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The electronic structure of tetragonal zirconia with D}} symmetry is investigated using density-
functional theory. The Kohn-Sham equations are solved by applying the full-potential linearized
augmented-plane-wave method. The total energy as a function of the lattice parameters shows that
at zero temperature tetragonal zirconia is more stable than cubic zirconia. The calculated elastic
constants are consistent with experimental data. High-temperature results are simulated by intro-
ducing a semiempirical volume expansion. The calculated displacement in the positions of the oxy-
gen atoms follows the experimental results, but the tetragonal distortion as a function of tempera-
ture shows larger differences with experiment. At expanded volumes the tetragonal structure is al-
ways more stable than the cubic structure, but the energy differences are of the same order of mag-

nitude as the thermal energies.

I. INTRODUCTION

Zirconia (ZrO,) is a very important ceramic material.
Its applications include the use in extrusion dies, oxygen
sensors, and artificial diamonds. Zirconia was discovered
as baddeleyite in 1892 by Hussak. Nernst! was probably
the first to investigate and report on the properties of zir-
conia. One problem in the applications of zirconia as a
ceramic material is a monoclinic-to-tetragonal phase
transition? which occurs at 1170°C. The low-
temperature monoclinic form has a larger volume than
the tetragonal modification and a very anisotropic
thermal expansion. Samples made at high temperature
often fall apart when they are cooled below this transition
temperature. A second transition occurs around 2370 °C.
Above this temperature zirconia has a simple-cubic CaF,
structure. This cubic structure can be stabilized at lower
temperatures by adding dopants like Y,0;. The melting
point of zirconia is 2680 °C.

The nature of the phase transitions in zirconia is not
well understood from a theoretical point of view. There
are many questions pertaining to the low-temperature
monoclinic-to-tetragonal phase transition. The number
of atoms in the unit cell of monoclinic zirconia is twelve,
and hence electronic structure calculations for this
modification are quite involved. Although our ultimate
goal is to investigate the monoclinic-to-tetragonal phase
transition, we have decided to first study the high-
temperature tetragonal-to-cubic transition because it is
easier to study theoretically. In this paper we present the
results of our ab initio electronic structure calculations
for tetragonal zirconia. We consider cubic zirconia to be
a special case of this structure and hence results for the
fluorite structure are included in this paper. Figure 1
shows the unit cell used in this work. The external pa-
rameters describing the unit cell are a and c. For the ideal
CaF, structure ¢ /a =V'2. In tetragonal zirconia there is
an internal displacement of the oxygen atoms along the z
direction. Alternating columns of oxygen atoms are
shifted upwards and downwards by an amount Ac. The
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third, internal, parameter describing the tetragonal unit
cell is d, and is related to this displacement of the oxygen
atoms by d, =Ac /c.

Due to the complex nature of the crystal structure of
zirconia, there are not many previous calculations. Early
investigations used simple chemical arguments to explain
the stability of monoclinic zirconia.> A cluster calcula-
tion* showed the effect of changes in the electron levels as
a function of structure. To our knowledge, the first
ab initio results for zirconia were published by Boyer and
Klein.> These authors used a combination of a band-
structure and a pair-potential approach to obtain the
elastic and thermal properties of cubic zirconia. They
found that the cubic fluorite structure has the lowest en-
ergy, but that at expanded volumes the tetragonal struc-
ture is relatively more stable. Later results were present-
ed at the International Conference on Electronic Struc-
ture and Phase Stability in Advanced Ceramics® in 1987,
where we also presented preliminary data.’

a

FIG. 1. Unit cell of tetragonal zirconia.
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II. METHODS

Electronic structure calculations for large systems are
most easily performed within the framework of the
density-functional theory.® This theory provides a
prescription to obtain the total electronic energy of a
solid as a function of the geometry of the atoms. The
equilibrium structure is found by minimizing this total
energy, while elastic constants are related to the curva-
ture of the total-energy surface at the equilibrium
configuration. The charge density evaluated via density-
functional calculations is a true representation of the
charge density of the electronic system, but the energy
bands are only first-order approximations to the excita-
tion energies of the electrons.

The total energy as a functional of the charge density
p(r) in density-functional theory is expanded as a sum of
four terms. Easy to calculate are (i) the classical
Coulomb energy pertaining to the charge density p(r), (ii)
the external energy due to the Coulomb forces of the nu-
clei, and (iii) the exchange-correlation energy. We use
the local-density approximation for the exchange-
correlation energy in the form due to von Barth and
Hedin and parametrized by Janak.® This approximation
of the many-body effects in the electronic system has
given very good results for many simple metals, semicon-
ductors, and transition metals.'® The evaluation of the
fourth term, the kinetic energy of a reference system of
noninteracting particles with charge density p(r) is very
time consuming. The standard computational approach
employs the Kohn-Sham equations.® In our case these
Kohn-Sham equations are solved using the full-potential
linearized augmented-plane-wave (FLAPW) method.!!
This precise, but slow, method is needed to obtain reli-
able results for structures with a low symmetry. Spheri-
cal approximations to the potential and charge density
introduce errors which are probably too large.

III. CONVERGENCE TESTS

In the FLAPW method one divides space into two re-
gions. Near the atoms all quantities of interest are ex-
panded in spherical harmonics and in the interstitial re-
gion they are expanded in plane waves. The first type of
expansion is defined within a so-called muffin-tin sphere
of radius Ry around each nucleus. In our calculations
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we have chosen Rpp(0)=1.69 a.u. and Ry (Zr)=2.00
a.u. (1 a.u.=0.0529 nm). At first we used a larger value
of Ry for Zr and a smaller value for O, but this gave nu-
merical problems related to the Zr 4p electrons and the O
2s electrons.

In the FLAPW method one makes a distinction be-
tween core electrons and valence electrons. The eigenval-
ues of the core electrons are calculated using a fully rela-
tivistic equation of motion, excluding the nonspherical
parts of the potential inside the muffin tins. The quantum
states of the valence electrons are evaluated using band
states and the full nonspherical potential, but with
semirelativistic equations of motion. The latter approxi-
mation simplifies the numerical procedures dramatically.
In zirconia, however, the omission of spin-orbit coupling
is not important. In our work the O 2s and 2p electrons
were treated as valence electrons as well as the Zr 4s, 4p,
and up. Details are given in Table I. In the FLAPW
method the charge density can be easily analyzed in
terms of the /-decomposed total charge inside the muffin-
tin spheres and the interstitial charge. Obviously, these
numbers have no absolute meaning, since they depend on
the choice of sphere radii. Changes in these numbers,
however, do convey useful information pertaining to the
response of the system. One also has to keep in mind
that in a well-converged calculation the choice of these
radii does not affect the value of the total energy.

We have used one energy window for all valence and
semicore bands. The energy parameters for Zr / =0 and
I =1 and for O [ =0 were determined from the positions
of the semicore electrons, while all the other energy pa-
rameters were set according to the average valence-band
energy. A better procedure is to use separate energy win-
dows for all these bands, since the lack of orthogonality
between the bands does not seem to introduce large er-
rors.!? Fortunately, in our case the errors resulting from
the use of one energy window are also small. They are
mainly connected with the use of Zr 4p instead of 5p or-
bitals in describing the valence band. The total contribu-
tion of these electrons to the valence band is only 1%,
and the change in this contribution as a function of the
geometry is much smaller. This situation is very different
from that encountered in bulk iron. In that case the
amount of p character in the conduction band is about
5%, but important states are at the Fermi level and
changes in the p character are large. In iron one does not

TABLE 1. Energy bands and charge decomposition of semicore and valence electrons for a=6.88
a.u., c=9.96 a.u., and d, =0.065. These values do not change much for other geometries.

Zr 4s Zr 4p O 2s O 2p

Average energy (Ry) —2.94 —1.33 —0.60 0.39
Width at ' (mRy) 5 36 116 338

Charges:

Interstitial 0.19 1.39 1.24 6.80

Zr 4s 3.80 0.00 0.03 0.07

Zr 4p 0.00 10.26 0.39 0.31

Zr 4d 0.00 0.00 0.08 1.48

O 2s 0.00 0.24 6.24 0.10

O 2p 0.01 0.09 0.01 15.14

Total 4.00 12.00 8.00 24.00




43 ELECTRONIC STRUCTURE OF CUBIC AND TETRAGONAL ZIRCONIA 7269

obtain good results using one energy window and includ-
ing the 3p semicore electrons in the band structure.

Important tests for the precision of our results are the
convergence as a function of the number of basis func-
tions and k points used to solve the equations of motion
for the equivalent system of noninteracting particles.
These parameters determine the precision of the nonin-
teracting kinetic energy and hence the total energy.
Since zirconia is an insulator the number of k points in
the Brillouin zone at which we solve the Kohn-Sham
equations is not a sensitive parameter. The best approach
would be to use special k points, since they are ideal for a
situation where there are no discontinuities due to a Fer-
mi surface. We have, however, simply used the standard
tetrahedron scheme with 20 points in the irreducible part
of the first Brillouin zone. This gives a relative precision
much better than 1 mRy in our total-energy data. The
number of basis functions is governed by a parameter
k max> Which is the radius of a sphere is a reciprocal space.
Plane waves with reciprocal lattice vectors within this
sphere are included in the set of basis functions. We have
used k,,, =4, which corresponds to about 100 basis func-
tions per atom in the calculations. The relative errors in
our total-energy data due to the numerical constraints are
about 1 mRy per unit cell. The errors due to basis-size
limitations give the largest contribution to the relative er-
ror in the data.

IV. SYMMETRIC ZIRCONIA

As we have mentioned before, tetragonal zirconia is de-
scribed by three structural parameters. The first two

specify the size of the unit cell in the x and y direction, a,
and in the z direction, ¢. The last parameter, d,, de-
scribes the change in internal structure related to the ox-
ygen atoms moving away from the ideal CaF, positions.
Figure 1 shows these parameters and the unit cell we are
using. We first focus on one aspect of the effects of
changes in these structural parameters, and keep the oxy-
gen atoms at their ideal positions. For convenience, we
call this configuration symmetric zirconia. Actually, we
have taken d,=0.01, slightly away from the symmetric
positions, in order to make a distinction between the two
types of oxygen atoms. By doing so we avoid some nu-
merical instabilities in the convergence of the calculations
which sometimes show up in calculations at reduced sym-
metry for systems which actually have a higher symme-
try. Our value of d, is very small, however, and we can
treat it as zero for all purposes.

Table II gives our total-energy data as a function of a
and c for d,=0.01. As we have discussed before, the rel-
ative error of these total-energy values is about 1 mRy,
although the absolute error is larger. In Fig. 2 we show
the data points in a different representation. The hor-
izontal axis represents V, the volume of the unit cell
scaled with respect to the experimental'® volume of cubic
(or tetragonal) zirconia extrapolated to zero temperature,
V=444 a. u. The vertical axis denotes r, the ¢ /a ratio,
and cubic zirconia corresponds to r=V2=1.414. The
advantage of this representation is that for cubic systems
a second-order expansion in these coordinates contains
no cross terms: the data in that case fit to ellipses with
their axes parallel to the coordinate system. The num-

TABLE II. Total-energy data. Calculated total energy per unit cell of symmetric zirconia as a func-
tion of the lattice parameters a and c (in a.u.). The ratio » =c/a and the volume V is a’c/V,y, with
V,.s=444 a.u. The total energy only gives the mRy part, the complete value is obtained by adding
—14 980 Ry to all data. Our unit cell contains six atoms.

a (a.u.) ¢ (a.u.) Vv r E (mRy)
6.88 9.96 1.0623 1.4477 —206
6.91 9.89 1.0641 1.4313 —207
6.93 9.81 1.0616 1.4156 —209
6.95 9.73 1.0590 1.4000 —211
6.97 9.70 1.0618 1.3917 —207
6.84 9.96 1.0500 1.4561 —211
6.80 9.96 1.0377 1.4647 —217
6.76 9.96 1.0256 1.4734 —217
6.72 9.92 1.0094 1.4762 —221
6.68 9.88 0.9934 1.4790 —225
6.64 9.84 0.9776 1.4819 —223
6.68 9.80 0.9854 1.4671 —229
6.72 9.76 0.9931 1.4524 —230
6.76 9.72 1.0009 1.4379 —229
6.80 9.68 1.0086 1.4235 —228
6.70 9.70 0.9811 1.4478 —230
6.70 9.64 0.9751 1.4388 —230
6.70 9.58 0.9690 1.4299 —231
6.70 9.52 0.9629 1.4209 —230
6.70 9.46 0.9569 1.4119 —228
6.76 9.46 0.9741 1.3994 —232
6.82 9.46 0.9915 1.3871 —228
6.88 9.52 1.0154 1.3837 —224
6.88 9.58 1.0218 1.3924 —224
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TOTAL ENERGY
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FIG. 2. Contours of equal total energy of tetragonal zirconia.
Subsequent contour lines correspond to energy values which
differ by 1 mRy. Ab initio data points are indicated by stars.

bers in this figure give the fractional part of the total en-
ergy and are in mRy; we omitted the minus sign in front
of the total energy. The contour lines in Fig. 2 are ob-
tained numerically by local fits to the data and only have
a qualitative meaning.

Figure 2 shows clearly that in symmetric zirconia the
minimum of the total energy is found near the ideal ¢ /a
ratio and that the contour lines indicate only a small
cross term between volume and c /a ratio, as expected for
a cubic minimum. We would have preferred to include
more points in the lower left-hand side of the plot, but
numerical constraints made that too time consuming.
The values used for the muffin-tin radii did not allow for
smaller values of a or ¢, and a new set of calculations
with a smaller value of these muffin-tin radii would be
necessary. Nevertheless, the minimum is reasonably well
described, since we have data points almost everywhere
around it.

The data values were used to obtain a fit to the expres-
sion

E=Eq+a(V—V)+BV —Vo)r —ro)+y(r—ry)?

and the resulting values are given in Table III. The quali-
ty of the second-order fit is good, and the rms error is 0.9
mRy. This is consistent with our estimated relative error
of the data. The resulting value of the volume is 2%
smaller than the experimental value, and such a deviation
is normal for local-density calculations in which the
volume is always underestimated by a few percent. In ad-
dition, the extrapolation of the experimental data to zero
temperature introduces errors. The ¢ /a ratio is within
1% of the ideal ratio, and therefore we can claim that
with the oxygen atoms at the symmetric positions zir-
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TABLE III. Second-order parameters. Values of the param-
eters in the second-order fit to the total-energy data of Table II.

Ey=—0.231 Ry
V,=0.981
ro=1.42

a=3.52 Ry

$=0.471 Ry

y=2.20 Ry
€ms=0.9 mRy

conia has a minimum total energy for a cubic structure
consistent with the experimental value of the volume of
the unit cell extrapolated to zero temperature.

The value of the total energy at the minimum is
—14980.231 Ry for a unit cell containing six atoms. The
systematic error in this number (due to incomplete con-
vergence in the number of basis functions and the
Brillouin-zone integration) is about 30 mRy. The total
energy of the six atoms isolated in space is —14976.44
Ry and therefore the cohesive energy of zirconia with
respect to neutral atoms is 3.92 Ry per six atoms. Includ-
ing the uncertainty in the estimation of our systematic er-
rors the value of the cohesive energy per formula unit is
1.96£0.01 Ry. The experimental value is 1.68 Ry per
formula unit. This is a standard difference in results of
local-density calculations. It is related to an error in the
atomic calculations, where multiplet corrections are ig-
nored.'* As a consequence, the total energy of an atom in
local-density calculations is always too high, and the
cohesive energy of a solid always too large. Typical
discrepancies are on the order of 1 eV per atom, except in
materials like NaCl where the cohesive energy is much
closer to the experimental value!® due to the simple struc-
ture of the Na and Cl atoms. For zirconia, we have an
error in the cohesive energy of 0.09 Ry per atom, or 1.2
eV per atom, which is consistent with the general trends
in local-density calculations.

The elastic constants are related to a, 3, and ¥ in the
following way:

1 3°E 1, 1 + +C
a—_2_a— ) 9y, [2ACh+Cra)H4Cys sl

*E 2 —(C,,+C
B= aVar*’ref 9"—0 [Cy+C;3—(Cpy 1wl

1 3%E 1 2V, _ +2C
Vo e 2 e 9rs HOuFC) =80 120

and for a cubic system (Cy, =C,;, C;,=C,;) the equa-
tions reduce to

1 C,+2Cy,

Qcubic ™ 5 ref 3V ’
0

Bcubiczo >
1 Ci—Cp
Y cubic = E— Vref VO 3

as expected. The results derived from our total-energy
data are C;;+C,=0.038 a.u, C;3=0.005 a.u., and
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TABLE 1IV. Second-order parameter without cross term.
Values of the parameters in the second-order fit with 8=0 to
the total-energy data of Table II.

E,=—0.231 Ry
V,=0.980
ro=1.42

a=3.46 Ry
B=0 Ry
y=2.03 Ry
€ms— 1.0 mRy

C33;,=0.039 a.u. Hence C3+C;;,=0.044 a.u. and this
differs from C,; +C,, by only 15%, which is about the
error in the quoted values due to the uncertainty in the
fitting procedure. The numerical errors in the elastic
constants are about 10% and much larger than in other
quantities, because in the calculation of these numbers
one essentially has to take a second-order derivative of
data with noise in one way or another.

Next we force a cubic fit by setting =0, and we find
the results shown in Table IV. The rms error is only
slightly larger and consistent with the error in the data.
In this case we find C;; =0.034 a.u. and C,;, =0.006 a.u.
These values are consistent with the data obtained
without restrictions on 8. In the remaining discussion we
will use these data values and set =0. The elastic con-
stants are compared with experimental values in Table V.
The orders of magnitude are correct, but a direct com-
parison is impossible because the experimental data are
all for doped zirconia. Our calculated value for C;; is
higher than the experimental one, which is a general
trend in density-functional calculations. At the equilibri-
um volume the core repulsion and the ionic Coulomb at-
traction balance each other, but each of these forces is
larger when the equilibrium volume is smaller. As a re-
sult, a smaller value of the equilibrium volume corre-
sponds to a larger value of the bulk modulus and other
elastic properties.

The second quantity density-functional calculations
should give reliably is the charge density of a solid. Pre-
vious work!®> for NaCl has shown that we can indeed
reproduce the experimentally measured form factors.
There are no corresponding x-ray diffraction experiments
for ZrO,, and hence we can only draw a few conclusions.
A typical charge-density map in a plane through four zir-
conium atoms (corners) and two oxygen atoms (center) is
shown in Fig. 3. This figure shows that our choice for the
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FIG. 3. Contours of equal charge density in a {100) plane
through two oxygen (center) and four zirconium (corners)
atoms.

muffin-tin radii is about right, since we capture most of
the spherical regions inside the muffin-tin spheres. The
minimal value of the charge density inbetween the two
oxygen atoms is 0.027 a.u.”? which is slightly larger than
what is expected for an ionic bond. The minimal value in
between an oxygen and zirconium atom is 0.072 a.u.”3,
which is much larger than that found in ionic bonds. It is
similar to the value of the charge density found in be-
tween the atoms in a metal and about one-third of the
value found in diamond. The value of the charge density
in between the zirconium atoms along the {100) direc-
tion is 0.027 a.u.” 3, while the corresponding value in the
{001 direction is essentially zero. If one would hazard
to make a prediction about covalent versus ionic nature
of the bonds in symmetric zirconia, one definitely has to
allow for some small amount of covalent bonding be-
tween zirconium and oxygen.

The minimum in the charge density between the oxy-
gen and zirconium atoms is about halfway between these
atoms, and therefore one could say that the sizoe of both
atoms in zirconia is about 2.0 a.u. or 1.06 A. These
values indicate that the oxygen atoms are much smaller
than its standard ionic radius would suggest, but that the
zirconium atom is larger. The latter is mainly due to the
“fat” 4p semicore electrons.

Figure 4 shows the / =1 component of the total charge
inside the oxygen muffin-tin sphere as a function of the
¢ /a ratio r and the relative volume. Since our sphere ra-

TABLE V. Elastic constants of cubic zirconia. Values of C;; and C,, for cubic zirconia in 10'?

dyn/cm?.
Temperature Y,0; Ref. No. Cy Cy,
300 20% 16 3.91+0.03 1.20+£0.05
300 15% 16 4.75 1.44
1000 15% 16 4.43 1.17
1700 15% 16 3.99 1.02
300 18% 17 3.75 0.75
300 8% 18 3.94 0.91
Theory 0% 5 2.22 0.61
Theory 0% This work 5.0£1.0 0.91+0.2
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OXYGEN P CHARGE
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FIG. 4. Contours of equal total oxygen p charge within the
oxygen muffin-tin sphere. Subsequent contour lines correspond
to numbers of electrons which differ by 0.02 a.u. .

dius is smaller than the radius of the atom, not all p
charge is included and some is found in what we label in-
terstitial. In the central portion of the figure the charge
density does only depend on ¥ and not on ¢ /a. The cur-
vature of the contour lines at low and high values of the
plot is due to the local fitting procedure and the lack of
data in these regions. The charge inside the oxygen
spheres decreases when the crystal expands, indicating
that the oxygen atoms expand when the crystals expand.
Therefore, at the equilibrium volume the oxygen atoms
are under external pressure, which explains their small
ionic radius. Figure 5 shows the total charge in the inter-
stitial region as a function of » and V, and this charge in-
creases with increasing volume, as expected. The intersti-
tial charge density is increasing by a larger amount than
can be accounted for by the oxygen atoms: the zirconium
atoms are also expanding when the volume increases.

The electric-field gradient at the nuclear sites is a quan-
tity which can be derived directly from the charge densi-
ties in our calculations. Numerically, one expands the
Coulomb potential near a nucleus in the form

PVe(r)= 3 Vi (1Y} ()
ILm

and the multipole moments are defined by

=limr 'V, (r) .
9im 10 Im
Restrictions are present due to symmetry and up to
second order the expansions for the Coulomb potential
are

Vs

__1_ 2 2__..2
do \/ET +Q2 ZVE(3Z re)
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FIG. 5. Contours of equal interstitial charge. Subsequent
contour lines correspond to numbers of electrons which differ
by 0.04 a.u.” 3.

near Zr and
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near 0, where the coordinates are chosen according to
Fig. 1.

Since we do not allow for nonspherical distortions of
the inner core electrons our calculated values cannot be
compared directly with experiment, but have to be
corrected for the polarization of the inner core electrons.
This is discussed in the next section. Figure 6 shows the
electric-field gradient at a zirconium site, while Fig. 7
gives the electric-field gradient at an oxygen site. In both
cases, the values of the electric-field gradient only depend
on the ¢ /a ratio and not on volume, which is to be ex-
pected. Also, we find a zero value of the field gradients
for a c/a ratio close to the ideal value of 1.414. The
small deviation is due to the fact that the value of the pa-
rameter d, is 0.01 instead of exactly zero. These figures
show that our calculated field gradients are consistent for
different geometries and that the relative errors in these
field gradients are small.

Another quantity related to the charge density is the
average Coulomb potential in the unit cell. This value is
useful when comparing different calculations, since the
positions of the energy bands can be scaled with respect
to this parameter. In general, in an infinite solid the zero
of energy is not defined. In the FLAPW method this zero
is set in a numerically convenient but physically arbitrary
way. Therefore the value of the average Coulomb poten-



43 ELECTRONIC STRUCTURE OF CUBIC AND TETRAGONAL ZIRCONIA

ELECTRIC-FIELD-GRADIENT Zr SITE
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FIG. 6. Electric-field gradient g, at a zirconium site.

tial in the unit cell is model dependent, but is a good
reference for values of the energy bands and related quan-
tities. The values shown in Fig. 8 range from —0.321 to
—0.289 Ry and they do only depend on the volume of
the unit cell. These changes are related to the expansion
of the constituent atoms when the unit cell volume in-
creases.

The energy eigenvalues obtained when solving the
Kohn-Sham equations should not be related directly to
excitation energies. There is only a correspondence in
first order, and the error can be large when the nature of

ELECTRIC-FIELD-GRADIENT O SITE

1.48

1.38 1 I 1 1 1 1 I 1 L
0.95 0.97 0.99 1.01 1.03 1.05

FIG. 7. Electric-field gradient g5 at an oxygen site.
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FIG. 8. Average Coulomb potential in the unit cell.

the electronic states changes considerably. For example,
the band gap in semiconductors derived from these ener-
gy eigenvalues is always much too small, with differences
on the order of 30%. The changes in these numbers as a
function of the geometry have smaller errors associated
with them because systematic errors do cancel. In Fig. 9
we present the width of the valence band of zirconia de-
rived from these energy eigenvalues as a function of
volume and c /a ratio, and in Fig. 10 the value of the gap
between the valence and the conduction band. The width
of the valence band ranges from 390 to 450 mRy, while

VALENCE-BAND WIDTH

1.48

1.46

1.44

1.42

1.40

1.38
0.95 0.97 0.99 1.01 1.03 1.05
\"

FIG. 9. Kohn-Sham valence-band width.
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FIG. 10. Kohn-Sham band gap.

1.03

1.05

the gap varies between 250 and 210 mRy. The pattern of
these changes has no simple dependence on volume or
c/a ratio, and the nature of the geometry of the local

bonds plays a dominant role.

V. TETRAGONAL ZIRCONIA

We have studied the effect of a displacement of the ox-
ygen atoms parallel to the z axis for a number of values of
a and c. We always stayed within the space group D},
as dictated by experiments. In a point-charge model the

total energy is lowest for d, =0.25 and the CaF, structure
is unstable. The soft atomic cores on the other hand sta-
bilize the cubic structure when the density of the atoms is
sufficiently high. It is therefore of interest to investigate
for which values of a and ¢ a structural instability occurs
in ZrO,.

Table VI presents the total energy as a function of d,
for several values of @ and c. We have interpolated these
data by the function

E=E,+E,d}+E,d}

and plotted these functions in Fig. 11. The parameters E;
are given in Table VII. An instability is clearly seen for
all data sets except C. It is also evident that the instabili-
ty becomes more pronounced at larger values of a and c.
This is to be expected, since the core repulsion is not very
strong at large separations of the atoms. In that case the
long-range Coulomb forces will pull the zirconium and
oxygen atoms together as close as possible.

The behavior as a function of @ and ¢ can be studied by
expanding E, and E, as a function of ¢ and c,

E,=a;+B;at+y;c .

The results are given in Table VIII. The rms errors are
very large, indicating that these fits only have qualitative
meaning. The lattice instability is related to the sign of
E,. If E, is negative, the total energy is a maximum near
d,=0 and the CaF, structure is unstable. If E, is posi-
tive, it is stable. E, should always be positive in order
that our simple formula makes sense. The line E, =0 is
given by ¢ =54.14—6.03a and is far outside the region of
interest. The line E, =0 is given by ¢ =13.38—0.62a and
crosses the lower left corner of the region in which we
have plotted our total-energy data (Fig. 2). Since the

TABLE VI. Total energy of tetragonal zirconia. Calculated total energy per unit cell of tetragonal
zirconia as a function of the displacement d, of the oxygen atoms, in mRy. The integer part — 14980
Ry has to be added to these numbers to get the complete value of the total energy.

a (a.u.) ¢ (a.u.) d, Energy (mRy)
Data set 4 6.88 9.96 0.010 —206
6.88 9.96 0.032 —214
6.88 9.96 0.065 —-212
6.88 9.96 0.100 —150
Data set B 6.95 9.73 0.010 —211
6.95 9.73 0.032 —215
6.95 9.73 0.065 —209
Data set C 6.70 9.58 0.01 —231
6.70 9.58 0.04 —228
6.70 9.58 0.07 —190
Data set D 6.64 9.84 0.01 —223
6.64 9.84 0.04 —226
6.64 9.84 0.07 —193
Data set E 6.88 9.52 0.01 —224
6.88 9.52 0.04 —226
6.88 9.52 0.07 —203
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FIG. 11. Total energy (in mRy) per unit cell as a function of
d,. All curves are scaled to zero for d, =0.

minimum at the total energy also occurs in this region
one can expect that a tetragonal distortion will be
present.

Including the dependence of the total energy on d,
leads to the following interpolation for the total energy E
as a function of a, ¢, and d,:

E(a,c,d,)=Eq+a(V—Vy)+y(r—ry)?
—E,(a,c)0.012—E,(a,c)0.01*
+E,(a,c)d2+E(a,c)d} .

Minimizing this expression gives the following values for
tetragonal zirconia: ¥V =0.98S5, r =1.425, d,=0.029, and
AE=—1.3 mRy for two formula units, where AE is the
difference in energy between the cubic minimum and the
tetragonal minimum. This indicates that at zero temper-
ature our electronic structure calculations indeed predict
that zirconia is tetragonally distorted.

A typical charge-density map of tetragonal zirconia is
shown in Fig. 12. Half of the zirconium-oxygen bonds
have become stronger and the other half weaker com-
pared with the bonds in symmetric zirconia. The
minimum value of the density between oxygen atoms (in
point A) is unchanged (0.027 a.u.™3), the value for the
weak zirconium-oxygen bond (in point B) is now 0.041
a.u.”? (down from 0.072 a.u.”3), and the value in the
strong zirconium-oxygen bond (point C) is now 0.120
a.u.”? This last value is half that found in diamond. A
big difference with diamond is, of course, the lack of

directional bonding closer to the oxygen nucleus. The
oxygen 2s and 2p bands are still clearly separated and no
hybrid bonding states are formed. The main reason for
the increase in charge density between zirconium and ox-
ygen is the smaller distance between the atoms, causing a
larger overlap of the atomic spheres. The softness of the
atomic spheres is important here, hard spheres would not
allow any overlap. Another consequence of the displace-
ment of the oxygen atoms is the increase in charge densi-
ty between the zirconium atoms in the (100) direction,
which makes the bonds in this direction stronger and
causes the tetragonal distortion of the whole unit cell.

We have also calculated the electric-field gradients as a
function of d, and the results are shown in Fig. 13 for the
zirconium sites (g¢,) and in Fig. 14 for the oxygen sites
(g5). These field gradients are not exactly zero at d, =0,
because the c¢/a ratio is not exactly V2. One sees im-
mediately that the electric-field gradients at the zirconi-
um sites are much larger than those at the oxygen sites.
Also, at the zirconium sites the main contribution is due
to the fact that d, is nonzero, while at the oxygen sites
the effects of the tetragonal distortion of the zirconium
atoms is equally important as the change in the positions
of the oxygen atoms.

The numerical values for the electric-field gradients
cannot be compared directly with experiment, since no
data are available. Measurements have been performed,
however, for Hf nuclei in zirconia.!® Since hafnium is
similar to zirconium, no large changes in electronic struc-
ture are expected After neutron activation, the hafnium
nucleus decays into a tantalum nucleus, which relaxes
into its ground state by emitting two y rays. Perturbed
angular correlation!® experiments using these y rays yield
information about the field gradient near a tantalum
atom on a zirconium site. The measured value for g, is
3.51 Rya.u.” 2, while our calculated values for d, =0.060
(which is the experimental value) is around 1.25
Rya.u. 2. The difference is due to the effects of the core
electrons, which respond differently in tantalum and zir-
conium. The Sternheimer antishielding factors y . are
—28 for zirconium and —61 for tantalum. In a point
charge model calculated field gradients are multiplied by
a factor (1—y ), indicating that changes in the tantalum
core electrons amplify field gradients more, the ratio be-
ing about 2.1. Taking this effect into account we would
predict a value for g, for tantalum in zirconia of about
2.7 Ry a.u.”2, which is about 20% smaller than the ex-
perimental value. Finally, after the hafnium nucleus de-
cays to a tantalum nucleus the life time before emitting

TABLE VII. Parameters E; for energy distortion. This table gives the parameters E; in the expression E =E,+E,d2+ E ,d} for
the total energy of tetragonal zirconia as a function of the displacement d, of the oxygen atoms. The column d, ;, denotes the value
of d, for which this energy is minimal, and AE gives the energy difference in mRy between the minimal value and the value for d,=0.

a (a.u.) ¢ (a.u.) E, (mRy) E, (mRy) E, (mRy) d, min AE (mRy)
A 6.88 9.96 —207 —6.61X10° 1.23X10° 0.052 8
B 6.95 9.73 —210 —6.02X10° 1.50X 10® 0.044 6
C 6.70 9.58 —231 —1.37X10? 1.98 X 10° 0.019 0
D 6.64 9.84 —222 —6.26X 10° 2.50% 10° 0.035 4
E 6.88 9.52 —224 —4.27X10° 1.73 X 10° 0.035 2
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TABLE VIII. Parametrization of E, and E,. The parameters E; are expanded as a linear function
of a and ¢ according to E;=a;+B;a+y,c. The values of the parameters a;, B;, v;, and the rms error

8.ms are in mRy.

a; /31' Vi 5rms
E, 123X 10° —5.66X10° —9.19X 10° 1.1x10°
E, 28.8 X 10° —3.21x10° —0.532x 10° 0.19 X 10°
the first photon is 18 usec, which is sufficiently large to 1 [av ve,
cause a deformation of the lattice near the impurity, =37 |37 = 3B with B=1(C;; +2Cy,) .
which increases the field gradients. Since our value P

corrected for the difference in shielding is still too small
compared with experiment, we conclude that this local
distortion is likely to be present.

VI. TETRAGONAL-TO-CUBIC PHASE TRANSITION

So far we have only discussed properties at zero tem-
perature. Our results indicate that tetragonal zirconia
has a lower total energy than cubic zirconia, consistent
with experiment. Also, the values of the volume of the
unit cell we obtained in our calculations are close to the
experimental values extrapolated to zero temperature.
The value of the ¢ /a ratio we found, 1.425, is a 0.8% de-
viation from the ideal value. The experimental value ex-
trapolated to zero temperature, on the other hand, is
about 1.45% and 2.5% larger than the ideal value. The
experimental value of d, extrapolated to zero tempera-
ture is about 0.055 and is much larger than our value of
0.029. Hence the degree of the tetragonal distortion pre-
dicted by our results is smaller than found experimental-
ly, although the linear extrapolation might also be a
problem for the lower temperatures.

Phonons play an important role at higher tempera-
tures. For values of the temperature much higher than
the Debye temperature, the Griineisen parameter y of
zirconia is a constant and as a result the coefficient of
thermal expansion a is also a constant (ignoring the tem-
perature dependence of the bulk modulus B). They are
related by

FIG. 12. Contours of equal charge density in a {100) plane
through two oxygen (center) and four zirconium (corners) atoms
for a tetragonal zirconia.

From Ref. 13 we find that a=12X10"% K~! for the
range in temperature from 1160°C to 1925 °C. At these
high temperatures we can replace ¢, by 3Nk /V ., with
N =6 and V,,, =477 a.u.’ Our values for the elastic con-
stants indicate that B=0.015 a.u. and hence we find
y=2.3. This value is somewhat larger than the high-
temperature value for the alkali halides, but much larger
than the value of 4 found in a Debye model. The experi-
mental values for the k-dependent Griineisen parameter
at T in Ref. 18 are about twice as large. This indicates
that there are large variations of the Griineisen parame-
ter as a function of k. Calculations of the phonon spec-
trum are needed in order to further investigate the
Griineisen parameter from a theoretical point of view.

In our next step we assume that the phonons are re-
sponsible for determining the value of the volume at a
given temperature. Hence the relative volume increases
linearly from 1.060 at 1160°C to 1.089 at 1925°C. At
each value of the temperature we fix the value of the rela-
tive volume according to this linear interpolation and
then minimize the electronic energy to find the tetragonal
distortion and the internal displacement of the oxygen
atoms. Following this procedure we find that both the
value of r /V'2 (Fig. 15) and d, (Fig. 16) are linear func-
tions of the temperature. In Fig. 15 we plot the quantity
r/V'2, because that gives a better indication of the devia-
tion from cubic symmetry. In these figures we have also
included experimental results from Ref. 13. The temper-
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FIG. 13. Electric-field gradient g, at a zirconium site as a
function of d,.
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FIG. 14. Electric-field gradient g5 at an oxygen site as a func-
tion of d,.

ature scale in these figures is derived from the experimen-
tal values of the volume as a function of temperature.
The discrepancy between experiment and theory for r is
larger than for d,, which is not surprising since a tetrago-
nal distortion of the whole unit cell will affect the phonon
spectrum. In general we can conclude that the tetragonal
distortion is larger at elevated temperatures because of
the volume expansion due to thermal excitation of pho-
nons.

In Fig. 17 we present the difference in energy between
the tetragonal phase and the cubic phase (r=V'2, d,=0)
at the same volume as a function of temperature. We find
that the energy difference increases as a function of tem-
perature. In that sense tetragonal zirconia becomes more
stable at high temperature. The difference in energy is
mainly due to the change in the value of d,. This param-
eter describes an optical phonon at I'. The thermal ener-
gy per unit cell associated with all phonons pertaining to
d,, i.e., phonons for all values of k in the first Brillouin

1.03
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| ] | 1
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FIG. 15. Tetragonal distortion r/V'2 as a function of temper-
ature. Experimental values are indicated by dots.
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FIG. 16. Internal oxygen displacement of d, as a function of
temperature. Experimental values are indicated by dots.

zone, is just kT. The straight line in Fig. 17 is E= —kT,
and a comparison between the two curves shows that the
thermal energy is almost the same as the energy
difference between tetragonal and cubic zirconia.

The total energy of the tetragonal phase is lower than
that of the cubic phase, and hence a stabilization of cubic
zirconia at elevated temperatures has to involve a
difference in entropy. One explanation of the stability of
cubic zirconia at higher temperatures is based on a mech-
anism that relies on the presence of oxygen defects. This
is a plausible explanation, but based on our total-energy
data we cannot exclude the possibility that the
tetragonal-to-cubic phase transition is driven by phonons.
A detailed calculation of the phonon spectrum is needed
to decide if the entropy contribution due to the phonons
is sufficient to stabilize cubic zirconia. The entropy relat-
ed to the d, phonons in cubic zirconia is certainly larger
than that in tetragonal zirconia, since in the former there

1 1

1 |
1400 1600 1800

T (K)

-16
1000 1200 2000

FIG. 17. Energy difference (mRy) per unit cell between
tetragonal and cubic zirconia as a function of temperature. The
straight line corresponds to E= —kT.
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are three possible choices for the orientation of the
tetragonal distortion. As a consequence, the number of
phonons is increased.

VII. SUMMARY

In this paper we have investigated the electronic struc-
ture of cubic and tetragonal zirconia. Our total-energy
data indicate that at zero temperature tetragonal zirconia
will be more stable than cubic zirconia. The elastic prop-
erties of cubic zirconia are consistent with experimental
data, but a direct comparison is impossible because mea-
surements are always performed on samples containing
Y,0;. The values of the electric-field gradient are also
consistent with experiment. If we use the experimentally
determined values of the unit-cell volume as a measure of
the temperature we find a qualitative agreement between
calculated and experimental structural parameters. We
conclude that the structure of tetragonal zirconia can be
derived from density-functional calculations without the
need of introducing defects or vacancies.

Our calculations do not directly address the problem of
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stabilizing cubic zirconia, since we are not able to evalu-
ate the entropy. Our total-energy data are, however, very
useful as input for more detailed thermodynamical calcu-
lations. Model potentials in such an approach will have
to follow the trends in total energy we have discussed in
this paper. Simple arguments based on the total-energy
data show that the contribution to the free energy of opti-
cal phonons related to the displacement of the oxygen
atoms is of the same order of magnitude as the energy
difference between cubic and tetragonal zirconia. Wheth-
er this contribution is sufficient to stabilize cubic zirconia
has to be investigated in thermodynamical calculations.
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