I_{13/2}$	$+0.01^{2}H_{11/2}$
	7	5,6	255	255	99.96 $^{4}I_{15/2}$	$+0.01^{4}I_{13/2}$	$+0.01\,{}^{4}F_{9/2}$
	8	5,6	283	291	99.96 $^{4}I_{15/2}$	$+0.01^{4}I_{13/2}$	$+0.01^{4}F_{9/2}$
$^{4}I_{13/2}$	9	7,8	6521	6519	99.92 $^{4}I_{13/2}$	$+0.06^{4}I_{11/2}$	$+0.01^{4}I_{9/2}$
(6615)	10	5,6	6523	6528	99.94 $^{4}I_{13/2}$	$+0.04^{4}I_{11/2}$	$+0.01^{4}I_{15/2}$
	11	5,6	6573	6571	99.87 $1_{13/2}$	$+0.10^{4}I_{11/2}$	$+0.01^{4}I_{15/2}$
	$12\,$	7,8	6628	6626	99.91 $^{4}I_{13/2}$	$+0.04^{4}I_{15/2}$	$+0.03^{4}I_{11/2}$
	13	5,6	6660	6660	99.90 $^{4}I_{13/2}$	$+0.05^{4}I_{11/2}$	$+0.03^{4}I_{15/2}$
	14	7,8	6677	6676	99.89 $^{4}I_{13/2}$	$+0.05^{4}I_{11/2}$	$+0.02^{4}I_{9/2}$
	15	5,6	6696	6698	99.93 $^{4}I_{13/2}$.	$+0.03^{4}I_{11/2}$	$+0.01^{4}I_{15/2}$
$^{4}I_{11/2}$	16	7,8	10181	10175	99.86 $4I_{11/2}$	$+0.06^{4}I_{9/2}$	$+0.04^{4}F_{9/2}$
(10234)	17	5,6	10191	10192	99.91 $^{4}I_{11/2}$	$+0.05^{4}I_{13/2}$	$+0.01^{4}I_{9/2}$
	18	5,6	10234	10235	99.83 $^{4}I_{11/2}$	$+0.10^{4}I_{13/2}$	$+0.04^{4}I_{9/2}$
	19	7,8	10251	10253	99.85 $^{4}I_{11/2}$	$+0.07^{4}I_{13/2}$	$+0.03^{4}I_{9/2}$
	20	5,6	10265		99.84 $^{4}I_{11/2}$	$+0.07^{4}I_{13/2}$	$+0.04^{4}F_{9/2}$
	21	7,8	10272	10273	99.87 $^{4}I_{11/2}$	$+0.04^{4}I_{13/2}$	$+0.03^{4}I_{9/2}$
$^{4}I_{9/2}$	22	7,8	12 3 6 0	12 3 6 6	99.93 $^{4}I_{9/2}$	$+0.02^{4}F_{9/2}$	$+0.02^{4}I_{13/2}$
(12483)	23	5,6	12454		99.89 $4I_{9/2}$	$+0.06^{4}I_{11/2}$	$+0.01^{2}H_{11/2}$
	24	5,6	12497	12497	99.92 $^{4}I_{9/2}$	$+0.04^{4}I_{11/2}$	$+0.01^{2}H_{11/2}$
	25	7,8	12 5 03		99.81 $1/19/2$	$+0.06^{4}I_{11/2}$	$+0.04\, {}^{4}S_{3/2}$
	26	7,8	12592	12585	99.89 $^{4}I_{9/2}$	$+0.04^{4}I_{11/2}$	$+0.03^{4}F_{9/2}$
$^{4}F_{9/2}$	27	7,8	15230	15228	99.89 ⁴ $F_{9/2}$	$+0.03^{4}I_{11/2}$	$+0.03^{4}I_{9/2}$
(15295)	28	5,6	15263	15 260	99.88 $4F_{9/2}$	$+0.04^{2}H_{11/2}$	$+0.02^{4}I_{11/2}$
	29	7,8	15 267	15274	99.88 $4F_{9/2}$	$+0.03^{2}H_{11/2}$	$+0.02^{4}I_{11/2}$
	30	7,8	15335	15333	99.88 $4F_{9/2}$	$+0.04^{4}F_{5/2}$	$+0.03\,^{4}I_{11/2}$
	31	5,6	15380	15380	99.92 ⁴ $F_{9/2}$	$+0.04^{4}I_{11/2}$	$+0.01^{4}I_{15/2}$
${}^{4}S_{3/2}$	32	5,6	18355	18352	97.46 $^{4}S_{3/2}$	$+2.49^{4}H_{11/2}$	$+0.01\,{}^{4}G_{11/2}$
(18402)	33	7,8	18417	18420	98.78 $^{4}S_{3/2}$	$+1.11^{2}H_{11/2}$	$+0.04^{4}I_{9/2}$
$^{2}H_{11/2}$	34	5,6	19087	19091	99.56 ² $H_{11/2}$	$+0.24^{4}F_{7/2}$	$+0.04^{4}F_{9/2}$
(19155)	35	7,8	19110		99.83 ² $H_{11/2}$	$+0.04^{4}F_{7/2}$	$+0.03\,{}^{4}F_{9/2}$
	36	7,8	19 14 8	19 13 9	99.64 ² $H_{11/2}$	$+0.26^{4}S_{3/2}$	$+0.02^{4}F_{7/2}$
	37	5,6	19189	19183	97.78 $^{2}H_{11/2}$	$+1.92\,{}^{4}S_{3/2}$	$+0.22\,{}^{4}F_{7/2}$
	38	7,8	19 19 8	19 19 8	98.89 ² $H_{11/2}$	$+0.84^{4}S_{3/2}$	$+0.21\,{}^{4}F_{7/2}$
	39	5,6	19208	19220	99.28 ² $H_{11/2}$	$+0.53^{4}S_{3/2}$	$+0.09\,{}^{4}F_{7/2}$

TABLE IV. Energy levels of Er^{3+} in NaLa(MoO₄)₂.

 $B_{20} = 422$, $B_{40} = -507$, $B_{44} = 839$, $B_{60} = -116$, and
 $B_{64} = 409 + i158$ cm⁻¹. The results of this fitting procedure are given in Table III for Nd^{3+} :NLM and in Table IV for Er^{3+} :NLM. It was not possible to measure peaks for Er³⁺ past the 59th level because of the absorption edge of $\text{NaLa}(\text{MoO}_4)_2$ at around 370 nm.

Because NLM is a partially disordered host, in that the cation site is randomly occupied by Na or La ions, the linewidths are correspondingly broadened and the reported energy levels are only good to within 5 cm⁻¹. Thus, rms deviations lower than those already obtained would not be significant

We assume that the crystal-field parameter B_{kq} can be factored into a host-dependent crystal-field component A_{kq} and an ion-dependent quantity ρ_k :

$$
B_{kq} = \rho_k A_{kq} \tag{3}
$$

Values of ρ_k for each of the ions in the lanthanide series are given elsewhere.¹⁹ Using Eq. (3), we calculated experine given elsewhere. Using Eq. (5), we calculated experimental values for the evenfold A_{kq} from the tabulated ρ_k
and experimental best-fit B_{kq} for both the Er³⁺:NLM and Nd³⁺:NLM data sets. We averaged the r and the average values were used to compute B_{kq} 's for the entire lanthanide series, given in Table V.

Theoretical values for A_{kq} (denoted by A_{kq}^{theor}) are obtained from x-ray data by calculating lattice sums centered around the La (Na) site in the crystal structure. The effective charge on the La (Na) site, q_{La} was taken as $+2$ in units of the electron charge. The molybdenum charge, q_{Mo} and oxygen charge, q_{O} , were chosen such

$2S+1L_J$							
centroids	Level			Energy $(cm-1)$		Free-ion mixture	
(cm^{-1})	number	$\Gamma_n^{\ a}$	Theor.	Expt.		$(\%)$	
$^{4}F_{7/2}$	40	7,8	20466	20471	99.58 $4H_{7/2}$	$+0.13^{4}F_{5/2}$	$+0.13^{2}H_{11/2}$
(20522)	41	5,6	20488	20488	99.52 ⁴ $F_{7/2}$	$+0.39^{2}H_{11/2}$	$+0.02\, {}^{4}F_{5/2}$
	42	5,6	20559	20555	99.44 $^{4}H_{7/2}$	$+0.26\,{}^{4}F_{5/2}$	$+0.17^{2}H_{11/2}$
	43	7,8	20578	20576	99.72 ⁴ $F_{7/2}$	$+0.16^{2}H_{11/2}$	$+0.03\,{}^{4}G_{11/2}$
${}^{4}F_{5/2}$	44	5,6	22 15 2	22 153	98.15 ${}^4F_{5/2}$	$+1.50\,{}^{4}F_{3/2}$	$+0.23\,{}^{4}F_{7/2}$
(22175)	45	5,6	22 167	22 168	95.12 ⁴ $F_{5/2}$	$+4.71\,{}^{4}F_{3/2}$	$+0.07^{2}H_{11/2}$
	46	7,8	22 199	22 198	99.62 ⁴ $F_{5/2}$	$+0.13\,{}^{4}F_{7/2}$	$+0.07^{4}F_{3/2}$
${}^{4}F_{3/2}$	47	5,6	22501		93.65 $4F_{3/2}$	$+6.18\,{}^{4}F_{5/2}$	$+$ 0.11 ${}^4F_{7/2}$
(22513)	48	7,8	22 5 48	22 5 48	99.64 ${}^4F_{3/2}$	$+0.11^{4}F_{7/2}$	$+0.07^{4}F_{5/2}$
${}^{2}G_{9/2}$	49	7,8	24455		99.83 ² $G_{9/2}$	$+0.10^{4}G_{11/2}$	$+0.02^{2}K_{15/2}$
(24564)	50	5,6	24 5 42	24 5 40	99.54 ${}^2G_{9/2}$	$+0.22\,{}^{4}G_{11/2}$	$+0.19^{2}K_{15/2}$
	51	7,8	24 5 67	24 5 70	99.46 ² $G_{9/2}$	$+0.27^{4}G_{11/2}$	$+0.21^{2}K_{15/2}$
	52	5,6	24 5 7 5		99.54 ² $G_{9/2}$	$+0.22\,{}^{4}G_{11/2}$	$+0.18^{2}K_{15/2}$
	53	7,8	24 650	24 6 49	99.68 ² $G_{9/2}$	$+0.20^{2}K_{15/2}$	$+0.04^{4}F_{5/2}$
${}^4G_{11/2}$	54	5,6	26288	26288	98.80 ${}^4G_{11/2}$	$+0.70\,{}^{4}G_{9/2}$	$+0.30^{2}G_{9/2}$
(26377)	55	7,8	26295		99.15 ${}^4G_{11/2}$	$+0.30\,{}^{4}G_{9/2}$	$+0.23^{2}G_{9/2}$
	56	7,8	26342	26338	99.03 ${}^4G_{11/2}$	$+0.70\,{}^{4}G_{9/2}$	$+0.13^{2}G_{9/2}$
	57	5,6	26404	26392	99.62 ${}^4G_{11/2}$	$+0.12^{2}G_{9/2}$	$+0.08^{2}G_{7/2}$
	58	7,8	26456	26462	99.24 ${}^4G_{11/2}$	$+0.60^{2}K_{15/2}$	$+0.06\,{}^{4}G_{9/2}$
	59	5,6	26465	26476	99.56 ${}^4G_{11/2}$	$+0.20^{2}K_{15/2}$	$+0.15\,{}^{4}G_{9/2}$
${}^{4}G_{9/2}$	60	5,6	27438		94.46 $^{4}G_{9/2}$	$+3.98^{2}G_{7/2}$	$+1.29^{2}K_{15/2}$
(27478)	61	7,8	27444		95.44 ${}^4G_{9/2}$	$+2.83^{2}G_{7/2}$	$+1.47^{2}K_{15/2}$
	62	7,8	27487		97.65 ${}^{4}G_{9/2}$	$+1.54^{2}K_{15/2}$	$+0.49\,{}^{4}G_{11/2}$
	63	5,6	27 503		$97.76^{4}G_{9/2}$	$+0.85^{2}K_{15/2}$	$+0.72\,{}^{4}G_{11/2}$
	64	7,8	27515		98.14 ${}^4G_{9/2}$	$+1.24^{2}K_{15/2}$	$+0.42\,{}^{4}G_{11/2}$
${}^{2}K_{15/2}$	65	5,6	27551		97.17 ${}^2K_{15/2}$	$+1.44\,{}^{4}G_{9/2}$	$+1.24^{2}G_{7/2}$
(27800)	66	7,8	27552		95.40 ² $K_{15/2}$	$+3.23\,{}^{4}G_{9/2}$	$+1.19^{2}G_{7/2}$
	67	5,6	27808		96.85 ${}^2K_{15/2}$	$+3.00^{2}G_{7/2}$	$+0.08\,{}^{4}G_{9/2}$
	68	7,8	27818		92.10 ² K _{15/2}	$+7.56^{2}G_{7/2}$	$+0.18\,{}^{4}G_{9/2}$
	69	7,8	27855		76.92 ${}^2K_{15/2}$	$+22.62^{2}G_{7/2}$	$+0.22\,{}^{4}G_{9/2}$
	70	5,6	27 909		81.39 ² $K_{15/2}$	$+17.64^{2}G_{7/2}$	$+0.77^{4}G_{9/2}$
	71	7,8	27931		97.43 ² $K_{15/2}$	$+1.89^{2}G_{7/2}$	$+0.56\,{}^{4}G_{11/2}$
	72	5,6	27937		91.64 ² $K_{15/2}$	$+7.91^{2}G_{7/2}$	$+0.21\,{}^{4}G_{9/2}$
${}^{2}G_{7/2}$	73	7,8	28 007		89.51 ${}^{2}G_{7/2}$	$+8.74^{2}K_{15/2}$	$+1.57^{4}G_{9/2}$
(27981)	74	5,6	28017		81.29 ² $G_{7/2}$	$+15.86^{2}K_{15/2}$	$+2.72\,{}^{4}G_{9/2}$
	75	5,6	28031		84.10 ² $G_{7/2}$	$+14.18^{2}K_{15/2}$	$+1.51\,{}^{4}G_{9/2}$
	76	7,8	28037		73.85 ${}^2G_{7/2}$	$+23.79^{2}K_{15/2}$	$+2.18^{4}G_{9/2}$

TABLE IV. (Continued.)

^aIrreducible representation, Γ_n , of the S_4 group.

that the overall charge on the $(MoO₄)$ is -2 , giving $q_{\text{Mo}} = -2-4q_{\text{O}}$. The values for A_{kq}^{theor} are then obtained as a result of the lattice sum and are given by

$$
A_{kq}^{\text{theor}} = a_{kq} + q_{\text{O}} b_{kq} \tag{4}
$$

The optimum value for the oxygen charge q_0 is found by The optimum value for the oxygen charge q_0 is found by
minimizing the variance, $\sum_{k,q} [A_{kq}^{\text{theor}}(q_0) - A_{kq}^{\text{expt}}]^2$, with respect to q_0 . The value of the oxygen charge determined in this manner was $q_0 = -1.45$. This result is needed in order to calculate the oddfold crystal-field parameters, which are used in the intensity calculations.

The oddfold crystal-field components were determined The oddrond crystal-held components were determined
from Eq. (4) using $q_{\text{O}} = -1.45$. The odd-k A_{kq} were found to be $A_{32} = 849 - 1827$, $A_{52} = -1715 - 105$, A_{72} =39.1-i10.1, and A_{76} =-69.6+i75.5 cm⁻¹/Å^k. These oddfold A_{kq} were used in conjunction with the B_{kq} of Table V to calculate the Judd-Ofelt parameters, Ω_k , given in Table VI. In the calculation of the Ω_k , the aqueous centroids and the smoothed B_{kq} were used. The Ω_k for Nd^{3+} and Er^{3+} were also calculated using the best-fit B_{kq} and centroids, and as can be seen, the difference is insignificant.

IV. INTENSITY CALCULATIONS

Once the energy levels and wave functions have been computed, the matrix elements for electric dipole and magnetic dipole transitions, for both σ and π polarizations, between each of the levels can be computed. The ine strengths, designated by S_{ij}^{ED} and S_{ij}^{MD} for electric and magnetic dipole transitions, respectively, are calcu-

TABLE V. Theoretical crystal-field parameters.

B_{kq} (cm ⁻¹)							
Ion	B_{20}	B_{40}	B_{44}	B_{60}	B_{64}	Im B_{64}	
a A_{kq}	2758	-1217	1850	-119	419	201	
Ce	508	-917	1394	-278	982	472	
Pr	484	-787	1196	-223	787	378	
Nd	471	-703	1069	-189	667	320	
Pm	463	-650	988	-169	596	286	
Sm	460	-614	934	-157	554	266	
Eu	460	-589	895	-149	524	252	
Gd	460	-567	862	-141	498	239	
Tb	461	-546	831	-133	471	226	
$_{\rm Dy}$	464	-528	803	-126	445	214	
Ho	467	-513	780	-120	424	204	
Er	471	-502	763	-117	412	198	
Tm	475	-493	750	-115	405	194	
Yb	479	-479	729	-108	383	184	

 $A_{kq} = \frac{1}{2} [A_{kq}^{expt} (Nd) + A_q^{expt} (Er)]$ in units of cm⁻¹/Å^k.

lated as described by Leavitt and Morrison.²³ The radiative lifetime is defined by $2^{4,25}$

$$
\frac{1}{\tau_{ij}} = \frac{32\pi^3 \alpha}{3c^2} \left[\frac{n_{ij}(n_{ij} + 2)^2}{9} S_{ij}^{\text{ED}} + n_{ij}^3 S_{ij}^{\text{MD}} \right] v_{ij}^3 , \quad (5)
$$

where α is the fine structure constant and n_{ij} is the index of refraction at the wavelength λ_{ii} .

The index of refraction of NLM was measured by Bakhshieva, Karapetyan, and Morozov²⁶ using the prism method. 27 They report that instead of the anticipated simple double refraction pattern for an optically uniaxial crystal (two lines corresponding to n_0 and n_e), a superposition of lines is observed, from which they extract a single value for the index of refraction. They report an average value for the index of refraction for five different wavelengths. We have fit their data to the following Sellmeier's dispersion relation:

$$
n^2 = 1 + \frac{A\lambda^2}{\lambda^2 - B} \tag{6}
$$

and obtained $A = 2.732 \pm 0.005$ and $B = 0.0262 \pm 0.0003$ μ m² in a least-squares fit to the data.

The index of refraction has been reported more recently in the literature by Protasova *et al*.²⁸ using an immersion method. They also report only a single value for n at each wavelength. A least-squares fit of their data to the same dispersion relation gives $A = 2.65 \pm 0.013$ and $B = 0.030 \pm 0.001 \ \mu m^2$.

In making theoretical predictions of radiative lifetimes and other physical parameters from the calculated lineto-line transition probabilities, we need to have the index of refraction as a function of wavelength. We use an index of refraction based on the average of these reported values: $A_{av} = 2.7$ and $B_{av} = 0.028 \ \mu \text{m}^2$.

The branching ratio as a function of temperature is given by

$$
\beta_{ij} = \frac{\frac{Z_i}{\tau_{ij}}}{\sum_{i,j} \frac{Z_i}{\tau_{ij}}},
$$
\n(7)

where the temperature dependence is introduced through the partition function, Z, by assuming the levels of the pumped multiplet are in thermal equilibrium

$$
Z_{i} = \frac{g_{i} \exp\left(\frac{E_{i}}{kT}\right)}{\sum_{i'} g_{i'} \exp\left(\frac{E_{i'}}{kT}\right)} \tag{8}
$$

TABLE VI. Calculated Judd-Ofelt intensity parameters Ω_k (10^{-20} cm^2) of rare-earth ions in the La site of NaLa(MoO₄)₂^a

Ion	Ω ,	Ω_4	Ω_6
Ce	0.3570	3.161	21.64
Pr	0.1998	1.596	9.211
Nd	0.1926	1.013	5.052
Nd ^b	0.1926	1.014	5.054
Pm	0.1115	0.7855	3.885
Sm	0.09722	0.6640	3.217
Eu	0.07691	0.5124	2.273
Gd	0.06018	0.3910	1.567
Tb	0.1051	0.6741	3.829
Dy	0.07730	0.4794	2.373
Ho	0.063 11	0.3810	1.731
Er	0.060 51	0.3592	1.633
Er^b	0.060 51	0.3593	1.634
Tm	0.05886	0.3445	1.579
Yb	0.04970	0.2822	1.202

^aSmoothed B_{kq} and aqueous centroids.

^bBest-fit B_{kq} and centroids.

In these equations, i refers to a level in the upper (pumped) multiplet, j refers to ^a level in the lower multiplet, and g_i is the degeneracy of level i.

V. RESULTS AND DISCUSSION

The computer output containing line-to-line transition probabilities contains an overwhelming amount of information, and it is not practical to include all the results here. We have restricted our analysis to a few multiplets of particular interest. For each pair of multiplets considered, we computed the branching ratios for all possible line-to-line transitions and sorted out the strongest transitions at a given temperature.

For Nd^{3+} , we considered the transitions originating at the ${}^{4}F_{3/2}$ level and ending on the four lower multiplets:
 ${}^{4}I_{9/2}$, ${}^{4}I_{11/2}$, ${}^{4}I_{13/2}$, and ${}^{4}I_{15/2}$. We have used Nd³⁺ in some respects as a test case, because Nd^{3+} has been studied extensively in many hosts, and its lasers properties are well known. The multiplet branching ratios are shown schematically in Fig. 3 for Nd³⁺:NLM from the ${}^{4}F_{3/2}$ multiplet.

Stimulated emission of Nd^{3+} is reported by the same groups reporting energy levels in $Nd^{3+} : NLM$.^{7,29} Unlike Nd^{3+} :YAG, the $^{4}I_{11/2}$ multiplet in NLM is inhomogeneously broadened, and some of the individual Stark components are not well resolved. The fluorescence spectra in Fig. 2 illustrate the qualitative differences in the spectra. There was some discrepancy in the assignment of the Stark levels observed in fluorescence in the ${}^{4}I_{11/2}$ manifold, leading to ambiguity in assigning the initial and terminal levels of the fluorescence transitions. Both sets of experimental measurements^{7,29} and the theoretical calculations identify the shortest wavelength transition between the ${}^{4}F_{3/2}$ and ${}^{4}I_{11/2}$ manifolds (level 28 to level 6) at 1.053 μ m. All level numbers correspond to the numbering of the levels in Tables III and IV. The most intense fluorescence occurs at longer wavelengths than the

FIG. 4. Line-to-line branching ratios as a function of temperature for transitions originating at the ${}^4F_{3/2}$ multiplet of Nd³⁺ in NaLa($MoO₄$)₂. The transitions shown are the three strongest transitions at room temperature.

28 to 6 transition. Harper identifies the two strongest transitions in this region at 1.0578 and 1.0658 μ m. Morozov et al. also identify strong transitions in this region at 1.0597 and 1.0645 μ m, but note that the observed relative intensities depend on Nd^{3+} concentration and pump power. Our calculations indicate that the strongest transitions in this region should be 27 to 9 (1.0689 μ m) and 27 to 8 (1.0645 μ m). The temperature-dependent branching ratios from this analysis are shown in Fig. 4 for the three strongest transitions sorted at room temperature.

For Er^{3+} we have analyzed transitions between the two lowest multiplets $({}^{4}I_{13/2}$ to ${}^{4}I_{15/2})$ with wavelengths in the eye-safe spectral region. A plot of the temperature dependence of the strongest transitions is shown in Fig. 5. Two transitions (10 to 4 at 1.595 μ m and 10 to 7 at 1.546 μ m) increase in strength as the temperature is lowered. The strongest transition at room temperature is 13 to 2 at .504 μ m. Since level 2 is only 18 cm⁻¹ above the ground state, and thus significantly thermally populated at room temperature, this transition is of less interest for laser applications, particularly for cw lasers. As far as we

FIG. 3. Multiplet branching ratios for transitions originating at the ${}^4F_{3/2}$ multiplet of Nd³⁺ in NaLa(MoO₄)₂. Experimentally measured values are from Harper and Thornton⁷ and are indicated by superscript a.

FIG. 5. Line-to-line branching ratios as a function of temperature for transitions originating at the ${}^{4}I_{13/2}$ multiplet of Er^{3+} in NaLa($MoO₄$)₂. The transitions shown are the two strongest transitions at room temperature and the two strongest transitions at low temperatures (liquid nitrogen temperature and below).

know, no measurements of stimulated emission of $Er³⁺:NLM$ have been reported.

The numerical agreement between experimental measurements and theoretical predictions of the multiplet branching ratios is very close. This is consistent with the close agreement of the two sets of Judd-Ofelt parameters for Nd^{3+} and Er^{3+} given in Table VI, based on the two sets of centroids. The results of the multiplet branching ratios are not sensitive to accurate placement of the centroids. The energy difference of two lines is sensitive to the positions of the Stark levels, so the wavelength of the emitted light in the line-to-line calculations is sensitive to the accurate placement of the centroids. However, the qualitative behavior may be predicted accurately based on the crystal-field parameters given in Table V and centroids taken from measured spectra of the ions in aqueous solution. The results of these calculations suggest that the computer techniques outlined in the paper can also be used to predict the behavior of other rare-earth ions in this host material.

ACKNOWLEDGMENTS

This research was sponsored by the Center for Night Vision and Electro-Optics at Ft. Belvoir, VA, where the optical absorption and fluorescence measurements were performed. S.B.S. wishes to thank the National Research Council for financial support.

- ¹W. P. Risk and W. Lenth, Opt. Lett. **12**, 993 (1987).
- 2T. H. Allik, W. W. Hovis, D. P. Caftey, and V. King, Opt. Lett. 14, 116 (1989).
- S. R. Bowman, B.J. Feldman, J. M. McMahon, A. P. Bowman, and D. Scarl, in Tunable Solid State Lasers, OSA Proceeding Series, edited by M. L. Shand and H. P. Jenssen (Optical Society of America, Washington, D.C., 1989), Vol. 5, pp 108-111.
- ⁴For recent advances in Er^{3+} , Tm^{3+} , and Ho^{3+} lasers, see Digest of Topical Meeting on Advanced Solid-State Lasers, Salt Lake City, Utah, 1990 (Optical Society of America, Washington, D.C., 1990).
- 5J. J. Zayhowski, J. Ochoa, and A. Mooradian, Opt. Lett. 14, 1318 (1989).
- ⁶J. J. Zayhowski and A. Mooradian, Opt. Lett. 14, 24 (1989).
- ⁷L. L. Harper and J. R. Thornton, Technical Report No. AFALTR-72-38, Air Force Avionics Laboratory, WPAFB, 1972 (unpublished).
- 8G. M. Zverev and G. Ya. Kolodny, Zh. Eksp. Teor. Fiz. 52, 337 (1967). [Sov. Phys. JETP 25, 217 (1967)].
- ⁹A. M. Morozov, M. N. Tolstoi, and P. P. Feofilov, Opt. Spektrosk. 22, 258 {1967)[Opt. Spectrosc. (USSR) 22, 139 (1967)].
- ¹⁰S. A. Pollack, D. B. Chang, and N. L. Moise, J. Appl. Phys. 60, 4077 (1986).
- ¹¹V. K. Trunov, A. A. Evdokimov, T. P. Rybakova, and T. A. Berezina, Russ. J. Inorg. Chem. 24, 93 (1979).
- 12 T. Zoltai and J. H. Stout, Minerology (Burgess, Minneapolis 1984), p. 445.
- ¹³G. M. Sheldrick, SHELXTL User's Manual, Revision 5.1, Nicolet Corporation, Madison, WI, 1986.
- ¹⁴International Tables for X-ray Crystallography, edited by N. Henry and K. Lonsdale, (Kynoch, Birmingham, England, 1969), Vol. I.
- ¹⁵T. H. Allik, S. A. Stewart, D. K. Sardar, G. J. Quarles, R. C. Powell, M. R. Kokta, W. W. Hovis, and A. A. Pinto, Phys.

Rev. B 37, 9129 (1988).

- ¹⁶T. H. Allik, C. A. Morrison, J. B. Gruber, and M. R. Kokta, Phys. Rev. B 41, 21 (1990).
- ¹⁷B. G. Wybourne, Spectroscopic Properties of Rare Earths (Wiley, New York, 1965).
- 18W. T. Carnall, P. R. Fields, and K. Rajnak, J. Chem. Phys. 49, 4412 (1968); 49, 4424 (1968); 49, 4443 (1968); 49, 4447 (1968); 49, 4450 (1968).
- ¹⁹C. A. Morrison and R. P. Leavitt, J. Chem. Phys. 71, 2366 (1979).
- $20C.$ A. Morrison, Angular Momentum Theory Applied to Interactions in Solids, Lecture Notes in Chemistry Vol. 47, (Springer Verlag, New York, 1988).
- $21D.$ E. Onopko, Spektroskopiya Tverdogo Tela (Nauka, Moscow, 1969), Vol. IV, p. 15.
- $22C$. A. Morrison and R. P. Leavitt, in Handbook on the Physics and Chemistry of Rare Earths, edited by K. A. Gschneidner and L. Eyring (North Holland, New York, 1982), Vol. 5.
- $23R$. P. Leavitt and C. A. Morrison, J. Chem. Phys. 73, 749 (1980).
- 24S. Hufner, Optical Spectra of Transparent Rare Earth Com pounds (Academic, New York, 1978).
- 25E. D. Filer, C. A. Morrison, N. P. Barnes, and G. T. Turner, in Aduanced Solid State Lasers, OSA Proceeding Series (Optical Society of America, Washington, D.C., in press).
- ²⁶G. F. Bakhshieva, V. E. Karapetyan, and A. M. Morozov, Opt. Spektrosk. 20, 918 (1966) [Opt. Spectrosc {USSR)20, 510 (1966)].
- W. L. Bond, J. Appl. Phys. 36, 1674 (1965).
- ²⁸V. I. Protasova, B. M. Ayupov, L. Yu. Kharchenko, L. P. Koseeva, and V. F. Nesterenko, Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk (1), 58 (1989).
- ²⁹A. M. Morozov, M. N. Tolstoi, P. P. Feofilov, and V. N. Shapovalov, Opt. Spektrosk. 22, 414 (1967) [Opt. Spectrosc. (USSR) 22, 224 (1967)].