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Ab initio calculation of phonon dispersions in semiconductors
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The density-functional linear-response approach to lattice-dynamical calculations in semiconduc-
tors is presented in full detail. As an application, we calculate complete phonon dispersions for the
elemental semiconductors Si and Ge, and for the III-V semiconductor compounds GaAs, A1As,
GaSb, and A1Sb. Our results are in excellent agreement with experiments where available, and pro-
vide predictions where they are not. As a byproduct, we obtain real-space interatomic force con-
stants for these materials, which are useful both for interpolating the dynamical matrices through
the Brillouin zone, and as ingredients of approximate calculations for mixed systems such as alloys
and microstructures. The possibility of studying these systems using the force constants of the pure
materials relies on the so-called mass approximation, i.e., on neglecting the dependence of the force
constants upon composition. The accuracy of such an approximation is tested and found to be very

good for cationic intermixing in binary semiconductors, while it is less so for anionic substitutions.
The situation is intermediate in the case of elemental semiconductors.

I. INTRODUCTION

Ab initio methods based on density-functional theory
(DFT) are by now common and well established tools for
studying structural and vibrational properties of real ma-
terials. The plane-wave pseudopotential method and the
local-density approximation (LDA) to DFT have provid-
ed a simple framework whose accuracy and predictive
power have been convincingly demonstrated in a large
variety of systems. ' The calculation of reliable phonon
spectra in semiconductors is well within the reach of
DFT. Recently, very efficient linear-response techniques
have been proposed ' which allow one to obtain dynami-
cal matrices at arbitrary wave vectors with a computa-
tional effort comparable to that of a self-consistent calcu-
lation for the unperturbed bulk. It is by now possible to
obtain accurate phonon dispersions on a fine grid of wave
vectors covering the entire Brillouin zone (BZ), which
compare directly with neutron-diffraction data, and from
which several physical properties of the system (such as
heat capacities, thermal expansion coefficients, tempera-
ture dependence of the band gap, and so on) can be calcu-
lated.

Bulk phonon dispersion spectra are interesting not
only for their relevance to properties of pure materials,
but also as ingredients of approximate calculations for
complex systems, such as semiconductor alloys, superlat-
tices, and other quantum microstructures. Much atten-
tion is presently being paid to the vibrational properties
of such structures, both because of their fundamental in-
terest and as a promising tool for the structural charac-
terization of these new materials. ' Most of the existing
theoretical studies rely heavily on information about the
force constants of the pure materials. Even when first-

principles calculations for the superlattice are available,
bulk phonon dispersions of the constituents are very use-
ful for interpreting the calculated spectra, and comparing
them with experiments. A detailed account of disorder
effects in semiconductor microstructures may require the
consideration of (many) systems with a rather high num-
ber of atoms per unit cell (=100, or more). A direct
first-principles calculation of the phonon spectra for such
systems may be very demanding computationally, even
with the highly efficient linear-response techniques
presently available. On the other hand, calculations
based on empirical models, such as the shell model, the
bond-charge model, or others, have a limited predictive
power. In fact, the parameters entering these models are
fitted to experiments. In the case of A1As, for instance,
experimental information is very poor, and existing semi-
empirical calculations based on force constants fitted to
the phonon spectrum of bulk GaAs produce a
longitudinal-optic (LO) band along the I X direction,
which is much wider than that calculated from first prin-
ciples. It is therefore desirable to devise a method to
treat both perfect bulk semiconductors and their alloys
and microstructures with an affordable amount of com-
puter resources, retaining an accuracy similar to that of
direct first-principles calculations.

Useful information on the phonon spectra of ordered
superlattices has been obtained making use of interplanar
force constants calculated in an ab initio manner for one
of the two bulk materials and taking into account the
difference between the two constituents only through
their different ionic masses, plus some semiempirical ad-
justment of the effective charges. In the case of
GaAs/A1As, a recent analysis based on first-principles
calculations for the superlattice and for the two individu-
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al bulks showed that similar approaches can work even
better than hitherto suspected; in practice, both the bulk
phonon dispersions of A1As, and the vibrational proper-
ties of ultrathin GaAs/A1As superlattices are closely
reproduced, using the forces constants calculated for
GaAs, just replacing the relevant cationic masses, without
any adjustment of the e+ectiue charges T. his observation
opens the possibility of calculating the vibrational prop-
erties of very complex GaAs/A1As structures, using the
interatomic force constants of one of the two bulks, or
possibly of the corresponding virtual crystal. '

In this paper we present all the technical details neces-
sary to implement the DFT linear-response approach to
lattice-dynamical calculations in semiconductors, and
for calculating the corresponding interatomic force con-
stants. As an application, we present the first ab initio
calculation of full phonon dispersions of two elemental
semiconductors, Si and Ge, and four compound semicon-
ductors, GaAs, A1As, GaSb, and AlSb.

Our purpose is twofold. On the one hand, by compar-
ing our calculations with existing neutron data, we
demonstrate that modern electronic-structure techniques
are able to reproduce even the fine details of the phonon
spectra of semiconductors, thus giving further confidence
in their predictive power. In the case of AlAs, whose vi-
brational properties are poorly known because of the lack
of neutron-scattering data, our predictions are confirmed
by the excellent agreement between the phonon disper-
sions calculated for the closely related compound A1Sb
and recent neutron-scattering data. "

On the other hand, we examine to what extent the in-
teratomic force constants of the six materials are similar
to each other, with a view toward using them to study the
vibrational properties of mixed systems, such as alloys,
superlattices (both ordered and partially disordered), or
other quantum structures. In the case of III-V com-
pounds, we find that the force constants of materials that
differ by their cations are rather similar to each other,
while this is less so when the materials differ by their
anions. The situation is intermediate in the case of ele-
mental semiconductors.

The paper is organized as follows. Section II contains
the general method and its application to phonons in
semiconductors. Section III contains our results for the
bulk dispersion spectra and the force constants in real
space. Section IV contains the conclusions. Several tech-
nical details are examined in the Appendixes.

II. THEORY

A. Linear response and lattice dynamics

Since the works of De Cicco and Johnson' and of
Pick, Cohen, and Martin, ' it is well known that the har-
monic force constants of crystals are determined by their
static linear electronic response. In fact, within the adia-
batic approximation, the lattice distortion associated
with a phonon can be seen as a static perturbation acting
on the electrons. It is a simple application of the
Hellmann-Feynman theorexn' to show that the linear
variation of the electron density upon application of an

where A'z is the electron ground-state energy relative to
given values of the A, parameters, and nz is the corre-
sponding electron-density distribution. Total-energy
variations are obtained from Eq. (1) by integration. In
order to have energy variations correct up to second or-
der in A, , it is necessary that the right-hand side (rhs) of
Eq. (1) be correct to linear order:

Bbz Bv&(r) Bnz(r) BV&(r)

a~,
+&'

a~, a~,

B Vg(r)
+n0(r) g AJ. dr+0(A, ), (2)

all the derivatives being calculated at A, =O. Integration
of Eq. (2) gives

8 Vz(r)
8~=80+ gA, , f n0(r) dr

Bn&(r) aV, (r) a'V~(r)

1

Suppose now that the A, parameters represent ion dis-
placements u;(R), where R indicates the position of the
unit cell, i the atomic position within the unit cell, and a
is a polarization index. The matrix of the force constants
is defined as

8 8
au. , (R)au„(R )

=C"." (R—R')+C"' (R —R )ai, pj ai, pj (4)

where C"" is the ionic contribution to the force con-
stants, which is essentially the second derivative of an
Ewald sum whose expression is given in Appendix A; the
electronic contribution C'"' is given by

dn (r) ionBv (r)
Bu;(R) Bu&, (R')

8 V;,„(r)
+n0 r' '

au. , (R)au„(R )
"' '

where V;,„(r) is the bare ionic (pseudo) potential acting
on the electrons:

external, static, perturbation determines the energy varia-
tion up to second order in the perturbation (up to third
order, indeed, as shown in Ref. 15).

Suppose that the bare external potential acting on the
electrons, Vz (which we assume for simplicity to be lo-
cal), is a continuous function of some parameters

The Hellmann-Feynman theorem states that
the "force" associated with the variation of the external
parameters A, is given by the ground-state expectation
value of the derivative of V&.

BCq 8 Vq(r)= Jnz(r) dr,
I
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V,,„(r)=g U;(r —R—r;),
R, i

is the position of the ith ion in the unit cell, and
Bn(r)/Bu;(R) is the electron density response to the dis-
placement in the ath direction of the ith ion in the unit
cell at R. The matrix of the force constants is con-
veniently calculated in reciprocal space:

dynamical matrix, D, &.(q), defined as

( )= C;p (q)
(mM )'" '

I J

where the M's are ionic masses.

(10)

1C, p (R)=—g e'q' C, p (q),

where X is the number of unit cells in the crystal. The
electronic contribution to C(q) is given by

dn (I ) I"BV (r)
ai pJ q = r

~~ agq ~~ PJq

u;(R)=u; e'q (9)

and Bn/Bu, q
is the corresponding variation of the elec-

tron density.
A generalization of Eq. (8) to the case of nonlocal pseu-

dopotentials is given in Appendix A. Equation (8) shows
that the knowledge of the electron-density response to a
lattice distortion of the form (9) enables one to calculate
the harmonic force constants of the crystal. Phonon fre-
quencies are then obtained by diagonalization of the

8 V;,„(r)
+5; J no(r) dr,

aiq=0 Piq=O

where BV;,„(r)/Bu;q is the linear variation of the exter-
nal ionic pseudopotential upon a lattice distortion of the
form

B. Density-functional linear response

Recently, very powerful techniques have been
developed to calculate the electronic linear response of
periodic systems in the framework of DFT. These tech-
niques have been successfully applied to zone-center pho-
nons of elemental and binary semiconductors, ' and of
semiconductor superlattices. Here we present them in
the general case of perturbations of arbitrary wavelength.

The self-consistent-field (SCF) DFT potential Vsc„ for
a system of electrons moving in the external potential of
the ions is given by

scF(r)= V;,„(r)+e, dr'+Uxc(n(r)),n (r')
r —r'

and can be determined by standard techniques of self-
consistent band-structure calculations. Let us superim-
pose to the ionic potential a perturbation 6Vb„, of given
periodicity q. The self-consistent potential will change
accordingly: Vsc„~Vsc„+5Vsc„. For the sake of clar-
ity, in this section, we use a description in terms of finite
differences: the passage to the description in terms of
derivatives —which is used in the rest of the paper —is
straightforward. If AVsc„ is supposed to be known, the
linear variation in the electron density An is obtained by
first-order perturbation theory:

4 + Wu, k 'Vc, k+q Y'c, k+q SCF Y'u, k[~Vnq+D= XO. .. ~v, k ~c,k+q
(12)

where An(q+G) is the Fourier transform of hn (r), 0 is
the volume of the unit cell, v and c indicate valence and
conduction bands, respectively, and the sum over k cov-
ers the first Brillouin zone. It is here assumed that the
crystal has doubly occupied valence bands and empty
conduction bands separated by a gap. On the other hand,
if An is known, b Vsc„can be obtained by linearizing Eq.
(11):

6VscF(r) =6Vb„,(r)+e, dr'b, n (r')
r —r'

dvxc+En (r)
dn

7

n =nO(r)
(13)

where no is the unperturbed electron density. Equations
(12) and (13) form a system that can be solved iteratively.
It should be remarked that the linear response to a per-
turbation of given q only contains Fourier components of
wave vector q+Cx, different q's do not mix at this order
of perturbation theory.

For computational convenience, it is desirable to avoid
the sum over conduction bands of Eq. (12). This can be
achieved by rewriting Eq. (12) in the following way:

an(q+G) = y y (1f,kle-'q+o"P,
k v

X G(E, k)P, KVkF lg. ,k&,

(14)

where P, is the projector over the conduction-state mani-
fold, G (c, ) = 1/(s HscF ) is the on—e-electron Green's
function of the unperturbed system, and the superscript
in b V)c„has been introduced to stress that KV)cF—
when acting on a wave function of wave vector k-
transforms it into a function of wave vector k+q. Note
that no special di%culties arise in evaluating Eq. (14)
when b, V)cF is a nonlocal operator. To evaluate Eq. (14),
we further rewrite it as
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an(q+G) = y y (y„kie-'(q+ ~'P, ~Zq, „, &,
k v

where Ap, k+q is solution of the linear system:

gq e",q,
y, v

4~e' (q Z,*) (q Zi )&

qe q
(18)

[Eu, k HSCF l ~
~ Pv, k+q & Pc ~ ~3CF ~ Puk&, (16)

The linear system (16) has an infinite number of solutions
because the determinant of [c., k

—HsCF] vanishes, and
the vector on the left-hand side (lhs) is orthogonal to the
null space of [E, k

—HsCF ]. In practice, Ap, k+q is
defined within a multiple of p, k. As b.it„k+q enters Eq.
(15) only through its projection onto the conduction-state
manifold, such an indeterminacy does not affect the final
result. Depending on the size of the basis set, Eq. (16)
can be solved either by factorization techniques, ' or by
iterative methods. In both cases, the calculation of all
the needed functions b.g„k+q requires a numerical labor
comparable to that needed for a single SCF iteration for
the unperturbed system.

The method described in this section applies to a gen-
eral perturbation. The matrix elements necessary when
the perturbation describes a lattice distortion are given in
Appendix B.

where e p is the high-frequency static dielectric tensor
(i.e. , the electronic contribution to the static dielectric
tensor), and Z;*

&
is the Born effective charge tensor for

the ith atom in the unit cell. Equation (18) shows that all
the information necessary to deal with the nonanalytic
part of the dynamical matrix is contained in the macro-
scopic dielectric constant of the system and in the Born
effective charges Z*, whereas the analytic contribution
can be calculated by just ignoring any macroscopic polar-
ization associated with the phonon. All these quantities
can be easily obtained within our framework.

2. Calculation of the dielectric tensor

The dielectric tensor relates the screened electric field
(with clamped nuclei) E to the bare electric field Eo:
Eo=e E. The matrix elements of the bare electrostatic
potential @o(r)= —Eo r are ill-defined in an infinite solid
with periodic boundary conditions. They can be cast in a
boundary-insensitive form by using the following rela-
tion.

C. Polar semiconductors

I. Nonanalyticity at small wavelengths where

( p„kl [HscF, r] I1t, k &

~vk ~ck
(19)

In polar semiconductors, the long-range character of
the Coulomb forces gives rise to macroscopic electric
fields for LO phonons in the limit q~o. For finite q, po-
lar semiconductors are dealt with in the same way as
nonpolar ones. In the long-wavelength limit, however,
the macroscopic electric field E, which accompanies the
lattice distortion must be treated with care because the
corresponding electronic potential 4(r)= —E r, is not
lattice-periodic. Within linear-response theory, electric
fields can be dealt with during the self-consistent process
performed to determine the density response to ionic dis-
placements. A more convenient way of dealing with
long-wavelength vibrations in polar semiconductors is to
exploit the known analytic properties of the dynamical
matrix. In the long-wavelength limit, the matrix of the
force constants can be written as the sum of analytic and
nonanalytic contributions

C
/g~

+C f3

where the analytic part C '" is the matrix obtained from
the response to a zone-center phonon, calculated with
electric boundary conditions (EBC) corresponding to zero
macroscopic electric field (zero EBC). Zero EBC are im-
plicitly assumed in any electronic-structure calculations
with periodic boundary conditions for the electronic
wave functions. The nonanalytic part has the general
form"

[HscF r] = + [ I'o
—ihip

rn
(2O)

p is the momentum operator, and m is the electron mass.
For a finite system, Eq. (19) is an identity. When periodic
boundary conditions are used, however, the lhs is no
1onger well defined, whereas the rhs is still so and does
not present any problem when passing to the thermo-
dynamic limit. Note that commutator [ V;,„,r] does not
vanish if the electron-ion interaction is described by a
nonlocal potential, as is the case in the calculations
presented below (see Appendix B). For practical pur-
poses, we calculate once and for all and store the auxili-
ary functions:

When an external electric field is applied, the bare per-
turbing potential has only a macroscopic (G=O) com-
ponent, whereas the screened potential has both macro-
scopic and microscopic (GWO) components. The latter
are given as usual by Eqs. (13) and (14). The former is
proportional to the electronic contribution to the macro-
scopic polarization per unit volume P: '

BP e f dn(r)
as. xn ~ ' az. (22)

ly. ,&=P...lq. ,&= y lq, „&
c ~c,k ~v, k

= —P, GO(E, k)P, [H, r ]if, k& . (21)
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which can be recast into the form '
aP
az.

4e
NQ

z,".p ——z, +—z g p;, ),plq=o
(27)

where Z, is the bare ionic (pseudo)charge of the ith ion
and Bg/Bu is the linear variation of the electronic wave
function, upon lattice distortion.

(23)

~ ~SCF=P, Go(s„k)P, (24)

where BVb„,(r)/BE&= rtt The i—nduc. ed polarization is
obtained through Eq. (23) and the dielectric tensor e" is
finally given by

3. Calculation of the Born effective charges

This result can be equivalently obtained by considering
the density response to a perturbation of finite wave vec-
tor q:

b,n(r)=e'~'g CG(q)e'
G

It is easy to see that, for small q, one has
CG o(q)= —iq. P, and obtain from this Eq. (23). Equa-
tion (23) is well defined and boundary insensitive, ' pro-
vided that the matrix elements of r are dealt with as
prescribed by Eq. (19).

Equation (23) can be used to obtain the screened elec-
tric field E=Eo—4mP at each iteration of the self-
consistent process. However, for computational pur-
poses, it is more convenient to keep the value of the
screened electric field fixed during self-consistency, and
let only the microscopic components of the potential
vary. The macroscopic polarization is then calculated
from Eq. (23), once self-consistency is achieved. Physi-
cally, this amounts to calculating the polarization
response to a given screened electric field E instead of to
the bare electric field Eo.

Let us introduce the following notation for the
response of the wave function

~ f, k & to an applied
screened electric field:

D. Real-space interatomic force constants

In nonpolar materials (such as elemental semiconduc-
tors) the range of the interatomic forces constants defined
by Eq. (4) is short. For this reason, interatomic force
constants offer a convenient way of storing the informa-
tion contained in the dynamical matrices D, &J.(q) at .any

q into a few (typically some tens) independent parame-
ters. Real-space force constants are conveniently calcu-
lated by Fourier analyzing their reciprocal-space counter-
part, Eq. (7), calculated onto a finite grid. The number of
force constants so obtained is equal to the number of q
points in the finite grid, the maximum range being essen-
tially given by 2m/b. q, where b,q is the discretization pa-
rameter of the reciprocal-space grid. Once real-space
constants have been obtained in this way, reciprocal-
space dynamical matrices can be calculated by inverse
Fourier transform at any point of the BZ (i.e., even at a
point not contained in the original grid). For this reason,
real-space force constants are a powerful tool for interpo-
lating dynamical matrices throughout the BZ.

In polar material (such as compound semiconductors),
the range of the interatomic force constants is not short
anymore, due to dipolar interactions associated with non-
vanishing effective charges. Mathematically, the long-
range character of the force constants is the origin of the
nonanalytic behavior of C(q), as q~O. As the nonana-
lytic part of C(q) can be expressed in terms of the ionic
effective charges and dielectric tensor of the system
through Eq. (18), the former is easily separated out of
C(q), once e and the Z 's have been calculated. Once
this is done, the remaining analytic term can be treated as
in nonpolar materials.

Note that subtracting Eq. (18) from the matrix of the
force constants, C(q), and expressing the resulting
difference in terms of real-space force constants,
effectively maps the lattice-dynamical problem onto a
rigid-ion model whose interaction constants, however,
are not necessarily restricted to a small number of neigh-
bors.

The calculation of the Born effective charges proceeds
along similar lines. The Born effective charges are simply
related to the total (ionic+ electronic) macroscopic polar-
ization P"' induced by a zone-center phonon with zero
EB(

gp tOt

z*
i, a13 e Bu@q

(26)

where u p'q Q is the amplitude of the zero-center phonon,
as defined by Eq. (9). The ionic contribution to the polar-
ization is trivial, whereas the electronic contribution is
obtained from the linear response to a zone-center pho-
non as in Eq. (23). In our notations one has

III. RESULTS

A. Technicalities

Our calcultions are performed in the framework of the
LDA plane-wave pseudopotential method. The
exchange-correlation energy and potential are taken from
Ref. 24. We have generated norm-conserving pseudopo-
tentials using a scheme proposed by von Barth and Car,
and paying particular attention to the choice of reference
configuration for atomic d states, which were found to be
rather important for ensuring the correct lattice
mismatch among the different semiconductors. Plane
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waves up to a kinetic-energy cutoff of 16 Ry have been
used. These basis sets are complete enough to guarantee
a convergence on the calculated phonon frequencies of
better than 5 cm ' The sums over electronic eigenstates
in the BZ have been performed using ten Chadi-Cohen k
points in the irreducible wedge. Dynamical matrices
have been then calculated onto a (444) reciprocal space
fcc grid. Fourier deconvolution on this mesh yields
real-space interatomic force constants up to the ninth
sheH of neighbors. This procedure is equivalent to calcu-
lating real-space force constants using an fcc superce11
whose linear dimensions are four times larger than the
primitive zinc-blende cell, thus containing 128 atoms. A
direct SCF calculation on such a superce11 would require
a numerical effort proportional to the third power of the
number of atoms, whereas our linear-response approach
requires an effort proportional to the number of q points
in the reciprocal-space grid, and hence to the number of
atoms in the supercell.

Phonon frequencies along low-symmetry lines have
been obtained interpolating the dynamical matrices using
the above force constants, as described in Sec. IID.
Along the high-symmetry lines 5 (1 -X) and A (I -L) we
have calculated the dynamical matrices at additional
points [all those belonging to the (888) fcc mesh]. One-
dimensional Fourier analysis of the dynamical matrices
yields the interptanar force constants. Interpolation of
the dynamical matrices using these interpIanar force con-
stants gives the same phonon dispersion that would be
obtained from a full three-dimensional calculation onto a
(888) fcc mesh. Optical branches are found to be insensi-
tive to the choice between the two meshes, whereas the
(888) mesh turns out to improve somewhat the agreement
of our calculated dispersions with experiment, in the
acoustic region. For polar materials, the long-range in-
teraction, which was implicitly eliminated by subtracting
the nonanalytic part of C(q), before Fourier analysis, was
restored using an Ewald sum similar to that used to
evaluate C"", as explained in Appendix A 1 [see Eq.
(A6), where the ionic charges Z, have to be replaced by
Z,*/&e" ].

B. Bulk dispersions and comparison with experiments

In Table I we report the values of the lattice parame-
ters used for calculating the phonon spectra of the six
materials we have investigated, along with the calculated
values of the effective charges and dielectric constants,

which have been used for treating long-wavelength
modes. Similar values for these quantities had been ob-
tained in a previous paper' by the same technique, but
using different pseudopotentials. As expected, the
differences are quite small. The reported values of the
effective charges are obtained by imposing the acoustic
sum rule (ASR):

QZ,*p=0.

In approximate calculations, the ASR is violated. The
magnitude of such a violation strongly depends on the
mesh of k points used for the sum over the BZ: it is large
if few k points are used, and tends to zero as the size of
the mesh increases. Notwithstanding, if the ASR is im-
posed by subtracting from each effective charge one-half
of their sum, good results are obtained with few k points,
and the data reported in Table I should be considered as
converged to the figures quoted. The values of the dielec-
tric constants are overestimated with respect to experi-
ments by =10%%uo. This is a well-known drawback of the
LDA known for a certain time "and discussed in some
detail in Ref. 16.

Our results for the bulk phonon dispersions along
several symmetry lines, together with the corresponding
densities of state, are displayed in Figs. 1 and 2, for non-
polar and polar materials, respectively. Some numerical
values at the high-symmetry points I, X, and I. are also
reported in Table II. Many neutron-diffraction and
Raman-scattering data" are available for all the
semiconductors considered here, with the exception of
A1As, for which only a few Raman experiments exist. '

The agreement between calculations and available experi-
ments is excellent. This is of particular importance in
view of the fact that we believe this to be the first time
that phonon dispersions of real materials have been cal-
culated completely from first principles, throughout the
entire Brillouin zone. In the case of AlAs, where a direct
comparison with experiment is not possible, our calcula-
tion is a reliable prediction of the phonon dispersions.
Previous calculations were, in fact, either limited to very
few high-symmetry points, or based on semiempirical
models that were fitted to the phonon dispersions of
GaAs. Our calculations predict that the A1As LO
branch along the 6 direction is much fIatter than hitherto
suspected. This fact, which is relevant for understanding
the physics of phonons in GaAs/A1As superlattices,
seems to be confirmed by the agreement between our cal-
culations and the available experimental data at the X

TABLE I. Equilibrium lattice parameter [a, (a.u. )] used in the present calculations, calculated Born
effective charges (Z*), and static dielectric constants (e ). Parentheses denote experimental data.

z Q

Si

10.20
(10.26)

13.6
(12.1)

10.60
(10.68)

18.7
(16.5)

GaAs

10.605
(10.68)

2.07
(2.07)
12.3

(10.9)

A1As

10.605
(10.69)

2.17
(2.18)
9.2

(8.2)

GaSb

11.40
(11.49)

1.73
(1.88)
18.1

(14.4)

Alsb

11.51
(11.58)

1.91
(2.18)
12.2

(10.2)
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FIG. 1. Calculated phonon dispersions and densities of state of elemental semiconductors, Si and Ge. Experimental data are
denoted by diamonds (from Refs. 28 and 29).

point. " ' The reliability of those experimental data are,
however, somewhat questionable, and the agreement
perhaps fortuitous. More meaningful is that the reliabili-
ty of the present prediction for A1As is confirmed by the
good agreement between our calculations and recent ex-
periments for the closely related compound A1Sb." Even
in the case of GaAs, for which phonon dispersions along
the high-symmetry 6 and A lines had already been calcu-
lated using interplanar force constants, the present cal-
culations represent an important step forward both be-
cause they have been performed for many more (low-

symmetry) directions, and also because they are consider-
ably more accurate, resulting in a much better agreement
with experiment. This is particularly so in what concerns
effective charges and LO-TO splittings, and the Aatness
of the TA branch near the X point. Finally, it is worth
noting that, in the case of GaAs, also the predicted vibra-
tional eigendisplacements at the X and L points are in
good agreement with experiment (see Table III), and with
previous theoretical calculations. ' The main features
of our method, which have made possible these improve-
ments, are the following. First of all, our Green's-

TABLE II. Phonon frequencies calculated at the high-symmetry points I, X, and L, for the six materials considered in this work
(cm '). Experimental data are in parentheses. Data tagged with an asterisk are from Ref. 33.

ITQ
I Lo
XTA
XLA
XTQ
XLQ
L
LLA
LTo
LLQ

Si'

517 (517)
517 (517)
146 (150)
414 (410)
466 (463)
414 (410)
111 (114)
378 (378)
494 (487)
419 (417)

Ge'

306 (304)
306 (304)

80 (80)
243 (241)
275 (27'6)
243 (241)

62 (63)
224 (222)
291 (290)
245 (245)

GaAs'

271 (271)
291 (293)

82 (82)
223 {225)
254 (257)
240 (240)

63 (63)
210 (207)
263 (264)
238 (242)

A1Asd

363 (361)
400 (402)

95 (109)
216 (219)
337 (333)
393 {399)

71
212
352
372

GaSb'

230 (224)*
237 (233)*

57 (57)
162 (166)
210 (212)
211 (212)

45 (46)
157 (153)
203 (205)
221 (216)

A1Sb"

316 (323)
334 {344)

64 (70)
153 (155)
290 (296)
343 (341)
49 (56)

149 (148)
306 (308)
327 (320)

' Experimental data from Ref. 28.
Experimental data from Ref. 29.' Experimental data from Ref. 30.

"Experimental data from Ref. 31.
' Experimental data from Ref. 32.
Experimental data from Ref. 11.
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TABLE III. Vibrational eigenvectors at the X and L points
of the Brillouin zone for III-V semiconductors. e is the cationic
component of the optic mode. The indexes L and T indicate
longitudinal and transverse modes, respectively. The experi-
mental data reported in parentheses are from Ref. 30.

400

200

AlAs AlSb

eT(X)
eT(L)
eL(X)
eL(L)

0.66
0.70
1 (1)

0.74 (0.56 or 0.81)

0.85
0.86
1

0.99

0.91
0.91
1

0.97

0.77
0.79
1

1.00

0
600

U

function technique avoids the use of supercells, thus al-
lowing us to calculate force constants of longer range, not
limited to the high-symmetry directions; still, accurate,
norm-conserving (nonlocal, instead of local) pseudopoten-
tials can be used without special difhculties; last but not
least the overall numerical e%ciency of our method al-
lows us to use a high number of special points and large
plane-wave basis-sets, thus permitting us to obtain fully
converged results.

400

200

C. Transferability of the force constants

The qualitative behavior of the real-space force con-
stants calculated for Si and Ge is similar to that previous-
ly obtained by dielectric matrices and local pseudopoten-
tials. In particular, we have found that the force con-
stants decay slowly in the direction of the bond chains,
( 110). A similar behavior has been observed also in III-
V compounds, once the long-range tails of the force con-
stants are removed, as discussed in Sec. II D.

We wish now to assess to what extent the force con-
stants calculated for one material are able to describe the
lattice dynamics of another material or a mixture of the
two (such as an alloy or a microstructure). To this end,
we have calculated the phonon dispersions of several ma-
terials using the dynamical matrices obtained for different
materials that di6'er from the former for the cationic or
anionic species. Our results are displayed in Fig. 3,
where the notation [A]~B indicates that phonons of
material 8 have been obtained with the dynamical matrix
calculated for material 3 at its equilibrium lattice param-
eter, uniquely replacing the relevant masses (mass approx-
imation). In the case of GaAs and A1As, which differ for
the cationic species and have practically the same lattice
parameter, the mass approximation gives phonon disper-
sions practically indistinguishable from the real ones in
the acoustical and transverse optic regions, while they
differ by less than 10 crn ' in the LO region. Such an ac-
curacy is achieved without any empirical adjustment of
the effective charges. In fact, the small discrepancies are
almost entirely due to the small difference between the
effective charges of the two materials. It turns out that
ab initio force constants calculated for GaAs are indeed
capable of describing rather accurately phonon disper-
sions in A1As, while semiempirical dynamical matrices
(such as those from the bond-charge or other models),
Atted to the GaAs dispersions, give an AlAs LO band

0
g 300
Q

U'
200 „-

100

400

200

0
6O0

U'

&~4oo

800

X
FIG. 3. Comparison between the phonon dispersions calcu-

lated with (dashed line) and without (solid line) the mass ap-
proximation. The notation tI A]~8 indicates that phonon
dispersions of material B have been obtained with the dynami-
cal matrix appropriate to material A, replacing just the relevant
masses. The diamonds indicate the frequencies obtained calcu-
lating the dynamical matrices of material 2 at the lattice pa-
rameter appropriate for material B.
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width along I X, which is quite a bit larger than that cal-
culated from first principles. This indicates that the
agreement between the calculated frequencies and experi-
ments is by no means a sufticient criterion for judging the
quality of a model. A similar accuracy is also obtained
for Sb compounds, where the lattice mismatch is larger.
These results clearly indicate that the use of the mass ap-
proximation for systems that differ for the cationic
species is well justified, provided accurate force constants
are used.

In the case of GaAs and GaSb (which differ for the
anionic species and have a rather large lattice mismatch)
the mass approximation gives poorer results, with errors
larger than 30 cm '. This fact had been already
remarked and attributed to the larger polarizability of the
anions. One could think that the main source of inac-
curacy lies in the large lattice mismatch. To verify this
issue, we have also calculated some representative pho-
non frequencies for system B, using the force constants of
system A, calculated at the lattice parameter of system B.
The results are indicated by diamonds at the X, I, and L
points in Fig. 3. We see that even worse results are ob-
tained in this case. Similar results have been obtained for
Al compounds as well. We conclude that the mass ap-
proximation is much less accurate when the systems
differ by their anions than when they differ by their cat-
ions. Finally, in the case of Si and Ge, the accuracy of
the mass approximation is somewhat intermediate be-
tween the above two cases, as expected.

IV. CONCLUSIONS

Si/Ge systems are in fact under way, with very promising
preliminary results. The case of pseudobinary systems
with different anions may require some semiempirical ad-
justment of the force constants, in order to achieve a
comparable accuracy.
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APPENDIX A: EXPRESSION
OF THE FORCE CONSTANTS

1. Electronic term, nonlocal potentials

If the electron-ion interaction is described by a nonlo-
cal potential, Eqs. (1) and (3) do not hold and one must
use the more general expressions

(Al)

and

In this paper we have shown that the accurate calcula-
tion of complete phonon dispersions of semiconductors is
by now well within the scope of computational methods
based on density-functional theory. The results so ob-
tained compare very favorably with experiment. The
concept of interatomic force constants is very useful, not
only for interpolating vibrational properties throughout
the Brillouin zone, but also for using the information
gained in simple systems (such as elemental or binary
semiconductors) in rather complex ones, such as alloys
and quantum structures; this is feasible in a straightfor-
ward way in the case of pseudobinary systems presenting
different cationic species, and, to a minor extent, for
Si/Ge. Applications of these ideas to GaAs/A1As and

a@„„av,
ai, - CIA.j

U, k (A2)

The first term is a "diagonal" term, which can be calcu-
lated without any knowledge of the response of the sys-
tem; the last two terms (which are equal due to time-
reversal symmetry) need only the knowledge of the linear
response of the system.

In q space, the two contributions have the form

(1) 8 Vion —iq. (R—R')
'~' q =N ~ ~ ~ ~'" au (R)au (R') ~'" '

R R' k v ~I Pj

$2 p'
=t', ~ X X ., ~ q„q„ ~i)uaiq oufiiq=o=

(A3)

a,„av,.„ a .„av,.„N, „, u;(R) Bup (R') au. .. au„,
(A4)

A factor of 2 comes from the spin summation. The first term does not depend on q and can be calculated only once.
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2. Ionic term

The ionic term in the force constants arises from the ion-ion Ewald term:

4m% e G /4a

Ewald
(6&0)

2
iG ri

I
gZ,4a I

1Ve ZIZm 2 2Q+ g g [1—erf(&air& r ——Rl)] —
¹

I „ 1~1 r ——Rl

1/2

gZ, ,
I

(A5)

where Z; indicates the bare ionic (pseudo)charges for the ith atom, and a is a parameter whose arbitrary value can be
chosen large enough to allow the neglect of the real-space term. After some tedious but straightforward algebra one
finds

—(q+G) /4a4 2c ";"p,(q) = Z, Z, e ' ' (q +G )(qp+Gp)
G, q+G~o (q+ G )

2~e2 e
—G /4a

Z; QZIe ' ' G Gp+c. c. 5;1 .
GWO

(A6)

Note that, when the bare nuclear charges in Eq. (A6) are
replaced by the corresponding eA'ective charges
Z;* /( e )', Eq. (A6) is identical to the matrix of
Coulomb coe%cients appearing in rigid-ion models.

APPENDIX 8: MATRIX ELEMENTS

Let us consider the matrix elements between plane
waves

—ik -r ik 'l
v;1(k~, k, )=— e ' u;, (r, r')e ' drdr'

(2l+l)P, (k, k2)

X J r j((k)r)j((k2r)u; ((r)dr .
0

The matrix elements of the bare perturbations are

(B6)

(rlk++) = e'~~+G~'l1

&NA
(Bl)

k+ q+ Cx k+ 6'

i (q +—6 —G' )e
of the various quantities needed. The electron-ion in-
teraction is given by a nonlocal pseudopotential of the
usual form

X V,. „,(q+ Cx —G')

v;(r, r')=v;~„(r)5(r —r')+ g u; I(r, r'),
I

(B2) + g u; &(k+q+Cx, k+G')
I

(B7)

where

2l +1
u; &(r, r')= u, &(r)P&(r r')5(r r'), —(B3)

where PI is the Legendre polynomial of degree l. The
plane-wave matrix elements of the above operator are
given by

&k+C" lu,. lk+G'&

= v; „,(Cx —Cx' )+ g u, 1(k+G, k+ G'), (B4)
I

where

The screening contribution to BVscF/BQ 'q which is a
local potential in DFT, can be advantageously evaluated
in real space and transformed back to reciprocal space by
fast-Fourier transform. The matrix elements of the
second derivative of the electron-ion interaction potential
are given by

0 V;,„k+ CJ k+ &-' I
aiq=p piq=p

—i (0—Cx'). r,.= —(G —G' )(Gp —Gp)e

X v;(G —Cx')+ g u; I(k+Cx, k+6')
I

and

v; ~„(Cx)=—f v; &„(r)e ' 'dr, (85)
The matrix elements of the nonlocal pseudopotential con-
tribution to [H, r) between plane waves are
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I

(k, ~Iv, t, r j~kz) =—J e ' v;t(r, r')(r' r—)e ' drdr'

Iki'r lkp r+ —J e ' v;t(r, r')e ' drdr'
Bk, Bk~ 0

a a
l +

ak,. ak,. v, , (k„k~) .
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