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Resonating-valence-bond structures involving pairings of sites not too distant from one another
are considered. It is shown that under fairly general conditions these structures fall into different
classes manifesting different “topological” long-range orders. Implications for “winding numbers”
resulting from the superposition of pairs of valence-bond structures are noted.

I. INTRODUCTION

Following Anderson’s suggestion! that resonating-
valence-bond (RVB) theory 1is relevant for high-
temperature superconductivity, much work has been
published. Of some (possibly crucial) interest in this area
has been 27° the occurrence of what might be termed a
long-range topological order, which actually has also
been'""1* discussed earlier primarily in the rather
different context of applications to conjugated hydrocar-
bons. In all work to date there has always been unneces-
sary limitations in the generality of results, say, as re-
gards the restriction to special lattices, the limitation to
nearest-neighbor RVB structures, the limitation to the
discernment only of the parity of a long-range-order
quantum number, and limitations in the rigor of proof of
various results. Here we wish to remove these various re-
strictions, insofar as possible, especially as a diversity of
applications seems possible.

We emphasize topological graph-theoretic!® aspects of
the results. The first feature of our basic assumptive
framework is that of a graph .L, which is divided into suc-
cessive cells along a long direction. Often .L is a (regular)
lattice, but in general it need not be. We assume “cyclic
boundary conditions” (in the long direction) and imagine
the divisions between cells not to hit any site of L. Edges
between sites are only to occur within a cell or between
immediately adjacent cells. Sometimes on .L there are
quantum states labeled by other graphs in which every
site is paired exactly to one another. These pairing (or
VB) structures may be viewed as having different
quantum-mechanical realizations: the well-known co-
valent singlet structures of the spin-1 Heisenberg model,
extensions'®!7 of this for higher-spin Heisenberg models,
mixed covalent and ionic singlet structures'®!® for
Hubbard-type models, the so-called ‘“bond-orbital reso-
nance theory” structures,'® and yet others. One elegant
view? is that the nearest-neighbor pairing structures are
coherent combinations of a limited number of exact

43

eigenstates to the full Schrédinger Hamiltonian so as to
yield as closely as possible the set of classical chemical-
bonding patterns. Indeed there is a large body of chemi-
cal literature where these RVB structures arise as
chemical-bonding patterns in an empirical fashion, for ei-
ther qualitative?! or quantitative??> purposes. The second
major feature of our assumptive framework is a restric-
tion on the pairing structures. Each VB structure C is as-
sumed to be of limited range r =1 in that any two sites
paired in C are within a fixed distance, as measured by
the minimum number of edges of .L in a path in between
the two sites. The range r is assumed to be very much
less than the number L of cells of £. As a consequence of
our assumptions we may view .L to be embedded in Eu-
clidean space within a torus such that shortest path dis-
tances along the long direction roughly correlate to Eu-
clidean distances. Further, a VB structure C is also em-
bedded in the torus in a natural way, with the edges of C
of a Euclidean length no greater than ~r. The ideas and
results following are framed in terms of these natural
embeddings.

II. RESONANCE PARITY

Let the parity of the number of sites in the ith cell of
the lattice graph .£ be denoted by 7, (being + or — as
the number is even or odd). In order that £ admit VB
structures, the total number of sites must be even and the
product over all 7; must be +. For a limited-range VB
structure C let 7,(C) denote the parity of the number of
sites to the left of the boundary between cells i and i + 1
that are paired with sites to the right. Thouless® terms
m;(C) a gap parity (for C a dimer covering), and else-
where'? it has been termed a resonance parity. Now we
have the following.

Theorem A.—For any limited-range VB structure C on
L,

N —](C)=7T[77','(C) .
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Previously, this has been proved for a few particular
cases and asserted several other times. To establish this,
for structure C, let m;(left) and m,(right), respectively,
denote the parities of the numbers of sites of the ith cell
paired to sites to the left and right of cell i. Of course the
parity of the number of sites internally paired within the
cell must be +, so that 7; =r;(left)r;(right). Now there
may be some additional pairings across the cell boun-
. daries of cell i that are not yet counted in ;(left) and
m;(right). But these additional bonds, which are not
paired to a site in i, modify the parities of w;(left) and
ar;(right) by the same factor o to yield m;(C) and m; (C),
respectively. That is, m;_(C)=om;(left) and
7;(C)=o1; ;(right), and one obtains the theorem direct-
ly.

As emphasized in earlier work, a result such as that of
theorem A implies a type of long-range order: If any one
m;(C) is given, then all the others are determined. Since
there are two conceivable choices (+ and —) for such a
7;(C), there ordinarily are two classes of VB structures.
A comparison of two VB structures ¢ and ¥ may be made
following Pauling? via the superposition graph, which is
that obtained from the union of the edge sets of ¢ and .
Such superposition graphs consist of components (i.e.,
maximal connected pieces) that are either isolated edges
or even cycles, here termed little and big islands, respec-
tively. Inherent ““global” characteristics of these islands
are*” 71011 relevant, as is now elucidated with a nomen-
clature introduced by Rokhsar and Kivelson® and by
Sutherland.* For each big island there is a winding num-
ber giving the number of times it wraps the long way
around .£. This topological concept (or invariant) is illus-
trated in Fig. 1. More precisely if one walks along the big
island counting + 1 for each boundary crossing from left
to right and —1 for each crossing from right to left, then
the island’s winding number is the absolute value of the
sum of these numbers in proceeding once around the is-
land. The winding number for the superposition graph is
the sum of those of its (big) islands. Now we can state the
following:

Theorem B.—The parity of the winding number for the
superposition graph of ¢ and ¢ is 7;(¢)7; (1), which is in-
dependent of i.

To establish this, consider ‘local” structures which do
not contribute to a winding. In particular, consider how
two edges of ¢ and/or 9 can cross a given boundary and
be connected by a path “entirely to the left” of the
boundary. More precisely, consider two boundary-
crossing edges in the same island and walk along the
edges of the island starting from the right vertex of the
other such edge; count +1 each time the boundary is
crossed right to left and —1 each time it is crossed left to
right; then the two edges considered are left-connected if
and only if the running sum of the crossing numbers is al-
ways positive after the first step up until the last step
when it is 0. See Fig. 2. A O-length connecting path to
the left can give a little island, clearly giving no winding.
In a big island all boundary crossings not left-connected
must be of the same sign and thence contribute to the
island’s winding number. Thus the winding number of
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FIG. 1. Illustrations of windings for islands indicated by
dashed curves within the toroidal framework of L. Both islands
in (a) have winding number O, that in (b) has winding number 1,
and that in (c) is 2.

the superposition graph is the total number of boundary
crossings minus the number that are left-connected.
Since the parity of the total number of boundary cross-
ings is 7;(¢)m;(¢), and since the left-connected edges
occur in pairs with net parity +, the theorem is estab-
lished. An independence check may be made via theorem
A, which implies 7; ;. |(¢)m; () and 7,(p)7;(¢) are the
same, so that this parity is independent of the boundary .

FIG. 2. Two cases where two boldface boundary crossing
edges are left-connected. The manner of completion of the is-
lands on the right is irrelevant.
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III. TOPOLOGICAL RESONANCE QUANTUM NUMBER

With the imposition of additional conditions, results
stronger than those of the preceding section can be ob-
tained. We assume two bipartitioning conditions: First
the sites of .L are bipartitioned into two equicardinal dis-
joint sets, 4 and B, and second the limited-range VB
structures are such that each pairing is between sites, one
in 4 and one in B. This second assumption is expected to
be more physically reasonable when the dominant
pairing-favoring interactions occur between pairs of sites
one from each set. That £ admit limited-range VB struc-
tures as in the second condition implies that “locally”
there are an equal number of 4 and B sites. If we let A;
be the excess of A sites over B sites in cell i, then sums
over arbitrarily large sequences of these A; must remain
bounded (with the bound tighter for more limited-range
VB structures). But even for nearest-neighbor VB struc-
tures and translationally symmetric ., these A; need not
be 0. In this case they can simply alternate in sign.

We now proceed with some additional useful concepts,
and finally some consequences. Let Q;'(C) be the num-
ber of pairings across the boundary between cells i and
i +1 such that an A site on the left is paired in C to a B
site on the right. Also let Q; (C) be the corresponding
number with B sites on the left paired to A4 sites on the
right. Then define a (local, at boundary i) resonance
quantum number for C as

0,(0)=01(C)—0; (C) . (3.1

Clearly the parity of Q,(C) is just the pairing parity ;(C)
of the preceding section. In analogy to theorem A we
have the following.

Theorem A’'.—If the bipartitioning assumptions apply,
then for any limited-range VB structure C,

0,(C)=0; (O)+A4; .

To obtain this, start defining (with regard to C) various
numbers a;( - -+ ) and b;( - - - ) of 4 and B sites in cell i;
the designations - --” here may be “left,” “right,” or
“int” as counts refer to sites of cell i paired in C to other
sites to the left of cell i, to the right of cell i, or interior to
cell i. Then the difference between the number of 4 and
B sites in the ith cell is

ET TS

[a,(left)+a,(right)+a;(int)]
— [b;(left)+ b, (right)+b,(int)] =4, .  (3.2)

Since A sites are only paired to B sites, a;(int)=b;(int),
and these two terms cancel in (3.2). But again, 4 and B
sites pair only to one another, so we identify the remain-
ing terms in brackets in (3.2) as —Q;_(C) and +Q,(C),
respectively, and the theorem follows.

From this result we see that ordinarily there may now
be several long-range order classes, and again compar-
isons between classes are of interest. In fact, for theorem
B, we have an analogous result:

Theorem B'.—The magnitude of the difference between
the resonance quantum numbers for two limited-range
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FIG. 3. The four -possible manners of left-connecting two
boundary-crossing edges from ¢ and/or .

VB structures satisfying the bipartitioning conditions is a
lower bound to the winding number of the associated su-
perposition graph.

To establish this we use ideas in the proof of theorem B.
Given two structures ¢ and i we consider the possible
manner of left-connecting two edges crossing a fixed
boundary between two cells. There are four possible
manners indicated in Fig. 3. In this figure A sites are
“starred,” B sites are ‘“‘unstarred,” and an indication of
the parity of the length (i.e., number of edges) of the con-
necting path off to the left is given. Clearly this parity
determines whether the two boundary-crossing edges are
in the same or different VB structures (¢ and ). The
types of boundary edge-pairs that may be left-connected
are indicated in Fig. 4(a), and in Fig. 4(b) are indicated

Dy
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FIG. 4. Types of boundary-crossing edges that may be left-
connected. Again, in (a), “starred” and “unstarred” sites indi-
cate those of types 4 and B, respectively.

Q(¥) (b)
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the corresponding counts Q;' (¥),0;"(¢),0; (¢),0; (1)
to which each type contributes. Thence we see that any
boundary pairs of types for Q; (4) and Q; (¢) can be
left-connected only to those of types for Q;(¢) and
Q; (¢). Thus the maximum number of boundary pairs
not left-connected is

(@ ) +07 (91127 ($)+ 07 (W]l
=10 —Q(¢)| .

As in the proof of theorem B, each of these remaining
(not left-connected) boundary pairs evidently must be in-
volved in windings. Thus the present theorem is proved.

(3.3)

IV. FURTHER COMMENTS

Applications envisage the VB structures of the preced-
ing sections as labeling states. Thence the resonance
quantum numbers of theorems A and A’ identify long-
range-order classes (or subspaces) of states. Two states
from two different classes should then differ repeatedly in
each of the L cells of the network .£, and thence be
asymptotically noninteracting, via any interaction medi-
ated by a few-particle operator. That is, we anticipate
the following.

Theorem C.—If |®) and |¥) are normalized states

from two different long-range-ordered subspaces, then
(®|¥) and (P®|H|¥V) asymptotically approach zero as
L/r— o and where H is a few-particle size-extensive
operator (such as the Hamiltonian).
This can often be viewed* 7'"!2 as a consequence of
theorems B or B’ with nonzero winding-number islands
“quenching” the matrix elements, as is evident, e.g., from
Pauling’s®® formulas, wherein a factor of 22~ " occurs for
each big island of 2n sites. For H the nearest-neighbor
spin-1 Heisenberg model, Bonesteel” has detailed this
proof. Essentially the same approach also works for the
higher-spin cases of Refs. 16 and 17, as has been indicat-
ed!© for certain .L before. The same approach can be ex-
tended to deal with more complicated interactions in
H —most easily for local permutation operators, which
may be viewed simply to permute any RVB structure in a
local fashion and thereby not change its long-range-order
class. The result of the theorem ‘‘should” hold under
much more general circumstances if the state labels are a
reasonable reflection of physical reality. The various
long-range-order classes identify asymptotically nonin-
teracting subspaces.

In at least one special case there is only one long-range
order class. In particular for a “noncyclic” graph our
theorems still apply, since £ admits an embedding into a
torus. But at the Lth intercell boundary between what
are now the left and right sides of .L one has no crossing
bonds in a limited-range VB structure C and Q,; (C)=0,
thereby determining the long-range-order class. Even in
this case some applications occur.'%2*

With the assumption of translational symmetry, so that
all cells are equivalent, there are some further conse-
quences. The parity #; of theorem A is then independent
of i, and is abbreviated to 7. The excess A; of theorem A’

also has a magnitude A independent of i, while its sign al-
ternates, as (—1)°. Then we have the following.

Theorem D.—Granted theorem C and translational
symmetry, the eigenenergies of H on the space of
limited-range VB structures are asymptotically twofold
degenerate if 7= — or A7O0.

This follows immediately, since in these indicated cases
there are distinct translationally equivalent long-range-
order classes. Previously such ideas have been argued to
be of relevance for “bond” localization'®~!%14 and “soli-
tonic” excitations.!?”1* Another interesting feature of
theorem D as described by Bonesteel’ is a relation to the
theorem of Lieb, Schultz, and Mattis,?® also indicating ei-
ther gapless excitations or a twofold asymptotic degen-
eracy. Further too for a special class of graphs there is a
correspondence to another Kekulé-structure parity?® and
interesting consequences are not followed here.

For the .case that all A;=0, as often occurs with
translationally symmetric lattices, Q is conserved, from
one position along the torus to the next. Correspon-
dences of dimer coverings to sets of directed self-avoiding
walks often occur and applications?’ to polymer packings
may be made. There are mathematical applications?®
also. Though previously this correspondence has only

@ 1

(b)

() o

(d)

) h/

@ ITITITTT]

FIG. 5. Illustrations concerning the distinction of long-
range-order and winding numbers, for structures on the cyclic
ladder graph of (a). The Kekulé structures of (b) and (c) lie in
the same long-range-order class, though they have a superposi-
tion graph of (d) with winding number 2. The local change
from Kekulé structure (b) to (e) gives a superposition graph (f),
which is obtained from (c) and (e), and which has winding num-
ber 0. Continuing such local changes one reaches (g), from ei-
ther (b) or (c).



43 TOPOLOGICAL LONG-RANGE ORDER FOR RESONATING-. .. 727

been made for the honeycomb lattice, our considerations
allow it for any two-dimensional bipartite lattice as well
as for higher-dimensional lattices with vertices of degree
3.

Finally the relation between winding numbers and res-
onance quantum numbers might be elucidated a little
more. Though different resonance quantum numbers im-
ply different winding numbers, the converse is not true.
For example, the configurations of Figs. 5(b) and 5(c) give
a superposition graph with winding number 2, though
both configurations have the same resonance quantum
number. This winding number can be modified to 0 by a
simple local rearrangement, also as illustrated in Fig. 5.
Even more relevant is the fact that a whole sequence of
local rearrangements will change either of the first two
configurations into the other. Hence these two
configurations should mix significantly through this

“path,” with the intermediate configurations also mixing.
That is, winding numbers do not break our system state
space up into noninteracting classes (or sectors, or
subspaces)—rather it is the resonance quantum numbers
that do this—generally more finely than the pairing pari-
ty of Sec. II.

In conclusion there seems to be a diversity of applica-
tions of the basic tools established, clarified, and
developed here. Some further discussion of these ideas in
the context of the square-planar lattice occurs in the ac-
companying paper.

ACKNOWLEDGMENTS

This research was supported by the Welch Foundation
of Houston, Texas.

IP. W. Anderson, Science 235, 1196 (1987).

2S. A. Kivelson, D. S. Rokhsar, and J. Sethna, Phys. Rev. B 35,
8865 (1987); S. A. Kivelson, ibid. 36, 7237 (1987); B. Suther-
land, ibid. 37, 3786 (1988).

3D. J. Thouless, Phys. Rev. B 36, 7187 (1987).

4B. Sutherland, Phys. Rev. B 38, 7192 (1988).

D. S. Rokhsar and S. A. Kivelson, Phys. Rev. Lett. 61, 2376
(1988); S. Kivelson, Phys. Rev. B 39, 259 (1989).

6S. Sachdev, Phys. Rev. B 40, 5204 (1989); N. Read and S.
Sachdev, Nucl. Phys. B316, 609 (1989).

N. E. Bonesteel, Phys. Rev. B 40, 8954 (1989).

8T. P. Zivkovi¢, B. L. Sandelback, T. G. Schmalz, and D. J.
Klein, Phys. Rev. B 41, 2249 (1990).

9F. Figueirido, A. Karlhede, S. Kivelson, S. Sondhi, M. Rocek,
and D. S. Rokhsar, Phys. Rev. B 41, 4619 (1990).

10D, J. Klein and M. A. Garcia-Bach, Phys. Rev. B 19, 877
(1979).

1D, J. Klein, Intl. J. Quantum Chem. 13S, 293 (1979).

12w. A. Seitz, D. J. Klein, T. G. Schmalz, and M. A. Garcia-
Bach, Chem. Phys. Lett. 115, 139 (1985); D. J. Klein, T. G.
Schmalz, G. E. Hite, A. Metropoulos, and W. A. Seitz, ibid.
120, 367 (1985); D. J. Klein, T. G. Schmalz, W. A. Seitz, and
G. E. Hite, Intl. J. Quantum Chem. 19S, 707 (1986).

13G. E. Hite, A. Metropoulos, D. J. Klein, T. G. Schmalz, and
W. A. Seitz, Theor. Chim. Acta 69, 369 (1986).

14D. J. Klein, T. P. Zivkovi¢, and N. Trinajstié, J. Math. Chem.
1, 309 (1987).

13See, for example, F. Harary, Graph Theory (Addison-Wesley,
Reading, Massachusetts, 1972).

16D, J. Klein, Phys. Rev. B 19, 870 (1979).

I7H. Tasaki, Phys. Rev. B 40, 9183 (1989).

18 H. Choi and W. R. Thorson, J. Chem. Phys. 57, 252 (1972);
W. Grundler, Z. Chem. 19, 236 (1979); 20, 425 (1980); P. E.
Schipper, Chem. Phys. Lett. 142, 393 (1987).

19T, p. iivkovié, Theor. Chim. Acta 61, 263 (1982); Croat.
Chim. Acta 56, 29 (1983); 56, 525 (1983).

20w, T. Simpson, J. Am. Chem. Soc. 75, 597 (1953).

218ee, e.g., L. Pauling, The Nature of the Chemical Bond, 3rd ed.
(Cornell University Press, Ithaca, 1960); E. Clar, The Aromat-
ic Sextet (Wiley, New York, 1972).

228ee, e.g., W. C. Herndon, Thermochim. Acta 8, 225 (1974); M.
Randié, J. Am. Chem. Soc. 99, 444 (1977); W. C. Herndon,
M. L. Ellzey, Jr., and M. W. Lee, Pure Appl. Chem. 54, 1143
(1982); M. Randi¢ and N. Trinajsti¢, Sulfur Rep. 6, 379
(1986).

231. Pauling, J. Chem. Phys. 1, 280 (1933).

24T, P. Zivkovié (unpublished).

25E. H. Lieb, T. D. Schultz, and D. C. Mattis, Ann. Phys. (N.Y.)
16, 407 (1961).

26M. J. S. Dewar and H. C. Longuet-Higgins, Proc. R. Soc.
London, Ser. A 214, 482 (1952); A. Graovac, I. Gutman, N.
Trinajsti¢, and T. P. Zivkovié, Theor. Chim. Acta 26, 67
(1972).

27]. F. Nagle, J. Chem. Phys. 58, 252 (1974); Proc. R. Soc. Lon-
don, Ser. A 337, 569 (1975); Phys. Rev. Lett. 34, 1150 (1985);
M. E. Fisher, J. Stat. Phys. 34, 667 (1984); C. S. O. Yokoi, J.
F. Nagle, and S. R. Salinas, J. Stat. Phys. 44, 729 (1986).

28p, John and H. Sachs, in Proceedings of the Conference on
Graph Theory, Eyba, 1985, edited by H. Sachs (Teubner,
Leipzig, 1985), p. 80; P. John and H. Sachs, in Graphen in
Forschung und Unterricht, edited by R. Bodendiek, H.
Schumbacher, and G. Walter (Teubner, Leipzig, 1985), p. 85.



