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Modulational instability and gap solitons in a finite Josephson transmission line
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We concentrate on the modulational instability that may develop and perturb the gap soliton or
nonlinear standing wave that appears in a finite Josephson transmission line [Phys. Rev. B 41,
10 387 (1990)] when it has switched to a transmitting state. We first calculate theoretically the spa-
tial dependence of the gap-soliton envelope or nonlinear standing wave inside the system, in terms
of Jacobi elliptic functions. Our results fit reasonably well the envelope measured via our computer
experiments on the dynamics of the system. Approaching the standing-wave structure in terms of
two counterpropagating waves, we show that the evolution of their slowly varying amplitudes can
be modeled by two coupled nonlinear Schrodinger equations. Then we calculate the critical wave
number and growth rate of the instability for the two counter waves, which is three times larger
than the growth rate of either wave alone. The corresponding critical temporal frequency, at which
the modulational instability may appear, is in good agreement with the value determined from our
numerical experiments.

I. INTRODUCTION co(b,„—+P —P /6=0, (2.1)

There is currently a great deal of interest in the non-
linear response of physical systems. Particularly, exciting
e6'ects due to the nonlinear behavior of systems with
artificial gaps, as, for example, modulated structures and
superlattices, have been recently investigated. ' In this
context, in a recent publication' we have examined the
transmission properties in the natural gap of a simple sys-
tem constituted by a Josephson transmission line (JTL) of
finite length. We have shown that the nonlinear
transmittance exhibits bistability and hysteresis and can
approach unity once the amplitude of the incident
sinusoidal wave is greater than a certain threshold which
is frequency dependent and also decreases with the length
of the system. Moreover, a breathing standing wave,
which is the so-called gap soliton, appears as soon as the
system has switched to a transmitting state. However, in
our computer experiments on the dynamics of wave
transmission through the JTL we have observed that
modulational instability Inay appear and perturb the
dynamical behavior of the gap soliton.

In this paper we concentrate on the gap-soliton en-
velope and the modulational instability. First, we calcu-
late theoretically the gap soliton envelope. Second, we
investigate theoretically the modulational instability con-
ditions in terms of two coupled counterpropagating
waves. In both cases our theoretical results are compared
with those of our computer experiments.

II. CALCULATION OF THE GAP-SOLITON ENVELOPE

As in our previous paper, ' we consider a lossless JTL
of finite length X modeled by a continuous electrical
transmission line, which is intercalated between two
linear nondispersive transmission lines (I) and (III). In
the low-amplitude limit the sine-Gordon equation which
describes the evolution of the Josephson quantum phase
P, can be approximated by

where x and ~ are scaled space and time variables. The
solution of (2.1) may be expressed as a superposition of
forward and backward propagation waves of angular fre-
quency co, wave numbers k+ and k, and slowly varying
amplitudes f+ and lb which approximatively obey the
following nonlinear dispersion relation:

k+= ' —1+ @ +fq-/'
Cp 2

k = co' —1+ + i@+i'
Cp 2

1/2

' 1/2 (2.2)

We know that the gap soliton exists as soon as the system
has switched to a transmitting state. We limit our calcu-
lation of the gap-soliton envelope to the case where the
transmittance is unity:

~
T~ =1 (point Q2 on Fig. 1); note

that Fig. 1 which shows the transmittance of the JTL
versus the amplitude ~lb;+„~ of the incident wave, corre-
sponds to Fig. 6 in our previous paper. It is reproduced
here for the sake of clarity.

We now follow a calculation similar to that used by
Chen and Mills for optical systems, to determine
theoretically the voltage envelope of the gap soliton (non-
linear standing wave) inside the JTL. We assume that the
incoming wave in linear line (I) has frequency co, wave
number ko, amPlitude lbo, and velocity co=to/ko. Then,
we look for a stationary solution of Eq. (2.1) of the form

P(x, r)=gza(x)expIi[/3(x) —cor]I (2.3)

where the amplitude a(x) and the phase P(x) are real.
Upon substituting (2.3) in (2.1), taking account of the
boundary conditions at x =0 and x =X and setting
I(x)=a (x), after calculations similar to Chen and Mills
we get
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Flax. 1. Representation of the transmittance ~T~ of the JTL
vs the amplitude ~I(;„~ of the incident wave (see also Fig. 6 in
Ref. 10).

FIG. 2. One period of the gap-soliton envelope represented
by the spatial dependence of the modulus ~v (x)

~
of the voltage

along the JTL. The theoretical (curve I), experimental (curve
III), and the calculated envelope (curve II) are compared.

I(x) dI 4o„dx
t'o' +(I+ I)(I —1)(I—I ) —P co

where

+ 1I =(——
Po

—4(co —1 )
2/2

+[[go+4(ro —1)] +16/pro ]'~2) .

(2.4a)

(2.4b)

The agreement is not so good when one compares curves
II and III: one observes a shift which is attributed to the
approximation we have made when using the characteris-
tic matrix method in assuming, by contrast to the above
theoretical calculation, that the amplitudes g—were prac-
tically constant inside the JTL.

III. MODULATIONAL INSTABILITY

where

+ — +
(I+ I ) I (I+——1 )sn—[g(x) ~p]
(I+ I ) —(I+ —1—)sn [g(x) ~p]

(2.5a)

We also have the condition I &1&I+, because we
limit our study to small amplitudes go((l and to fre-
quencies inside the gap, co &cop=1. The integral on the
left-hand side of (2.4) may be expressed in terms of Jacobi
elliptic functions with modulus p:

For numerical experiments, after the JTL has switched
to a transmitting state and when the amplitude of the in-
cident wave is further increased to approach a second
bistable state (Fig. 1), modulation instability in the
Benjamin-Feir sense" may occur. Namely, at a given
point of the JTL, instead of remaining constant, the am-
plitude of the voltage becomes instable as time increases.
To analyze this modulation instability, we use the
multiple-scales perturbation method. ' ' We assume

g(x) = ( I/I+ I )x, p = —
+

Ito +, I+ —1

2cp I+ —I (2.5b) 4 =0o+c0i+&'6 (3.1)

From expressions (2.5a) and (2.3) we can now calculate
P(x) which is spatially periodic of period 2K(p), where
K(p) is an elliptic integral of first order. Then from the
Josephson equation which relates the Josephson phase to
the voltage, v(x, r)=BPIBr, we calculate the modulus

~
v (x)

~
of the voltage along the JTL, which is represented

versus x (curve I) in Fig. 2. Here the parameters are
co=0.99, co=4.47, and %=60. We have represented
only one period of the gap-soliton envelope inside the
JTL which corresponds to state (Qz) of Fig. 1. For the
next switching one will obtain two periods and so on.
The theoretical results are compared to those resulting
from our numerical experiments on the dynamics of wave
transmission through the JTL and also to those we have
calculated previously' by using the characteristic matrix
method (curve II). The theoretical envelope (curve I) fits
reasonably well the experimental envelope (curve III).

where e«1, and introduce the slow space and time
independent variables x„=e"x, ~„=e"t. According-
ly, the field i))(x, r) in (2.1) is regarded as
P(xp x i ~ ~ ~

'
tp t i ~ . . ) and the derivative operators

i)/Bx and 8/iver are expanded in terms of 8/Bxo,
3/Bx &, . . . and 8/87p 0/O'T& ~ . . Then, instead of con-
sidering a one-wave stationary solution of the form (2.3)
we now look for a solution of (2.1) which is the sum [like
that for deriving the nonlinear dispersion relations (2.2)]
of two counterpropagating waves with slowly varying
amplitudes P and g

P(x, r)=Q+(xi, x2, . . . , t„t2, . . . )exp(ig+)

+1t' (x&,x2, . . . , t&, tz, . . . )exp(i8 )+c.c. ,

(3.2)

where 0+=kxp —cotp and 0 = —kxp —cotp, to order e
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we find the following two coupled amplitude equations:

ac+
gBt

g2@+

Bx i

+Q(lq I'+2lq-I')y =o,
a@-

' a, ' a-, +P "@
Bx i

+Q(l@ I'+21/ I )g =0, (3.3b)

where V is the group velocity, P the group velocity
dispersion, Q a nonlinear coefficient:

co —V2 2

V =(k/co)c20, P =— Q=
2 Bk 2Q)

(y, )„+P'(y, )...+2QPlyo I'(q, )..
+4QPQ P+(g+) „=0 . (3.7b)

f~ =exp(iyx +at), (3.8}

where y is the wave number of the perturbation. Substi-
tuting (3.8) in (3.7) provides a set of two homogeneous
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(a)

In order to look under which conditions the perturba-
tions will become instable, i.e., will grow exponentially
with time with linear growth rate o., we assume a general
solution of the form

(3.4)

We are considering frequencies close to the linear
cutoff frequency coo=1, consequently V is small and the
terms V (Bg+/Bx2) and —V (Bf /Bx2), which are an
order of e smaller than derivatives in x

&
may be neglect-

ed. It follows that Eqs. (3.3) are approximated by two
standard coupled nonlinear Schrodinger (NLS) equations.
To simplify the notation, in the following we set t2=t
and x& =x. The modulation instability of copropagating
waves with finite amplitude satisfying coupled NLS equa-
tions was recently investigated. ' ' However, here we
consider the case of two counterpropagating waves. NLS
equations possess equilibrium solutions with constant am-
plitudes go and go which are oscillatory in time, given
by

Q)

aj
~1 ~l .1 ~l «I «&I u! JI ul 3 ! ! &I ]it l«l ~1 gl «1
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P+(x, t)=$0 exp[i (Ql@o+I +2Q!$0 I )t],
(x, t)=go exp!i'(Ql@o !2+2QI@o+I }t] .

(3.5a)

(3.5b)
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To investigate the stability of solutions (3.5) we consid-
er small perturbations P+ and P, K+ and K around
their amplitudes and phases:

(x, t) =(&0++&+ )exp t'(Qlgo+ I'+2QI@0 I' )t

300—

e

A 800—

G)p —LG) 4)p+66)

+i JK (x, t)dx, (3.6a)

i00—

(x, t) =($0 +g~ )exp i (2Q!$0+ I'+Qlgo I' }t

+i JK~ (x, t)dx . (3.6b)

0 & z atJ i;'. . & Ii, i . &.. I . &. ~ ii I as. III i ~ r ~

0 i 8 3
Frequency ~

We substitute Eqs. (3.6) in the NLS equations and after
some calculations we find that small perturbations of the
equilibrium evolve according to the linearized equations

(g,+ )„+P'(P,')„„„„+2QPIgo+ I'(g,' },
+4QP@0 $0 (g„)„=0, (3.7a}

FIG. 3. (a) Representation of the voltage V vs time ~ when
modulational instability develops as a function of time at a
given point of the JTL. Note that as a result of the digital sam-
pling the maximum amplitude, which is constant and equal to
one, seems to be modulated. (b) Fourier spectrum showing the
lateral peaks at frequencies (~+Eau) and (co—A~) which corre-
sponds to the modulation observed in (a). Note that the third
harmonic at 3'~ is small.
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equations, which have nontrivial solutions only if the
determinant of the coefficient matrix vanishes. We finally
obtain the maximum growth rate and the corresponding
critical wave number which are, respectively, given by

g+ g+
~c

~
& +e ~p

where

g+ g ( /q+/2+ /@
—

/2)+ [g2( /q +/2 [@
—

/2)2

+ 16g2(q+q —)2)I/2

(3.9)

(3.10)

To simplify and to compare in the following with our
numerical experiments we now assume that the two
counterpropagating waves have the same wave number
k =k+ =k . Under these conditions, relations (2.2)
reduce to

co =I+cok —
—,'iform (3.11)

Idol X = Idol
=3 2 2= 3

(3.12)

At this point it is important to note that if ~Po ~
=0, rela-

tions (3.9) reduce to the well-known relation which gives
the instability growth rate for one wave alone,
o, =~go+~ /4'. It follows that the growth rate of two
counter waves is three times larger than the growth rate
of either wave alone. '

We now turn our attention to the manifestation of
modulation instability in our dynamical simulation exper-
iments in connection with the preceding theoretical re-
sults. If a sinusoidal wave of frequency co& is launched at
the input of the JTL modulational instability generally
develops in time at a given point, as represented on Fig.
3(a), when the state of the system approaches the second
bistable state (point P& on Fig. 1). In fact, for this state
the amplitude and consequently cr, [given by (3.12)] are
large enough. Moreover, the discontinuity created by the
first switching, in the amplitude ~f;„~ of the incident
wave, has a Fourier spectrum rich in harmonics. Among
all these harmonics the system will select more likely the
harmonic with a spatial frequency corresponding to y„

with
~ go~

=
~ Po ~

=
~
go+

~
. Then, using the expression of

Q given in (3.4), and replacing (3.11) in (3.10), from (3.9)
we obtain

and modulational instability will develop. To the critical
spatial frequency corresponds a temporal frequency co,
which is approximated by co, =g, V~. We have per-
formed a numerical experiment with a JTL of length
Ã =120 unit cells; the parameters of the incident wave
are co=8.94, co=co =0.99, ~P;+„~=0.68. The corre-
sponding value of k is first determined by measuring the
wavelength of the incident wave, when in the experiment
modulational instability has not yet appeared. Under
these conditions we find k =0.039. Then, using (3.4) and
(3.11), we get successively Vg =3.17,

~ go ~

=0.31 and the
theoretical value of the frequency at which modulational
instability may appear is co, =0.143. When modulation
instability occurs, the experimental value of the critical
frequency can be determined from the Fourier spectrum
of the self-modulated wave, as represented in Fig. 3(b).
Note that as a result of the digital sampling, the Fourier
spectrum seems to be asymmetric. We find

(co, ),„~=bc@=0.120. With respect to the approximations
we have made, the agreement between theory and com-
puter experiment is rather good.

IV. CONCLUSION

Following a method similar to that used by Chen and
Mills for optical systems, we have calculated theoretical-
ly the spatial dependence of the voltage envelope of the
low-amplitude gap soliton or nonlinear standing wave in-
side the JTL, in terms of Jacobi elliptic functions. The
theoretical envelope fits reasonably well the experimental
envelope measured via our computer experiments on the
dynamics of the system.

Approaching the standing wave structure in terms of
two counterpropagating waves, we have shown that the
evolution of their slowly varying amplitudes can be
modeled by two coupled NLS equations. Then, we have
calculated the modulational instability conditions, i.e.,
the growth rate and the corresponding critical wave num-
ber. These results, which show that the growth rate of
two counter waves is three times larger than the growth
rate of either wave alone, allowed us to predict the criti-
cal temporal frequency, at which the modulational insta-
bility may appear, which is in good agreement with the
value measured from our numerical experiments. It sug-
gests that modulational instability, which may perturb
the gap-soliton envelope and the dynamics of the system,
should be considered carefully in real experiments.
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