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Energy spectra of two electrons in a harmonic quantum dot
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The laterally confining potential of quantum dots on semiconductors is approximated by a two-
dimensional harmonic-oscillator well. The discrete level diagram for two interacting electrons in
this potential is calculated in the effective-mass approximation as a function of the dot size and the
strength of a magnetic field directed perpendicularly to the dot plane.

Quantum dots in which only a few electrons are bound
at semiconductor interfaces have been accomplished re-
cently by advanced technologies. ' These atomiclike few-
electron systems arise when homogeneous two-
dimensional electron gases of heterojunctions or metal-
oxide-semiconductor (MOS) structures are laterally
confined to diameters comparable to the effective Bohr
radius of the host semiconductor. Such lateral widths are
still much larger than the extensions of the wave func-
tions in the growth direction of the underlying planar
semiconductor structure. Hence, quantum dots may be
treated as atorniclike disks.

Experimentally, quantum dots have been studied by
vertical tunneling, in-plane transport, capacitance
versus voltage curves, as well as by far-infrared spectros-
copy. The descriptions of all these experiments have
successfully been based on a harmonic shape of the la-
terally confining potential, i.e., on a two-dimensional os-
cillator effective in the plane of the dots. In this Brief Re-
port we calculate the level diagram for two electrons in
such a harmonic potential. We fully include the
Coulomb interaction and allow for magnetic fields that
are applied perpendicular to the plane of the dots.
Though this case of two electrons represents the simplest
nontrivial problem with regard to the electron number, it
has not been treated previously. However, our results
can be compared to the ones of the pioneering work of
Bryant for two electrons in a quadratic quantum-well
box with infinite barriers and to the more recent work of
Maksym and Chakraborty who numerically treated
three and four electrons in disklike GaAs quantum dots
with harmonic confinement potentials.

We proceed in three steps. First, the problem is con-
sidered in the absence of a magnetic field taking into ac-
count the Coulomb interaction between the two electrons
by first-order perturbation theory. This approach pro-
vides a good description as long as the dot radius is much
less than the effective Bohr radius. It also allows for a
straightforward classification of the corresponding states
in terms of orbital quantum numbers, total spins, and de-
generacies. Subsequently, we numerically calculate the
spectra for a wider range of dot sizes. Finally, the Zee-
man splittings in magnetic fields of arbitrary strength are

included.
We consider two electrons with effective masses m ' in

the z =0 plane which are confined by a two-dimensional
harmonic potential of characteristic frequency coo or
length lo =(fi/m coo)'~ . Their Hamiltonian can be
separated into two parts that represent the center of mass
and the relative motion, respectively:
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with the abbreviation x =V'2 R /lo and the azimuthal an-
gle cp.

" These eigenfunctions and the eigenenergies

E, = (2%+
I Ml + 1)A'coo

depend on the radial (X =0, 1, . . . ) and the azimuthal
(M =0, +1, . . . ) quantum numbers. I.& ! are generalized
Laguerre polynomials. " The eigenfunctions and energies
for the relative motion are of the same form, if we ignore
the Coulomb interaction for the moment, and replace
x =&2R /lo by r/& l 2aos a consequence of the different
masses M and p. For the relative motion we write the
quantum numbers with small letters, n and m and so have
the energies E„=(2n + ~m

~
+ 1)fitoo in zeroth order.

The Coulomb matrix obviously is diagonal with respect
to the quantum numbers X and M of the center-of-mass
motion. Moreover, it is also diagonal in the angular
momentum mA. Therefore, we can employ nondegen-
erate perturbation theory. As a further consequence of
the conservation of m, we have singlet (S =0) and triplet

Accordingly, we have the center-of-mass coordinates
R=(r&+r2)/2 and P=p&+pz, and the total mass
M =2m *, as well as -the relative coordinates r =r, —r2
and p =

(p&
—p2)/2 and the reduced mass p = m */2.

Also, there is the dielectric constant e of the host semi-
conductor. ' The exact eigenfunctions of the center-of-
mass motion read

1/2
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TABLE I. First-order Coulomb energies E"' for two electrons in a two-dimensional harmonic-
oscillator potential. The states are labeled by their degeneracy factor g, total spin S, as well as by the
quantum numbers (n, m) of the relative and (X,M) of the center-of-mass motion. Energies E' ' for the
noninteracting electrons are given in units of the oscillator energy %coo; first-order Coulomb correctionsE"' in terms of the one of the ground state, namely (m% %coo)'
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(S =1) states for even and odd numbers m, respectively.
Classification of states and analytical results for the
Coulomb interaction energy calculated in first order are
given in Table I. Note that one can readily formulate di-
mensionless Coulomb energies in terms of the ratio of os-
cillator length lo and effective Bohr radius a* using the
relation 10/a *=(2%*/A'coo)'~ .

Perturbation theory is only valid as long as the ratio
lo/a is less than unity. At present, this situation can
only be realized on InSb (a *=67 nm) whereas on GaAs
(a*=10 nm) one typically has quantum dots with values
lo/a *—10. To describe larger dots, we have numerically
diagonalized the exact problem, i.e., we take fully into ac-
count the Coulomb interaction. Since we use a two-
particle wave function, the exchange is included automat-
ically. Typically, for fixed angular momentum m ~A' ma-
trices of size 50X50 in the label n are needed to obtain
convergent eigenenergies. Numerical problems due to
cancellation effects are overcome by an algebraic pro-
gramming system. The result for lower-lying states is de-
picted in Fig. 1. It is worth noting that as the dot size in-
creases, the absolute energies decrease roughly propor-
tional to the inverse of the squared oscillator length Io
This becomes clear from the inset of Fig. 1 where the
ground-state energy is normalized with the Rydberg con-
stant and from the markedly different energy scales in
Fig. 2. This figure once more shows the level structure
for three distinct values lo/a*. The arrows indicate the
fundamental dipole excitation whose energy is always
given by the bare energy Acuo in accordance with the gen-
eralized Kohn theorem. '

Most experiments on quantum dots have employed
homogeneous magnetic fields 8 perpendicular to the dot
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FIG. 1. Lateral eigenenergies for two electrons in a
harmonic-oscillator well. The energies are normalized with the
oscillator energy %coo and are given vs the ratio of oscillator
length Io and effective Bohr radius a*. The inset shows the
ground-state energy in units of the effective Rydberg constant
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TABLE II. Selection rules, matrix elements D, and frequen-
cies co of dipole transitions (N, M)~(N', M') for quantum dots
in the harmonic well approximation. The matrix elements are
proportional to the length L =[Pi/(co', /4+coo)'~ m *]'~~ and the
electron number no R. esonances co+=[(cu, /2) +coo]' +co, /2
are excited with the two corresponding circular light polariza-
tions.

N, IMI+1
N+ 1, IMI —1

(N+ IMI+1)'"Ln,
1)&nL, n

M'(0

selection rules and dipole matrix elements and applies for
any electron number.

The Coulomb matrix elements in magnetic fields differ
from the ones of the zero field case only by the factor
[I+(co, /2coo) ]

' . In Figs. 3(a) and 3(b) resulting Zee-
man splittings are shown. For clarity reasons we omit
spin splittings g*p~BS, that may be described by an
effective Lande factor g*, i.e., we only draw levels with
spin components S, =O. In the limit lo/a'=0 of Fig.
3(a) the Coulomb interaction can be ignored. Then the
levels rearrange in increasing magnetic fields in a relative-
ly simple way in order to form Landau states of two in-

dependent electrons in infinitely strong fields. At any
finite ratio co, /coo, however, we have a multitude of
Landau-like ladders each of them with the step spacing
A~+. These ladders are piled up in distances Ace on top
of each other. Therefore, the gaps that appear between
successive groups of states in Fig. 3(a) only are a conse-
quence of our restriction to the four lowest levels E' ' at
B =0. In the presence of the Coulomb interaction, the
degeneracy of levels is lifted further, as becomes clear
from Fig. 3(b). The same spectrum as in Fig. 3(a) is im-

posed on each particular level of the relative motion de-

scribed by the quantum numbers (n, m). This results in
the rather complex spectrum of Fig. 3(b). Note that the
ground state (n, m, N, M)=(0, m, 0,0) changes its charac-
ter (m =0, —I, —2, . . . ) when the strength of the mag-
netic field increases.

Our analysis provides the simplest explicit example for
the generalized Kohn theorem which states that the di-
pole resonance frequencies of an electron system with
harmonic confinement are independent of the electron
number as well as of the particular form of the electron-
electron interaction. ' The dipole frequencies are al-
ways given by the single-particle values co+ of Eq. (5).
The generalized Kohn theorem remains valid in the pres-
ence of a magnetic field as long as the spin Hamiltonian is
of the simple form presumed above. However, it will be
violated when spin-orbit interaction mixes singlet and
triplet states. The same is true for conduction-band non-
parabolicity with its higher powers of the momentum
operator.

To conclude, we have calculated the discrete energy
spectra for two electrons in a two-dimensional harmonic
well that serves as a simple but suitable model for quan-
tum dots on semiconductor interfaces. The most appeal-
ing feature of quantum dots as compared to other atomic-
like systems like donors in semiconductors is the tunabili-
ty of their size and electron number by technological
means. Taking this point of view, we have determined
the eigenenergies and Zeeman splittings of quantum dot
helium as a function of its size.

Note added in proof. After the submission of this pa-
per, we became aware of a publication by Kumar, Laux,
and Stern, ' who self-consistently calculated levels of up
to more than 10 electrons. They found that a harmonic
confinement potential is indeed a very good approxima-
tion in real samples.
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