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Dielectric formalism for a quasi-one-dimensional electron gas.
II. Dielectric functions and potential correlators
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The dielectric function of an electron gas confined in a quantum wire is evaluated. The lateral
confinement is modeled with a square or parabolic well and the vertical one with a triangular or
square well. Screening is treated dynamically, and the electrons are assumed to interact with each
other and with an external system taken to be impurities or phonons. Two cases are considered: (i)
a homogeneous system and (ii) systems presenting inhomogeneity in one direction such as simple or
double heterostructures. The potential correlators and dielectric functions of the external system
are also evaluated. The results are useful for describing transport properties using the relevant
quantum transport equations and relaxation frequencies.

I. INTRODUCTION

Electronic systems of reduced dimensionality, such as
two- or one-dimensional electron gases (2DEG, 1DEG)
occurring, e.g. , at semiconductor interfaces, have attract-
ed considerable theoretical and experimental attention
over the past ten years. Concerning screening of the
1DEG we are aware of Refs. 1 and 2, which treat the
electronic part of the dielectric function, and of Ref. 3
which treats screening by impurities as well. None of
these works considers screening by phonons, nor do they
give the complete expression for the total dielectric func-
tion. References 1 and 3 consider only a cylindrical wire
with one or two lateral subbands occupied and Ref. 2
considers only a square lateral confinement. For these
reasons and the fact that self-consistent calculations indi-
cate that the confining potential can be parabolic in very
narrow 2DEG channels, we feel that additional studies
of screening are necessary and valid for lateral multisub-
band occupation. This will be the subject of this paper
both for square and parabolic lateral confinement, taking
into account contributions to screening from electron-
electron, electron-phonon, and electron-impurity interac-
tions.

An additional reason for the present study is the quan-
tum transport equations for the quasi-1DEG (Q1DEG)
derived in the preceding paper and referred to hereafter
as I. The collision integrals and the energy and momen-
tum relaxation frequencies are expressed in terms of po-
tential correlators of the external system or in terms of
the dielectric functions when the latter is in equilibrium.
It is therefore appropriate to complete the formalism ini-
tiated in I.

In this paper we calculate the dielectric function of the
Q1DEG in the presence of electron-electron or electron-
phonon interaction in Sec. II and the potential correla-
tors, for phonons and impurities, in Sec. III. In Sec. II
we consider both a homogeneous system and an inhomo-

geneous one along one direction, pertinent to single or
double heterostructures. Concluding remarks follow in
Sec. IV. Appendix A contains the dielectric function and
potential correlators for a three-dimensional (3D) phonon
system; these results are used in Secs. II and III. For
completeness we give, in Appendix B, the electronic part
of the dielectric function of the QlDEG for lateral mul-
tisubband occupation.

II. DIELECTRIC FUNCTION OF THE Q1DEG
INTERACTING WITH AN EXTERNAL SYSTEM

The function e, (co, q„,p, p') describes the linear response
of the system, homogeneous in the x direction, to a test
charge with density e5% via Eq. (15) of I.

A. Homogeneous medium

The 3D Poisson equation, in Fourier space, reads

y(co, q)= ', q=(q„q~, q, ),4~e X(co,q)
q2 e, co, q

(2)

We consider a Q1DEG confined in a quantum wire, of
length L =L„and interacting with an external system.
As in I we use small Greek letters for the "longitudinal"
(i.e., along x) quantum numbers and Roman letters for
the "transverse" (i.e., in the yz plane) ones. Considering
only one sort of particles (i.e. , electrons) we can drop the
index p and write the one-electron wave function as
+z(r)=f (x)g, (p),p=(y, z). With E =(a, b) the dielec-
tric function ezz (co, q„), where co is the frequency and q
the wave vector, is given by Eq. (21) of I (q =—q ) rewrit-
ten here for convenience:

g.'(P)gb(P)y. (P')gb (P')
d pd p

es(~~qx~p~p )
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e 'Q'(P P )

+q E coq
(3)

where ip(co, q) is the potential created by the charge
eX(co, q) and e, (co, q) the 3D dielectric function. Taking
the inverse Fourier transform of Eq. (2) with respect to
the 2D wave vector Q=(q, q, ) we obtain

1 1

e, ( co, q„,p, p' ) e, ( co, q„,p —p' )

with

0 (Q)= fX.*(p) e' 'X (p)d'p

We consider only the case X, (p) =Zo(z) Y„(y); the sub-
script 0 indicates that only the lowest subband is assumed
to be occupied. For confinement along the z direction we
consider a triangular (T) well, with the usual variational
wave function, or a square (S) well of height ao. That is,
we take

If the system is isotropic, e, (co,q)=e, (co, q), and the in-
tegration over the angle between Q and p —p' gives Zo(z)=(bo/2)' ze (12)

~- Jo Qp Q„
e, (co,q, p) o q'e (,q)

(4) or

Zso(z) =(2/ao)' sin(mz/ao), 0 ~ z —ao . (13)
where Jo(x) is the Bessel function. In the particular case
that e( to, q) does not depend on q we have e, (co, q) =e, (co)
(the medium has no dispersion ) and Eq. (4) reduces to

1 2
Ko(lq lp),

e, (to, q, p) e(c )o

with Ko(x) being the modified Bessel function.
We now evaluate, e( to q„,p) when phonons constitute

the external system. In reality, however, screening is
determined not only by phonons but also by electron
shells, etc. We shall assume that these other sources of
screening contribute to the real part of the total lattice
dielectric function as described by the phenomenological
equation Res~=el, where 5 represents the "sum" of all
these sources. The imaginary part of (ecqo) contributes
to scattering and we shall be interested only in additive
values of the jth phonon modes.

From Eq. (A6), in the isotropic case, we obtain

Y„(y)=(Vir2"nk) '~ e ~ ~ H„(y/ {i),

Y„(y)=(2/W)' sin[urn (y/W+ —,')],
Oy 1p ~ ~ ~ (14)

—W/2~y ~ W/2,

n=1, 2, . . . (15)

where H„(x) is a Hermite polynomial and n is the energy
quantum number. In Eq. (14) A=+A/, rn *to' and co'

specifies the parabolic confining potential V(y)
=rn*co' y /2. From Eq. (11)we obtain

For the y direction we consider a parabolic (P) or a
square (S) well of width W:

2

Im = lP l [5(to+to ) —5(co—co )] .
e to, q 4iri

(6)
Nsc(Q) =q'o(q, )0..(qi, »

with

(16)

Using Eqs. (4) and (6) we find, for DA, PA, and PO pho-
nons, respectively, as discussed in Appendix A, the fol-
lowing results:

%0(q, ) =(1 iq, /b —)0 (17)

(q0, )=4 iir[aoq, (4' aoq, )] '(1——e ' '), (18)

1
Im

eDA(to~ qx ~ p )

= —sgnto( CDi co /2' s )Jo(p&X /s)6(X), (7)

and

P„„(qy)=
1/2n'!

n! (& i/2 Y)n
—n —Y I n —' n'(2 Y2)

Im = —sgnco( Cp~ /2fis) Jo(p&X /s)6(X),
epA(to q p)

1
Im

&po(~ q

(8)

n'~n, (19)

1 )n +n' iZ iZ—
P„„,(q )= —Sir nn'Z

(2nn'ir ) —[4Z ir (n +n' )]—

= ( Cpo/2A')Ko(pl q„ l
)[5(co+coo) —5( co —coo)],

(9)

where 7' =A,q~ /2 and Z = 8'q, /2.
(q, )~1 for q, —+0,

p„„(qy)l„.=P. .(qy)l. o. ,

Notice that

where X=to —s q and 6(X) is the step function.
The dielectric function emir. (co, q„) can now be obtained

from Eqs. (1) and (3). We have

and

P„„,(q )~5„„,for q~~0 .

(20')

1 1 & x'

e~~,(~,q„) ~ (Q'+q,')e, (~,q)
(10) From Eqs. (7), (10), (11), and (16)—(20) we obtain for

acoustical phonons (DA)
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1
Im

en n n n (~&qx)
1 2 3 4

g(X) &x /, l %0[(X—s q )'/ /s] l

~Pi 0 (X P P)f/P n)n2 g ngn4 Jl P (21)

For piezoelectrical phonons (PA) we obtain Eq. (21) with CD&co s replaced by CpA. For media without spatial disper-
sion, e, (co, q) = e, ( co), and Eq. (10) gives

4...,(q, )0.*...(q, )+"[(q.'+ q,')'"]
e (co) ( 2+ 2)1/2 y

5 X

(22)

with

and

F (x)=(1+9x/8bo+3x /8b02)(1+x/b ) (23)

and

n n &y wn n My(q )8* (n )

dgye'„„„„(co, q„) k&, (co, k)
(27)

2 2 4
~s( )

3r +8' 32m

r(r'+4~') r'(r'+4~2)2

r =xao . (24)

I ZD(z) I'I zo(z') I'
dz dz

e( oc, k) e, (co, k, z, z') (28)

For polar optical phonons (PO) we obtain

co —coo(coo —e„Cpo /2~%)

&po( co ) e ~ ( co+ 3 5 ) coo
(25)

The function e, (co, k, z, z') has been evaluated in Refs. 5

and 6 for the models shown in Figs. 1 and 2. In Fig. 1,e, e0, and e+ denote the lattice dielectric constants of
the corresponding regions. At z = —I we impose the con-
dition

where e is the high-frequency lattice dielectric constant.

B. System inhomogeneous in one direction
—P(co, k)D, (co, k, —I +0)=e ky(co, k, —l+0), (29)

We consider a 30 system homogeneous in the xy plane
and inhomogeneous in the z direction. It is convenient to
specify the dielectric properties of this system with the
function (eke, z, z'), k=(q„q ). It is related to the po-
tential y(co, k, z), created by the charge eN(co, k, z), by

( k )
2vre N(co k z') d,

k e, (co, k, z, z') (26)

We need the following functions defined in terms of
e, (co, k, z, z'):

where D, ( ) is the displacement vector at an
infinitesimally small distance to the right of the plane
z = —I.

The function p(co, k) is specified by the properties of
the region z (—I. For example, if we place a metallic
electrode (i.e. , a gate) at z = —l we have P( )=0. For a
medium with dielectric constant eL in the region z & —I,
we have P( ) =e /eL. When a 3D electron gas occupies
the region z (—I, p( ) is given in Refs. 5 and 6.

When the well in the z direction is square, Eq. (13) with
Eq. (27) of Ref. 5, and Eq. (28) give

3I 2+ 8~2

e, (co, k) eo r (r'+4~')
32~~ 2e+e (coshr —1 )+eo(e++ e )sinhr

r (r +4~ ) eo(e++e )coshr+(eo+e+e )sinhi
(30)

0 2

FICx. 1. Inhornogeneous system modeling double heterostruc-
tures schematically. The two interfaces are at z =0 and at
z =zo. e, eo, and e+ are the lattice dielectric constants of the
corresponding regions.

FIG. 2. Inhomogeneous system modeling a single hetero-
structure schematically. The interface is at z =0; e and e+ are
the lattice dielectric constants to the left and right of the inter-
face, respectively.
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where r =kao and

P(co, k)tanh(kl)+ 1

/3(co, k)+tanh(kl)
(31)

If the well is triangular, Eqs. (12) and (29), with Eq. (27)
of Ref. 5, give

0 2

e+(e++Z )(1+t)'
e, (co, k) =

~+ —e+(e++ e )( I + t)2(1+9t /8+ 3t 2/8)

t =k/bo . (32)

FIG. 3. Inhomogeneous system modeling a single hetero-
structure schematically. The interface is at z =0; e and e+ are
the lattice dielectric constants to the left and right of the inter-
face, respectively. A sheet of impurities with surface density n,-'

is situated in the plane z = —A,;.
The last three expressions determine the dielectric func-
tion ex+ (co, q ), cf. Eq. (27), which enters the expressions
for the collision integrals of I.

III. POTENTIAL CORRELATORS
OF THE EXTERNAL SYSTEM

In this section we give the expressions for the correla-
tors (5p, (p)5y, (p))„~ and (5y, 5y, ) of external

potentials acting on the Q IDEG.
In the case of a uniform external system characterized

by the correlator (5@,5p, ) q
we have

Using Eq. (29) of I and Eqs. (13)—(21) we obtain

(5q, 5p, ) ~% (q, )~2

X 4m

X ps, p
( )y*s,p

( )d2g

A. Phonons

(34)

For phonons the relevant correlators are obtained by
substituting Eq. (A7) into Eqs. (33) and (34).

B. Impurities

(5q, (p )5y, (p') ), —= (5q, 5@,)P,P

e'O'P P '(5y, 5y, )
d Q.

(33)

We consider a configuration of impurities macroscopi-
cally homogeneous in the xy plane and inhomogeneous in
the z direction and with density n, = g; 5(r —R;). It is
convenient to describe such a system with the correlator
(y ) f,', k=(q„q~), the Fourier transform having been
taken along the x and y directions. It is related to
( y ) in the manner

(q,'&. =5(~)f f f e ' (q;'&k' X.*(p)Xb(p)X. (p')Xb(p')dq d'pd'p'. (35)

Using Eq. (26) we obtain after averaging the product of potentials

4~2e2 (n;(k, g)n;(k', g') )
l l Vl l

l l l f f (Q k g) (Q kl l gl)
(36)

Allowing for homogeneity in the xy plane this gives

4 2 2 (n,') j &'

f f e( ,Q,k zg)e, ( ,Q—k, z', g')
(37)

We apply now this general result to the situation depicted in Fig. 3; e+ and e are the dielectric constants to the
right and left of the plane z =0, respectively. Assuming z and z' to be on opposite sides of this plane, we have

e, (co, k, z, g) =ee

Let the noncorrelated impurities occupy the sheet at z = —A, with surface density n . Other con6gurations can be ob-
tained by integrating over A,;. We then have ( n )k' = n 5(z —

A, , )5(z' —X; ) and, from Eqs. (37) and (38),
2

277e
&

—k(2A. ;+z+z')
39

ek

Integrating Eq. (39) over A, , gives the potential correlator of impurities occupying the half space z (—l; with volume
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density n;. When this is added to Eq. (39) we obtain the correlator for volume and sheet impurities:

2

(g 2)zz' 27M —2k'. ,
- ?

—2kl,. k ( + ) (40)

Then Eqs. (12)—(20) and Eq. (35) give

n n n n 277e
2

0 ~

Anion& qy Pn3n4 qy
@T,S(ik) 2 P, S

( )
nP, S( )

( 2) 1 2 3 4 — g( )

—2k A, n —2kl,.
;e~ + e dq

2k
(41)

We notice that when n, +n2+n3+n4 is an odd integer,
n]1?2n3n4the correlator (5p ) ' ' ' ' vanishes.

IV. SUMMARY AND CONCLUDING REMARKS

In this paper we have derived expressions for the
dielectric functions and potential correlators pertinent to
a Q1DEG. These expressions are necessary for a
rigorous description of the transport properties of the
QlDEG as they appear in the collision integrals of the
quantum transport equations of I as well as in the formu-
las for the relaxation frequencies appearing therein.

Apart from completing I, our results, compared with
those of the literature of which we are aware, are more
complete in several respects: (i) they are valid for lateral
multisubband occupation and for square or parabolic
confinement; (ii) they are valid for triangular or square
confinement along the z direction and pertinent to single
(cf. Fig. 2) or double (cf. Fig. 1) heterostructures; and (iii)
they account for dynamical screening of the electron-
phonon interaction previously not considered.

Concerning point (iii) a word of caution is in order:
the Q1D results, say along the x direction, were obtained
from the 3D ones of Appendix A after integrating out the
coordinates along y and z, cf. Eqs. (1)—(10). This is
equivalent to neglecting any modifications of the usual
electron-phonon interaction brought about by the
confined geometries such as slab modes or interface pho-
nons. This neglect may not always be justified, but it
was made for the sake of definiteness and clarity of the
results. The same remark applies to the phenomenologi-
cal constant eL introduced in Sec. II A. In any case, the
electron-phonon Hamiltonian in systems of reduced
dimensionality is not well established; we expect that its
modifications, if any, do not substantially inhuence the
transport results, e.g., the relaxation frequencies of I
which are our main concern.

We further notice that other scattering mechanisms ex-
pected to be relevant in restricted geometries, such as
surface roughness and boundary scattering, are left out
from the present study. They will be dealt with in a
separate publication.

Finally, we stress the pertinence of the results of Sec.
II B for inhomogeneous systems. We have used some of
them to describe mutual Coulomb scattering between 3D
and 2D electron-gas layers.
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APPENDIX A

Below we evaluate the dielectric function and potential
correlators for a 3D electron-phonon system taking into
account electron-electron interaction for the potential
created by all charges. In the terminology of I we have
only one sort of particle, i.e., electrons, and we can drop
the index p from Eq. (1) of I; hence for the present case
the Hamiltonian takes the form

H = g A'co~a~ta„+ —,
'

A A, A', B,B'

+ g Rm&qb~qbjq+e X q'J„isa„g
j, A, B

VA A.BB.a A a A.aBaB,

(A 1)

where

g =g& (r, t)

g [P,qe'q'b, (r)+P,* e 'q'b, (r)] (A2)

g(co, q)=y, (co,q)+ g y (ro, q) .
J

(A3)

Solving the Heisenberg equations of motion for the
operators b and b and substituting the result in (A2) we
can write (A3) as

y(co, q)= g @~(co,q)+ 2

4~e X(co,q)
q2 e„„co&q

(A4)

the potential qr (co, q) of the jth mode, not correlated with
electrons, is given by

p, (co,q)=i&V P, b, (t =0) P,
* bt (r =0)

co cojq + I 6 6) +cd q
+ l 6

(A5)

The phonon dielectric function e„h(co, q) is then given by

is the operator form of the potential created by phonons
of the jth mode. The corresponding frequency is co, VisJq'
the volume of the system, and b, and b are the creation
and annihilation operators for phonons, respectively.
The first term in the second line of (Al) is the Hamiltoni-
an of the phonon system and the second term is that of
the electron-phonon interaction.

In Fourier space the potential y(co, q), created by all
charges in the system, is given by
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e~h(co, q)

Jq

47' . co —co +i 5 6)+CO. + i$

(A6)

We must underline the fact that e h(co, q) does not depend
on the phonon occupation numbers njq &jq'bjq The
dependence on njq appears only when phonon-phonon in-
teraction is included in (Al).

From (A5) we obtain the nonsymmetrized correlator of
phonon potentials:

For nondegenerate electrons we have f,k =(n, ~/
kT )exp( —k /kT },where kT =2m *kii T/k is the thermal

wave vector and n, =X, /I. is the concentration of the

Q1DEG in the ath subband. This leads to
2

W,—(co, q)= [F(x—
) —iv'ere ' ' ], (84}

AvTq

v T
=Rk T /m * is the thermal velocity,

=(co co,b—+A'q /m*)/qvT, and F(x)=I exp(z2)dzl
Ixl»i, F(x)=1/x and for lxl «1,

F(x)=2x. Equation (84) specifies Reb, e( ) and 1mb, e( ).
In particular, for intrasubband transitions we have a =b
and

(q, (,q)q, (co, q') &

=16m 5(co+co')5(q+q')5, , (y p &

with

(A7)

Imb, e„(co,q)

2&mean,
sinh e

AvTq 2k~ T
—

( /q T) —(q/2kT)

APPENDIX 8

Below we calculate the dielectric function ,bete{,coq)
of a Q1DEG as given by Eq. (23) of I. Considering only
one sort of particle (electrons) we can drop the index p
and write [K =(a, b), q, =q]

be, b(co, q)= W, (co,q) —
Wb (co,q),

where

(81)

(82)
mfi q k ——k+i5

with k —=(m*/qadi)(co co,b)+q/2. We—remind that f,k

is the electron distribution function pertinent to the ath
subband and co,b =co, —cob is the energy difference be-
tween subbands a and b. As for the imaginary part of
b, e( ) we obtain

&q, q, &. ,=2 [ly, ,l'5( —,, )(n, ,+1)
+ IQJ. ql 5{co+co )n ] .

The quantity P~q, the Fourier transform of the electron-
phonon interaction potential, is specified in the usual
manner. For acoustical phonons in the deformation po-
tential model (DA) and for piezoelectrical phonons (PA)
we have co =sq, where s is the sound velocity. For opti-
cal (DO) and polar optical (PO) phonons, co =coo. With

C, denoting the interaction constant (i =DA, PA, DO, PO)
we have

IP, "I'=cD„q, IP,'q" I'=cg„/q, lg, I'=cDo,

I@,"I'=c,o/q .

The potential correlators pertaining to the total potential
y(co, q), as given by Eq. (A4), are obtained from Eqs.
(A7)—(A9).

The real part of b, e( ) is not very simple for a =b; but if
Ico+Aq /2m" ((qvT we have

e n,2

Rebe (co,q) = =et YJ

8
(86)

gyes
+e2 coq +q +

ln
7T'6 q Q)q q

imO( ——
q

—. (co~ (q )

(87)

where coq =2m (co co,b)/fiq—and q =2kF, +q, kF—, be-

ing the Fermi wave vector of the ath subband. Moreover,
0(x (y (z)=1 for x (y (z and equals zero otherwise.
For intrasubband transitions co =2m *co/A'q, and the
static dielectric function (co=0) takes the simple form'

2m *e 2kFa+q
b,e„(q)= ln

~$ q 2kF

Concerning Imb, e„, which enters the expressions (69)
and (70) of I, for the relaxation frequencies, we remark
that, due to the factor coT/sinh(coT) in these expressions,
only the frequency region 0 & cu & k~ T/A &&p —%co, gives
the dominant contribution to the integrals. In this case
we have

el is the lattice dielectric constant and g the plasma pa-
rameter. For a weakly nonideal electron gas, q « 1. We
notice that for co ~ qvz, a condition appropriate for trans-
port problems, we have lb, e„(co,q)l (eLg((eL, i.e., the
screening of intr asubband transitions by electrons is
weak.

For degenerate electrons, at zero temperature, Eq. (82)
becomes

W,—(co, q)

m*e
Imb, e b(co q)= (f„„f,„~) . —

Aq
(83)

For explicit expressions of the functions defined by
Eqs. (81)—(83) we must specify the function f,k. We as-
sume it to be the equilibrium Fermi-Dirac function.

Imb, e„(co,q)

5(co —qvF, )+ 5(q —2k~, ) .
h p —A'co, )

Detailed calculations will be reported elsewhere.

(89)
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