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Dielectric formalism for a quasi-one-dimensional electron gas. I. Quantum transport equations
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The quantum kinetic equation for the one-particle distribution function, pertinent to a quasi-one-
dimensional electron gas, is derived from first principles. The electrons are assumed to interact
weakly with an external system, e.g., impurities, phonons, and/or with each other. Correlations be-
tween the fluctuations of the density operator and of the scattering potential are taken into account
in a manner equivalent to the polarization approximation. The derived collision integral allows for
screening and is expressed in terms of the dielectric functions and potential correlators. The results
are valid for weak scattering potentials of arbitrary type. From the kinetic equation energy and
momentum balance equations are derived. The relevant energy and momentum relaxation rates,
with the help of model distribution functions, can be expressed in terms of the dielectric functions
and take a simple form suitable for practical applications.

I. INTRODUCTION

The study of quasi-one-dimensional (Q1D) systems has
been intensified in recent years. When the width of a
quantum wire becomes much smaller than the impurity
mean free path and comparable to the de Broglie wave-
length for electrons, quantum-size effects are expected
and have been observed such as the oscillatory behavior
of the conductivity of a quantum wire as function of the
impurity density, ' the quenching of the Hall effect, etc.
Besides, these systems are expected to have high electron
mobilities, since the relevant k space for scattering is
severely restricted along two directions, and possible de-
vice applications.

Concerning transport along a quantum wire, most of
the theoretical treatments of which we are aware consider
5-function or model impurity-scattering potentials start-
ing from linear-response theory or from the Boltzmann
equation without a thorough treatment of screening.
The latter has been treated in Refs. 5 and 7 but electron
transport has been considered only in the ballistic case.
Given the importance of these Q1D systems we feel that
a rigorous treatment of transport should include a proper
treatment of screening in restricted geometries and
should be valid for arbitrary potentials including
electron-electron interaction. This is done in this paper
using the so-called dielectric formalism, which turned out
to be very convenient. It consists in the averaging of the
fIuctuating microscopic variables and was first applied by
Klimontovich and Silin to a classical electron-ion plas-
ma. Subsequently it was used in a number of three-
dimensional (3D) classical and quantum plasmas. A
modification of this formalism allowing for nonuniform
geometries, size quantization, and arbitrary scattering po-
tentials was made by Boiko and Sirenko' ' who treated
various problems related to the two-dimensional electron

gas (2DEG), both classical" and quantum, ' such as mu-
tual Coulomb scattering, "nonlinear conduction, ' etc.

In this paper, we derive, in Sec. II, the quantum kinetic
equation for the one-electron distribution function applic-
able to a Q1D electron gas, with account taken of the
screening and of particle-particle correlations in a
manner equivalent to the polarization approximation.
The collision integral is expressed in terms of the dielec-
tric functions and correlators which are evaluated in the
next paper. From this equation follow, in Sec. III, energy
and momentum balance equations as well as energy and
momentum relaxation frequencies; the latter, with the
help of model distribution functions, are expressed in
terms only of the dielectric functions. Remarks and con-
clusions follow in the last section.

II. THE QUANTUM KINETIC EQUATION

A. Derivation

We consider a Q1D system, a quantum wire of length
L„with the other dimensions L and L, much smaller
than L =L. This system is homogeneous along the x
direction and inhomogeneous in the yz plane. The
confinement of an electron gas in such a system creates a
Q1D electron gas (Q1DEG) with distinct energy levels
(subbands). From the whole system (electrons plus lat-
tice) we choose several sorts of particles, denoted by the
subscript p (it can be one sort), and derive the quantum
kinetic equation for the one-particle distribution function
pertinent to p-sort particles. The rest of the system, e.g. ,
impurities, phonons, other mobile charge carriers, is
called an external system. It is assumed that the p-sort
carriers interact weakly with the latter and with particles
of another sort p'. For the description that follows we
use as basis the eigenfunctions ql „(r)of the free-particle
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and

Vg„'.a.a=epep f f ep„(r, )qlp „(rz)~ri —
r2~

X+p a (r2)+pa(ri)d'rid'r& (3)

with r, and r2 being the position vectors of carriers p and

p ', respectively.
The equation of motion for the one-particle density

operator

B=a Ba A,

AB
iA —[g„a,H],at

(4)

where [ ] denotes the commutator, after substituting in it
Eq. (1), takes the form

iA
Bt

= X(IH~rAa] —[P~r Hra]), (5)

where IL,M] =(LM+ML)/2. H~a is given by Eq. (2)
with the change y(r, t ) ~Hp(r, t ) and

Hp(r, t)=H (r)+e g'"(r, t)+e y(r, t),
y( r, t )=y, (r, t ) + g y (r0, t ),

p

N (r', t)
qpo(r, t)=e, f ' ', d'r'.

The total number operator of p particles N (r, t), is given
by

Hamiltonian H (r) assuming that 0'pz (r) =4 (x )Xp(p),
where p=(y, z), and denoting the eigenvalues of H (r) by
fiat~ =iriaiP+Rco . Here the small Greek letters a, P, and

y label the "longitudinal" eigenfunctions and eigenval-
ues, while the small Roman latters label the correspond-
ing "transverse" entities; the complete set is denoted by
the capital Greek letters A =(a,a), B =(P,b), I =(y,g),
etc. In the language of second quantization, with a „
and a A being the creation and annihilation operators, re-
spectively, the Hamiltonian H of the whole system is
given by

H=H, + g Ra/~apt„ap„
p, A

+ rf p(9 pAa+0 pAa ) pA pa
p, A, B

+ —, g VJ„.aa ap~ a„.„.ap a apa(2 5pp ) .—1 p

p, A, B,
p', A', B'

Here H, is the Hamiltonian of the external system, e is
the charge of the p-sort carriers, y'"=y'"(r, t) is the po-
tential of the external electric field [when the latter is not
included in H (r) ], and p, =g, (r, t ) is a potential created
by the external scattering system. We have

a(t)= f 'P p„(r)qr(r, t)% a(r)d'r (2)

where

Stfza = ( ep li fi) g & I 5/a r, 5P4 ] [5p a r 5&a ] & .

(12)

So far no assumptions were made in deriving Eqs. (11)
and (12). The main task now is to express Stfpa in terms
of the distribution functions f„a. This will be done un-
der certain assumptions and it will be shown that Stfpa,
when expressed in terms of f„a, is the collision integral
of the quantum kinetic equation.

Subtracting Eq. (11) from Eq. (5) we obtain

a«
~ 5/~a &~~a5d~a+(—fa f~ )ep5/~a-at (13)

where co„a=co"„—co& and f„—=f„„.In obtaining Eq.
(13) we omitted, on the right-hand side, the terms

X(~'"rMa-5e"~r"a+C «&), -
r

where

C= I5/~r 5p['-a] —I5d~r 5&a] .

This neglect corresponds to the following assumptions.
(1) The collisions do not influence the fluctuations.

This is valid for weak interactions.
(2) The nondiagonal elements of the density matrix are

small compared to the diagonal ones.
(3) The electric field does not influence the fluctuations.
(4) Exchange interaction between identical particles is

not important.
The fluctuating part 5y of the potential can be written

as

5y(r, t) =5g, (r, t)+ g 5q& (r, t) . (14)

The first term represents the fluctuation of the external
system in the absence of the plasma and the second term
arises as linear response to the density fluctuation 5X:

5Np(ar, q ,p')
5g) (co, qp)=e fp, d p' (15)

es ~&qx&p&p

and is related to the mean value f~&a (i.e., the one-particle
distribution function) of pea by the normalization condi-
tion &N & =+„&PP „&=+„f„

The operators Pp and y are split into average and fluc-
tuating parts (f„a=

& p „a & ):

p~ =f' +5p' q=&q&+5q .

Then the average of Eq. (5), i.e., the quantum kinetic
equation for the distribution function f„a, reads

p

i A =g [(H +e p'"+ e & gr & ) ~ rfPra

fP r ( H—+e p'"+ e & p & )Pra ]

+i%'Stf„a,

Np(r, t)=PP(r, r, t)= g %pa(r)+p„(r)P„a(t), (9) where e, ( ) is the dielectric function of the external sys-
tem. In order to simplify the notation in what follows we
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put q:—q. Taking a one-side Fourier transform of Eq.
(13), with respect to the time, involves the quantities
5PpAB(&) and 5q aa(m). 5Pp~wa(co)=i5Paa(t =0)I
(co aP„—~+i5) with 5—+0+, and 5+„~(t=0) describes
the fluctuation of the density operator at t =0. We ob-
tain

the definitions

KK' ~ q 5ICK'+~eK'(~ 'q )~~KK' ~ q )

fP—
bete(co, q)=(e~ IAL ) g ~(e'~")

p~
~ p co co gg + l 5

(22)

(23)

f5 f~—
5p~a(~) =5p,'~~(~)+

Z co clyde + l 6
(16)

and

(24)

5/gg(co) = fdq(e" )'p5/b(co, q),
5VCb(~ q)= fX.*"(p)Xb(p»q(~ q p)d'p

where

(e'~') p= f%*(x)%p(x)e'~'dx .

With the abbreviation E =(p, a, b) we obtain

(17)

(18)

(19)

(25)

We then obtain

5+„~(co)=—g (e'")
p ex'x' co~ q

+Rx.x. (co, q )5ptc (co, q )

5ytc(co, q) =5y'tc(co, q )+ g e
p' A'B'

with

(e "
)p 5p~ g (co)

(20) where

cptc(co, q)=e~ g (e "")p 5p~ &(co) .
a, P

(26)

(26')

y,*~(p)~g(p)lc", (p')Icbm' (p')
d pd pe, (co, q, p, p')

(21)

We now substitute Eqs. (16) and (17) in Eq. (20) and use

To arrive at Eq. (22) we have used

(e'~ ) p(e 'q
)p ~~(e'~')~p~ 5

justified, for example, in a plane-wave basis.
From Eq. (12) by Fourier transformation we obtain

e
f~,=,' X f f (I5P,„(~),5pf, (~')] —I5p„„(~),5&,(~')])e

4~ iA
(27)

To obtain the explicit form of Stf„~ we substitute Eq. (26) for 5+„~(co)and Eqs. (16) and (17) for 5+~~(co) in Eq. (27).
Since the system is homogeneous in the x direction, the symmetrized potential correlator ( [ J ) for the external sys-

tem can be written' as

( I 5'' (co, q ),5'' (co', q') J ) =4' 5(co+co')5(q +q')(5cp2)~~

where K=(p, b, a) and

(5q,')„,=f fy,*~(p)y'(p)y", (p')y"", (p')(5, y,')ee, d'pd'p' .

(28)

(29)

For some particular cases the correlator (29) is evaluated in the next paper. As for the initial density fluctuations we
use the relation'

(5p „~(co)5p ~ ~ (co )) —4.vr 5(co+co )5(co M~~)5p—5„~.5~~.fg(1 f„) . — (30)

With the help of Eqs. (28), (29), and (30), Eq. (27) takes the form

Stf~~ =St~,f~g+ g Stpp.f„~ .
P

It can be shown, using certain symmetry properties [cf. (A 1)—(A3)], that

Stf„a=(Stfg„)*,

(31)

(32)

i.e., the collision integral is a Hermitian operator.
The general expression for Stfzz is rather unwieldy and will not be written down. Below we give the form for the di-
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agonal function only fp „=—fp~:

2

St,f'„= ', g Jl(e"")'.pl'dq g Rxx'(@,q)Rxx (~ q)
4mB K', K"

(fg fP )(5~2)KK
eF «(~ q)

X [f'„(1 fg )+—fk(1 f'„)—1 (33)

Stp f~~ = g Wf~ q„.[fg(1 fP—)fPq (1 fg ) f—P (—1 fg)fg.—(1 fP —)],
8, A', 8'

where co=co~z and the transition probability WJ~. ~„.is given by

eiqx 2 &iqx
' 2

(34)

(35)

Equation (34) for p =p' is the familiar form of the collision integral for scattering between identical particles, e.g.,
electron-electron scattering. Using the property (A9) of Appendix A it can be shown that Eq. (33), representing the col-
lisional integral for scattering of the particles by, e.g. , fixed impurities, phonons, etc. can be written in the familiar form

Stp. f~A = y I: Waafs(1 —fpA ) —W~Aaf~A(1 f5)];— (36)

the transition probability 8'» is given by

2

Wp, =,' y l(e'~"):,l'&5y, 5y, )x, ,
q

where

(5$,5$, ) = g R (co, q)Rxz-(co, q)(5yx 5q&g„)
K', K"

(37)

(37')

(5@z5yz ) is given by Eq. (28) with the change ( [ ] ) —+ ( ). When the external system is in equilibrium, at temper-
ature T„Eq. (33), with the help of Appendix A, cf. (Al 1), takes the form

2

St,fp = g l(e'~ )p& (5p, ) fz f„—[fp (1 fg)+—ff'e(1 fp )]t—anh-
q, 8 8 s

2

g l(e'~ )p&l llz(co, q) [(fg f„)c oth(%co/2 k~ T—) —[f~(1 fg )+fg(1 f„)]l-, —
q, 8

or the form (36) with

2e
WP» = [ —exp( &~lk~ T, )] ' —& l(e'")'.ql'II~(~, q ),

q

(38)

(39)

respectively, with

Ilx(co, q) =Im g
escsc'(~ q )

(40)

obeying the symmetry properties

Ilz(co, q) =II+(co,q ) = —Ilz( —co, —q ) . (41)

For elastic scattering the second term in [ ] of Eq. (38)
vanishes and it can be omitted.

The quantum kinetic equation for the diagonal part of
the density function fp

= fp „ is given by Eq. (11) to-
gether with Eqs. (31) and (33)—(37). For p =p'=1 we

and

e( co, q ) =e'( co, q ) + b,e( co, q ),
R ( co, q ) =e'( co, q ) le( co, q ),

II(co,q ) = Ime'(co, q ) /le(co, q ) l

(42)

(43)

(44)

have one equation for the QIDEG, whose particles (elec-
trons) interact weakly with an external system (e.g., im-
purities) and with each other.

A considerable simplification of all the expressions
above occurs if we have one sort of carrier (p =p') occu-
pying the lowest subband (a =P, a =b). The index K can
be dropped and we have
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B. Remarks

(1) In deriving the kinetic equations we use the equa-
tion for fluctuations 5p of the density matrix within the
so-called collisionless approximation, which corresponds
to the neglect of the terms in Eq. (13), responsible for the
inAuence of collisions on the Auctuations. This approxi-
mation is equivalent to the polarization approximation in
the equation for the two-particle correlation function gz
in Bogoliubov's method. Though Bogoliubov's and
Klimontovich s formalisms are equivalent in this approx-
imation, the latter is more convenient in the case of sys-
tems with long-range Coulomb interaction (instead of the
equation for the matrix g2 we solve the equation for 5p).
The employed approximation requires certain inequalities
to hold. For definiteness, we shall consider the plane-
wave basis.

Firstly, the interaction between particles must be weak
enough that the gas can be considered as weakly
nonideal, i.e.,

g«1; (45)

here g=e n/eL 8' is a plasma parameter, 8' is the
thermal or Fermi energy of the 1 DEG, and eL is the lat-
tice dielectric constant.

Secondly, the interaction between two particles at
small distances is treated in a perturbative manner. That
imposes a restriction on the region of considered wave
vectors:

=&2mT/A, and rr =(eL T/4vre n3)' is the Debye
length. Then the potential created by an external charge
e is y(r ) = (e /eL r )exp( r /—rr ).

2D. For q «kT we have he(O, q)=eL/qpn, where
q=(q, q~) and pii=eL T/2vre n2 W. hen p))pii the po-
tential is qr(p) =(e/ei )(pii/p ).

1D. For ~q„~ &&kT we have b, e(O, q„)=v'2r)ei, where
r)=e n, /eL T is a plasma parameter, g «1. Then it can
be shown that y(x)=e/eL (1+~ 2q)~x~ =e/eL ~x~.

We see that in the 3D case a test charge is surrounded
by an electron gas from all sides and this leads to a strong
exponential screening. In the 2D case a test particle is
surrounded only by electrons in the plane and the screen-
ing is weaker, of a power law. In the 1D case only a
small number of electrons in the li.ne can screen the test
charge. This leads to a renormalization of the dielectric
constant now given by eL (1+v'2r)), with g « l.

(3) Some words must be said about electron-electron
collisions in the Q1DEG. From Eq. (34) it can be shown
that when the Q1DEG occupies only the lowest subband,
the collision integral St„fk vanishes in the polarization
approximation when the wave functions along the x
direction are plane waves. The reason is that, due to
momentum and energy conservation, two electrons mov-
ing in one dimension either do not "notice" each other or
simply exchange states. Other electrons only screen this
two-particle interaction. A nonzero value for St„fk is
obtained only beyond the polarization approximation.

q « I/rz . (46) III. BALANCE EQUATIONS

vEs «8'/A, (47)

where vEs is the frequency of scattering by the external
system. In other words, collisional broadening of the en-
ergy levels must be smaller than the average energy.

(2) In a 1D weakly nonideal plasma the dielectric func-
tion of the 1DEG, he, in many cases appears to be small
in comparison with the lattice dielectric constant eL.
This means that screening effects are not important. To
understand the reasons for this fact let us look upon the
static screening in the cases of nondegenerate 3D, 2D,
and 1D electron gases (n;, i =1,2, 3, is the electron con-
centration).

3D. For k «kT the
b,e(0, k) = eL /kryo ), where

dielectric function
k=(k. , ky, k, ), kT

Here the Landau length r~ is the distance between parti-
cles, where the Coulomb interaction energy is equal to
the mean kinetic energy, e /eLr&=8'. Therefore, our
consideration will be valid if the contribution of the re-
gion q ~1/r~ in the treated problem can be neglected
(e.g., some integrals are cut off at the thermal vector,
smaller than r A

'). If this does not hold we must cut off
the integration over q at rA artificially [the resulting ac-
curacy is within a factor of order unity in the 1D and 2D
cases, and logarithmic in the 3D case —ln(q, „/q;„)].
This cutoff can be accounted for exactly with the help of
the T matrix of the two-particle interaction.

Thirdly, the interaction with the external system is
considered to be weak; this holds when

As is well known, energy and momentum balance
equations can be derived from the quantum kinetic equa-
tion. Concerning the Q1DEG, when the wave functions
along the direction x are plane waves, we have e=k
(only one sort of particle is considered) and

+ (x)=e " /QL (48)

This leads to
iq„x

(e ' )..=~,„,k —k„ (49)

assuming that spin is conserved in the collisions. We fur-
ther assume that f,&k k is diagonal in the "transverse"

X X

indices, i.e., f „k,=f „„,5,b. This implies that the
X X X X

nondiagonal components of the density matrix are small
compared with the diagonal ones. The distribution func-
tion is normalized as

2g f,k=N, ,
k

(50)

df, k eg &f,k+ =Stfgk =StFsfgk+St„flak .
at (51)

where X, is the total number of particles in the ath sub-
band. The system is homogeneous in the x direction. In
the presence of an external electric field E=Ex,
qP"(x)= Ex and the kinetic equa—tion, with the help of
Eqs. (11) and (31)—(39), takes the form (k„=k,q—=q, L„=L)
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St„f,k is given by Eq. (34) with p=p', A =ak, etc.
StEsf,k is given by Eqs. (33) and (36)—(39).

Operating on Eq. (51) with (2/L) gk, ,
(2e/L) gk, haik/m*, and (2/L) g,kA k /2m*, whereI * is the effective mass, we obtain

and kinetic energy of the QIDEG, respectively. The
quantities —R and P are the friction force against the
medium (i.e., external system) and the power transferred
(per particle), respectively. Upon dropping the index ES
from StEs, they are given by

0 ~j en
( E R)

Bt ' Bt m*' (52)

and

R = (2—/nL) g A'k Stf,k
k, a

(54)

Be =jE —Pn .
Bt

(53)

Here n, j, and e are the carrier density, current density,
I

P= —(2/nL) g (iri k /2m*)Stf, k .
k, a

(55)

With the help of Eqs. (36) and (37') we can write, in an
obvious notation,

X — [ ~a', k —qa, kfa', k —q( 1 fak ) ~a, ka', k —qfak( 1 fa', k —
q ) ]

Aq
'

aa', kq

(56)

where co=fi[k (k —q)—]/2m *+co„.For simplicity we model the diagonal part of the 1DEG density matrix, f,k, by
a drifted Fermi-Dirac distribution

f,k
=f, [fin), +A ( k —m *u /h') l2m *]; (57)

f, (e)= [1+exp[(e—p)/kii T]] ', p, and T are the chemical potential and the efFective temperature of the 1DEG, re-
spectively, kz is Boltzmann s constant, and u =j/en is the mean drift velocity of its particles. The parameters u and T
are to be found from the balance equations (52) and (53). We now substitute Eq. (57) into Eq. (56) and assume that the
external system is in equilibrium at temperature T, . Using Eq. (39) for W„ii, we obtain

P I Jdcodq [coth[fi(co uq)/2kii—T] coth—(%co/2kiiT, )] g III'(co, q)ImbeP(co qu, q) . —q

4m n CO
(58)

Equation (58) is convenient for applications because the quantities R and P are expressed in terms of the usually known
susceptibilities of the 1DEG and of the external system.

When the external electric field E is small, Eq. (58) can be linearized for R over u and for P over T —T„ if
T T, «kii T /%coo—, T and A'qou «kii T. Here qo and coo are the values of the wave vector and of the frequency which
give the maximal contribution to the integrals over q and co, respectively. In this case, the mean frequencies v, v of
momentum and temperature relaxation, respectively, are given with the help of the definition

by

P =v Kii ( T —T, ), R = —m *v u,

q kiiT/m*
g II@(co,q )Imb, eP(co, q),

sinh coT sinh c07g

(59)

(60)

where coT=A'co 2/k ii Tand coT, = coiii2/kT, . We notice that for a homogeneous system in the absence of a magnetic
field, the energy balance equation takes the form jE =v kii ( T —T, ). Hence, it follows that
T= T, ( 1 +e E /kii T, m *v v ).

For the results (58)—(60) we employed the two-parameter model in which the drift velocities u, and temperatures T,
are the same for all subbands: u, =u, = . . - =u and T, =T,.= =T. The same assumption was made for the
effective masses. In a more sophisticate model the drift velocity and temperature depend on the subband index a. Re-
placing u by u„m * by m, , and T by T, in Eq. (57) we obtain a set of balance equations for all subbands:

Bn,
=(2/L) g Stf,k,Bt k

Bj, en, Be,
Bt ' ' ' Bt

(eE —R ), =j E Pn-
ma

R, A'k= —(2/n, L) g &2k2/2 Stf,k .

(61)

(62)

(63)
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a'

P, =P„+g P„, P„=O,
a'

where
T

R„ qf f dc@ dq [coth(irido, /2kii T, )
—coth(irido/2kii T, ) ]Imps', ~ (co„q )II„(~o,q ),

4~'n. CO

R„. Imb, e',~ ( co„q )Imb, e'J, .( co, , q )

~ e......(co, q ) ~'
=(A/4' n, )f f dcodq [coth(irido, /2kiiT, )

—coth(fico, /2kiiT, .)]

If intersubband transitions are forbidden or neglected, Eq. (63) is equivalent to the following equations:

R, =R„+g R„., R„=O, (64)

(65)

(66)

(67)

with co, =co—qu, .
Linearizing Eq. (66) over u, and T, —T„and Eq. (67) over u, —u, . and T, —T, , defines the momentum and temper-

ature relaxation frequencies by the following equations:

as ma vas a& Pas +as B(Ta s )~

Notice that

R„,=m,*v„(u,—u, , ), P„,=v„,kii(T, —T, , ) . (68)

v„n, m, =v...n, m, and v„.n, =v„n,m e rn T T

The relaxation frequencies are given by

v.
1 1

k, Tq'r'm.

f fd~dq, COTa N T~
II;~ (co, q )Imb. c',~ (oi, q )

sin coy. Sln coy

(68')

(69)

and

k~Tq /m, *
cur, cora Imb, e'„(co,q)Imb, e',&, (co, q)

sinh(~or; )sinh(cor, ) ~g',& ..., (oi, q ) ~i
(70)

Notice that in calculating v one has to neglect the
difference between T, and T... i.e., one has T, = T, .= T.

IV. SUMMARY AND DISCUSSION

Equations (33)—(40) for the collision integrals, ap-
propriate to a QIDEG occupying several subbands and
interacting with an arbitrary fluctuating potential, were
derived using the dielectric formalism. The relevant
dielectric functions and potential correlators are evalu-
ated in the next paper.

Concerning the kinetic equations, we see that the
screening of the relevant scattering potentials, as ex-
pressed by the functions @ax (co, q) and IIx. (co, q), is a
rather complicated efFect since it involves the dielectric
function of the external system e, (co,q) and that of the
electron system b, ez(co, q) in a coinplicated manner, cf.
Eqs. (25) and (40). Only in the case of one sort of carrier,
in the lowest subband, do the QlDEG and the external
system contribute to the total screening additively, cf. Eq.
(42). We notice that the present rigorous treatment of
screening, from first principles, avoids the usual draw-
back of other approaches where screening is introduced,
in the quantum kinetic (or Boltzmann) equation
a posteriori in a rather heuristic manner. The treatment

also shows that in systems of low dimensionality one can-
not, as a rule, use the usual, from 30 systems, separation
e(co, q) = eL + b,e(co, q) for the dielectric constant and
y(co, q)/e(co, q) for the effective potential; instead one
must find the effective scattering potential in a rather so-
phisticated manner.

The kinetic equations obtained in this paper can be
written in the usual Boltzmann form, i.e., the collision in-
tegrals are expressed in terms of the transition probabili-
ties. The main difference of Eqs. (33)—(39) from the usual
form involving static screening is that they involve
dynamical screening of the scattering potential both by
electrons and the external system.

An essential feature of the present formalism is its gen-
erality: one does not have to specify, from the beginning,
the scattering mechanism or the external system. One
can simply take the final expression, e.g., for the relaxa-
tion frequencies v and v", and substitute in them the
relevant quantities appropriate for scattering by, e.g. , im-
purities, phonons, etc.

Finally, we remark that we have not, in this paper, at-
tempted to solve the Boltzmann-type kinetic equations.
Enstead we have used the balance equations and the drift-
ed Fermi-Dirac distribution function (57) to obtain, upon
linearizing the former, relatively simple expressions for
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the relaxation frequencies in terms only of the dielectric
functions. The latter determine both the dissipation and
screening in the system. From these frequencies we can
evaluate the conductivity and the effective temperature of
the Q1DEG. Specific applications will be published else-
where.
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a(co, r, r') =(ilk) f e' '(X(t, r)X(O, r')
0

—X(O, r')X(t, r))dt . (A7)

APPENDIX A

Below we give several relations we used in obtaining
the results of the text.

Comparing Eqs. (15) of the text and (A4) with Eqs. (A5)
and (A6) leads to the correspondence X(t, r)~ 5cp(—r, t ),f (t, r)~e5N(r, t), and a(co, r, r')~ e,—'(co, r, r')
Fourier transforming the correlator (5@(r,t)5y(r', 0))
leads to the identity [p= (y, z ), q

—= q ]

A. Symmetry properties

From Eqs. (20), (22), and (29) we deduce [IC =(p, b, a ) ]

i A[a, '(co, q, p, p') —e,* '(co, q, p, p')]
= (5/(p)5q(p') )„—(5Ip(p')5%%u(p) ) (A8)

and

ex-x..( co, q ) = [c' ,( —c—o,—q) ]*,
hex(co, q) =b,E~( —co, —q),

(5~2)Klc' —(5 2)A 'lc —((5 2)K'K)e

(Al)

(A2)

(A3)

Integrating Eq. (AS) over p and p' and using Eqs. (21)
and (29) of the text we obtain

1

~ac'lc(co q)

B. Connection between potential correlator
and dielectric function

A test charge, with density e5N(co, q, p), placed in a
polar medium induces a potential 5y(co, q, p) given by Eq.
(15) of the text (with q„=q).

The interaction energy of the test particles V;„, with
the induced field has the general form

If the external system is in equilibrium at temperature T„
with the help of the Auctuation-dissipation theorem' we
obtain

(5cp )~'~~ =(iA/2)[e, '(co, q, p, p')

'(co, q, p, p')]coth(A'co/2k' T, ) .

(A10)

V;„,=e f p(r, t)N(r, t)d r .

Within linear response theory we can write'

V;„,= —ff(t, r)X(t, r)d r,

(A4)

(A5)

Integrating over p and p' gives

(5y ) q
(i%/2)coth(irt /2coks T )

&& [I/exlc (co, q ) —1/~lc'x(co, q )] . (Al 1)
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