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The tunneling of the total magnetization of a small {—100-A) magnetic particle out of a metasta-
ble easy direction is a promising candidate for macroscopic quantum tunneling. It is shown that the
coupling of the magnetization to the phonons is an extremely weak source of dissipation that does
not reduce the tunneling rate. A model in which the magnetic particle is embedded in a solid medi-
um is considered, and the spectral density is derived for various crystal symmetries.

I. INTRODUCTION

A few years ago, Chudnovsky and Gunther' argued
that small ferromagnetic particles were viable candidates
in which the quantum tunneling of a macroscopic degree
of freedom (henceforth called macroscopic quantum tun-
neling, or MQT) could be observed. They calculated the
rate for the total magnetization, M, to tunnel out of a
metastable easy direction or between two easy directions
for a few simple configurations. The most relevant of
these from the experimental standpoint is one where an
external demagnetizing field, H, less than the coercive
Geld, H„ is applied opposite to the initial easy axis. The
barrier to and the driving force for tunneling both arise
from the magnetic anisotropy energy. The surprising re-
sult is that the tunneling rate is quite large: for a 100-A
particle, and typical values of the saturation magnetiza-
tion Mo and anisotropy energies, this can be made as
large as 10 —10' sec ' by adjusting H to be within
-0.1% of H, . The largeness of this rate makes this sys-
tem very attractive for the study of MQT, which until
now has been largely confined to current biased Joseph-
son junctions and rf superconducting quantum interfer-
ence devices (SQUID's). '

A macrovariable by its very nature is inevitably subject
to coupling to other (environmental) degrees of freedom,
often very strongly. It is known from previous theoreti-
cal work that such coupling, or dissipation, can be ex-
tremely important in MQT. For example, if a rf SQUID
is biased at exactly half a Aux quantum so as to produce
two degenerate wells, and if the junction is described by
the resistively shunted junction model, then treating the
dissipation within the Caldeira-Leggett scheme leads to
the prediction that the Aux will be completely trapped in
the initial well and never tunnel out of it if the shunt
resistance is less than a certain critical value of the order
of the resistance quantum h /e .

Within the Caldeira-Leggett model of treating the en-
vironment as a set of harmonic oscillators, the dynamical
inhuence of the environment on the system is completely
determined by a certain combination of oscillator param-
eters and couplings known as the spectral density J(co),
which we define below. Leggett has shown that J(co) is
proportional to the imaginary part of the dynamical sus-
ceptibility of the linear combination of oscillator coordi-

nates to which the macrovariable or system variable is
coupled. In particular, the co dependence of J(to) at fre-
quencies smaller than the characteristic frequency of the
macrovariable is very important. If we write J(co)-co',
then qualitatively different behavior is obtained depend-
ing on the value of the exponent s. The trapping
phenomenon mentioned earlier, for example, occurs only
ifs ~ l.

In a previous paper, we presented the results of a cal-
culation of the effect of rnagnetoelastic dissipation when
the magnetic particle is embedded in a nonmagnetic
background, as is likely to be the case in any experiment.
For typical values of the magnetoelastic coupling, the
Wentzel-Kramers-Brillouin (WKB) exponent in the T =0
tunneling rate is increased by 10 —10 over its value
without dissipation. The smallness of this effect makes it
very encouraging to look for MQT in magnetic particles.
Furthermore, we do not believe that the form of the spec-
tral density is obvious, so in this paper we present the de-
tails of our calculation of J(co) for various crystal sym-
metries. A knowledge of the spectral density would also
be necessary to calculate the temperature dependence of
the tunneling rate.

The plan of the paper is as follows. In Sec. II, we set
up the standard instanton calculation of the tunneling
rate' '" and present the action for M and the phonons,
including the coupling. In Sec. III, we generalize J(co)
and Leggett's method' for calculating it to the case
where the coupling is more conveniently described as a
sum of couplings. We implement this method by obtain-
ing an integral equation for the elastic displacement field
and solving it in the long-wavelength limit to obtain J(co)
as co —+0. In Sec. IV, we find an approximate formula for
the effective action that is valid for all major crystal sym-
metries, and we illustrate the reduction of the tunneling
rate for the case of cubic symmetry with a [111]easy axis.

II. FORMULATION OF THE PROBLEM
0

The system we shall consider is a small ( —100-A),
single-domain ferromagnetic particle at temperatures so
low that spin waves are frozen out, and the total magneti-
zation of the particle M has a magnitude very close to the
saturation value Mo. We shall take the particle to be
spherical so that the easy axis for M, denoted n, is not
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influenced by shape anisotropy but determined solely by
the magnetocrystalline anisotropy energy density
E,„;„(M).' We assume that this energy is experimental-
ly known. We also apply an external field H opposite to
the initial easy axis n, so that this direction becomes
metastable and the possibility arises that M can tunnel
out of it into a direction that is lower in energy. We shall
assume, as in earlier work, ' that because the particle
size is smaller than the critical single-domain size and the
typical width of a domain wall, the tunneling takes place
via subbarrier rotation in unison of all the individual mo-
ments. ' A qualitative justification for excluding nonuni-
form tunneling configurations is as follows. Consider a
nonuniform distribution of the magnetization that is a
candidate escape configuration, i.e., the analog of the es-
cape point or the turning point in a one-dimensional
problem. In order that the barriers to reaching this
configuration not be too large, it must consist of small de-
viations from the uniform state. We can then apply the
stability analysis that leads to the single-domain critical
radius. ' ' This suggests that, for particles smaHer than
this radius, the candidate configuration has a higher ener-

gy than the initial state and is thus inadmissible.
With the above assumption, the only dynamical vari-

able left in the problem is the direction M of M. Ignor-
ing coupling to other degrees of freedom for the moment,
the relevant part of the total energy density of the particle
is given by

E(8,$)=E,„;„(M)+HM n, (2.1)

where 8 and P are the polar coordinates of M. Since this
energy generates the correct semiclassical dynamics of
M, we can take it to be the Hamiltonian for the
quantum-mechanical dynamics as well. This is complete-
ly analogous to using the experimentally determined ca-
pacitance and critical current of the junction in writing
down the Hamiltonian for the (lux ip a rf SQUID. '

In the absence of dissipation, the tunneling rate I is
given (up to factors of order unity) by' '"

I -co (So /2m. h')'i exp( —So'/fi), (2.2)

where co is the classical small precession frequency for
M about n, and So is the least value of the Euclidean ac-
tion

SO[M(~)]=UO J[E(8,$)—&y '~ocos8$(r)]dr .

Here, Uo is the volume of the particle, y=gpz/A, and g
is a g factor.

Perhaps the most obvious coupling of M to the envi-
ronment is that to phonons. (This is also mentioned
brielly in Ref. 1.) As discussed in Ref. 9, the vibrational
modes of an isolated particle of &00-A size are at a much
higher frequency than m and, so, do not couple
effectively to M. In any real experiment, there must exist
some means of physically anchoring the particle. We
shall therefore consider a situation where it is embedded
in a nonmagnetic solid medium. The low frequency, cou-
pled phonons of the medium, and the particle can now

couple to M. This coupling can be adequately described
by continuum elasticity theory. The total action now is

S(M, u)=SO(M) —f fdrd x[q &u &8(a r) —L—z"'],

where
(2.4)

q p=a p~s(M Ms —MOR' &s), (2.5)

S,s(M) =So(M)+S, (M), (2.6)

where So is given by Eq. (2.3), and S, is an expression in-
volving a double time integral, which we shall calculate
in the next section. The tunneling rate continues to be
given by an expression like Eq. (2.2), except that So' is re-
placed by S',z, the least value of the effective action, and
co is replaced by a damped small precession frequency.

We shall obtain a general formula for S, (M) in Sec.
III. We shall apply it in Sec. IV to orthorhombic, tetrag-
onal, hexagonal, and cubic crystal symmetries. ' We
present here for each of these cases the form of E,„;„and

and u and u & are the displacement and strain fields, a is
the radius of the particle, a &z& is the magnetoelastic ten-
sor, and Lz"' is the Euclidean Lagrangian for the pho-
nons alone. Rather than write this explicitly, we simply
state that it will be chosen so as to produce freely propa-
gating waves in each solid (particle and background) and
Newton's third law at the interface. Further, we will take
the two media to be isotropic as far as their elastic prop-
erties are concerned. This does not alter the qualitative
aspects of the dissipation and makes the analysis simpler.
The term MOB' n& is subtracted from the coupling be-
cause we assume that the phonons have come to equilibri-
um with the magnetization in its initial state before the
demagnetizing field is applied. This term then ensures
that u=o in the initial state, i.e., that it is taken to be the
unstrained state.

We note that we have not explicitly included a counter-
term involving M alone in Eq. (2.4). Without such a
term, the phonon coupling results in a renormalization of
the potential energy for M when the phonons are in-
tegrated out. The counterterm cancels this renormaliza-
tion. As discussed at length by Caldeira and Leggett, "' '

this is a purely classical effect equivalent to the reduction
of the resonance frequency of a pendulum because of fric-
tion. In the present case, including it has the effect of
changing the anisotropy energy appearing in So from one
measured at constant strains to one measured at constant
external stresses. The difference is precisely the stress-
induced anisotropy energy, which is 10 —10 times the
anisotropy energy itself. ' Since measurements of E,„;„
are rarely done to this precision, this point is largely
academic. We mention it nevertheless because it has
created confusion in the past about whether dissipation
increases or decreases the tunneling rate in MQT. ' One
can assume, if one wishes, that the E,„;„that appears in

So is measured at constant stress.
Since the action (2.4) is quadratic in the phonons, these

can be integrated out, leaving an elfective action Sdr(M)
for M alone, which we will write as



714 ANUPAM GARG AND GWANG-HEE KIM 43

the nonzero components of the magnetoelastic tensor.
Orthorhombic symmetry:

E,„;„(M)= —K,M, +K2M (2.7)

where the anisotropy coefficients K, and E 2 are both pos-
itive, and it is assumed that higher anisotropy coefficients
are negligible. The easy axis is then z, and the hard axis
is y. There are 12 different nonzero tensor components:

Tetragonal symmetry:

E,„;„=K) sin 8+ (K2 —
K2cos4$ )sin48 . (2.8)

(2.9)

Once again we shall take the easy axis to be the sixfold
axis (denoted z). The tensor components are the same as
in the tetragonal case, except that a „„=2a„„+a~zyy.

Cubic symmetry:

E o=K~(M M +M M +M

The easy axis is of type [100] if K& )0, and of type [111]
if K& (0. The magnetoelastic tensor components are
xxxx, xxyy, and xyxy.

III. CALCULATION OF THE SPECTRAL DENSITY

A. General formulas

The general Lagrangian for a set of coordinates q„
linearly coupled to a bath of harmonic oscillators car be
written as

L =Lo(q„,q„)+—,
' g m;(x;+co;x; )+g c;„q x; . (3.1)

By a straightforward extension of Ref. 4, we find that the
extra term S, in the effective action obtained after in-
tegrating out the phonons can be written as

$, [q„(co)]= g f dco f den
27v» ~ o co(co +co )

Xq„(co)q„*(co)J„„(co).

We shall take the easy axis to be the fourfold axis, denot-
ed z. The distinct tensor components are zzzz,
zzxx =zzyy, xxzz =yyzz, xxyy =yyxx, xxxx =yyyy, xyxy,
and xzxz =yzyz.

Hexagonal symmetry:

E,„;„=K,sin 8+K2sin 8+(K3 —K3cos6$)sin 8 .

better in such cases to use a method due to Leggett. '

One solves the (linear) equations of motion for the oscilla-
tor coordinates x; with the q„as arbitrary driving forces.
After substituting these solutions and assuming that m„
is the mass for q„, the equations of motion for q„can be
written as

—m„g q„(g)+g Q„(g)q (g)=—
Bq

(3.4)

where q„(g) is the Fourier transform of q„(r), defined by

q„(g)= 1 drq„(r)e

and Q (g) is given by

(3.5)

J„,(co)
Q„(g)= — f de "2

0 ~(~2 —g2)

It follows that

(3.6)

J„(co)= lim Im Q„,(co ie) —.
a~0+

(3.7)

The problem is thus reduced to the calculation of Q (g).

B. Solution of the coupled elastic vvave equations

Before presenting the solution for the spectral density
for magnetoelastic dissipation, we give a simple argument
for its frequency dependence. It is apparent from the
above discussion that J„(co)is proportional to the imagi-
nary part of a dynamic susceptibility, and that the power
dissipated at frequency cu is proportional to
g„coJ„„(co)q„(co)q*(co).In the present case, if q & (we
must now use the tensor component aP for the label p) is
regarded as a driving force, it results in the radiation of
elastic waves. At low frequencies, we can ignore a11 the
higher multipoles and keep only dipole radiation, for
which the power dissipated varies as m . It follows that
J~& z& varies as cu as co~0. The rest of this section can
be regarded as a confirmation of this argument and as a
calculation of the strength of the elastic dipole moments.
As mentioned in Sec. II, we shall take the two elastic
media to be isotropic but different. This simplification
does not change the form of J & & and gives a good esti-
mate of its size.

The equation of motion for u(x, r) is

(3.8)
8

p(r)u — o g= —
q 13 8(a r), —

Bxp Bxp

Here, J„ is the spectral density, which is given by

(3.2) where o.
&

is the stress tensor, given by

cv &=A(v)u 5 &+2@(v)u &, (3.9)

J,(co)=—g " 5(co—co, ) .2,. m,.co,
(3.3)

For the problem at hand, it is clear that the action is
indeed of the type discussed above. It is, however, very
cumbersome to obtain the spectral density by finding the
normal modes of the phonon system and their couplings
to the magnetization and using Eq. (3.3) directly. It is

and p(r), A, (r), and p(r) are the density, and the Lame
coefficients. We shall use subscripts 1 and 2 for their
values inside and outside the particle, respectively. Thus,

p& for r &a
P()=' f „)

and likewise for A(r) and p(v),. In terms of these, the lon-
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gitudinal and transverse sound speeds in medium 2, for
example, are

where peu denotes the convolution of p(k) and u (k),
and

(~2+ P2) ~P2~ t2 P2 P2 ' (3.1 1) s(k)= f d r e '"'8(a r)—

We also define hp=p& —
p2, and similarly AA, and Ap.

Further, u(x, r) must be continuous at the interface, and
the normal component of the stress tensor must have a
discontinuity obtainable by integrating Eq. (3.8).

To solve Eq. (3.8), we Fourier transform it in both
space and time variables to obtain

4m
(sin ka —ka coska ) .

k
(3.13)

p(k) =p2(2m. ) 5(k)+ b p s (k) . (3.14)

Note that s(k)~vo as k~0, and that p(k) can be writ-
ten as

g peu +ik&cr i3=iq &k&s(k), (3.12)
When written out in full, the left-hand side of Eq.

(3.12) reads

P2( u (k) —[(A2+p2)k kr+p2k 5 ]u (k)+ f s(k —k')[Ape 5 p
—bA, k ki3 hp(ki3—k' +k k' 5 p)]up(k'),

(3.15)

where we have introduced the shorthand

(3.16)

Since we only want the solution as k, co —+0, we can approximate the integral over k' as follows. We replace s (k —k') by
s (k ), and drop the term proportional to Ap as it is of higher order in k, co. It can then be written as —T k, where

T~z is given by

T = f s(k')tblk&u&(k')5 +3@[k'uz(k')+kobu (k')]I . (3.17)

Note that T z
= T . The solution to Eq. (3.12) can then be written as

u (k)=G &(k, g)[iq& s(k)+T& ]k

where 6 &
is given by

(3.18)

p2(g —c,zk ) p, (g c12k )— (3.19)

z A.
with 6 &=6 &

—k k&, and the carets denote unit vectors.
We now simply solve for the tensor T

&
self-consistently by substituting Eq. (3.18) in Eq. (3.17). It is useful to define

two tensors

We thus obtain

T r
= f s(k)[bA5 kp+bp(k 5is +k 5 i3)]Gis [T,+iq, (g)s(k)]k,

k

56k 5 6 H H

30~'p k g
— k

[T,+iq, (g)s(k)]k s(k) .

d kH
i3 s =15 k kisk ks=(5 P s+5 5ps+5 s5is ),

4m

15 d k ~~~ ~r, ~ 1H pg=
2 4m. ~ ~ 2

(5 pk ks+5rpk ks)= —(35 Pys —25 r5ps+35 s5pr) .

(3.20)

(3.21)

We now define two integrals:
4

, f s "(k)dk,
vo

' 0 g —ck
for n = 1,2, and two new tensors

(3.22)
+2bpH &r&II"'(c,z)] .

In terms of these, Eq. (3.21) can be written as

(3.23)

1M'
ass [(5b A5 r5Iss+2bpH its )I~ ~(c12)

30m pq
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T =M "~iisTiis+iuoM' r'psqps(g) . (3.24)

SBI"'( „)
2' pz b,B—I' "(ciz)

(3.25)

To solve Eq. (3.24), we first take its trace. This yields

where k"'=
—,
' and O' '= —', . Since we only need the lead-

ing terms in either the real or the imaginary parts of
these integrals, we can ignore the difference in the terms
of order g and write I"'(c)=I' '(c)=I(c) henceforth.
With this and the fact that s (k) =uo, we can write the
solution (3.18) as

where bB =b, A, + (2/3 )b p is the jurnp in the bulk
modulus. We now construct the traceless part of T u =iuoG &[F'(g)qi3r+ —,'F(g)qss5i3 ]k (3.30)

ay ay 3 pp &y

and similarly q' . It then follows that

~p &I"'(c,) &

—a &I"'(c)& '"- '

(3.26)

(3.27)

where F and F' are given by

2' pF(g)=
2~ pz FBI(—ciz, g)

3~2
F'(g) =

3~'pz —ap, &I(c„g)&

(3.31)

where the angular brackets denote an average,

&f (cz) &
=

—,
' [3f(c,z)+2f (ctz)], (3.28)

for a general function f.
The explicit solution for u(k, g) can now be obtained by

substituting Eqs. (3.25) —(3.27) into Eq. (3.18). We only
want the solution, however, in the limit k, g~O. In this
limit, it is not dificult to show that

Q ii ys(g)q~s(() = —f u ii(k, g)s (k) . (3.32)

The next step is to identify the kernel Q & s(g) by sub-
stituting the solution obtained above in the equation of
motion for u. Since Q & rs(g) only depends on the coup-
ing term in the equation of motion, we have

1+k'"' ~'
C2 C

3
l

3
+0(P), (3.29)

If we now use the relation u &=(i/2)(u k&+u&k ), and
combine Eqs. (3.30)—(3.32), it is straightforward to per-
form the angular k integrals using Eq. (3.20). The radial
k integrals are seen to involve only I"~(c). After some
simple algebra, we obtain

Q &rs(g)= z F'(g)&I(cz, g) &(5 &5i3s+5 s5&z)+ z [F(g)I(ciz, g) —F'(g)&I(cz, g) &]5 Pzs .
12' P2 18' P2

(3.33)

Taking the limit as g +co i e, and—usin—g Eqs. (3.31) and (3.29), we finally obtain the desired spectral density as co~0:

where

24mpz (I+2ri)z r 36mpz ( I+2y)z
&c, '&

co5Aq, (3.34)

q=(~p/3p, ) &

g= (b.B /2pz)cia

In terms of this, the correction to the effective action is given by
2

S, [M(co)]= f den f den q ii(co)qr"s(co)J p~s(co),
277 ~ 0 co(M +co )

(3.35)

(3.36)

with q & given by Eq. (2.5).
We conclude this section by noting that the spectral

density must vanish for frequencies much larger than
&cz &/a. The precise form for how it gets cut off is unim-

CO /6)
portant, so we shall simply multiply Eq. (3.34) by e
where co, =b & cz & /a, and b is some number of order uni-

ty.

IV. TUNNELING RATE
FOR CERTAIN CRYSTAL SYMMETRIES

We can simplify the expression (3.36) considerably if
the initial easy axis is one of high symmetry and if the
point of escape is close to this direction. In that case, we
can assume that M n =Mo throughout the tunneling pro-
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cess, and that the transverse components M~ are small.
In that case, we can retain only those terms in q &

that
involve one factor of M-n and one factor of M~. It is
then easy to see that in each of the symmetries we listed
in Sec. II there is no contribution to S, from the 5 Pr&
part of J & &. For, in all but the cubic case with easy
axis [111], the nonvanishing components of a p s are
such that

5 pq p(co)= g a pp(Mp+Mp),
P=x,y

(4.1)

which is of second order in smallness. [M eMp again
denotes a convolution of M (co) and Mp(co). ] In the cu-
bic case with easy axis [111],

5 pq p(r)=a „(M„M,—M() 8'„fi'„)

(4.2)

,' ~K, ~84+ (4.8)

where e=(1 H/H—, ), H, =4~K, ~/3MO, and we have
dropped an additive constant. To get an appreciable rate,
we need e «1. An expansion in powers of 0 is then val-
id, since the escape point is located at 8=&2@. There are
three equivalent least action trajectories:

der (a p s) Mo.
As an illustration of the claim that magnetoelastic dis-

sipation is small, we conclude with a calculation of the
WKB exponent and the dissipative correction to it for
the case of cubic anistropy with an easy axis along
[111].' Let us first ignore dissipation. Choosing the po-
lar axis to be [111],the energy (2.10) can be written as

21/2
E(8,$)= ,'q~K—, ~82+ ~K, ~8 cos3$

which is constant with time. The contribution to S& is
thus part of the potential renormalization that has al-
ready been absorbed in the definition of the anisotropy
energy.

For the remaining component of J & z&, we have

(5 r5ps+5 s5»)q p(~)q~s(~)

P(r)=(2n +1)——ice r, n =0, 1,2,

8(r) =2' @sech(3' i ),
(4.9)

where co =EACH, /2 is the small precession frequency.
The classical or least action is found to be

=2a p„a p, ( M„e M, )( M eM, )*, (4.3)
So' /)ri= (2MO/3)riy )Uo @ (4.10)

g, M)(co) M)*(co), (4.4)

where g, = 16a„,,M~ once again for the tetragonal, hex-
agonal, and cubic [100] easy axis cases, while for the cu-
bic system with easy axis [111],

with the understanding that the Mo n n& part of q & has
been removed. For the orthorhombic case, the com-
ponent M„ is much larger than M because the tunneling
takes place essentially in the x -z plane. Thus, to leading
order the expression (4.3) can be written as g, ~M„(co)~,
where g, =16a„,„,Mo. For all the other symmetries, it
can be written as

Taking typical values Mo —500 G, K, ~

—5 X 10
erg/cm, we obtain co —10 sec '. By tuning e to be
about 0.01, we can obtain "bare" tunneling rates [see Eq.
(2.2)] of the order of 10 sec

To calculate the dissipative correction, we assume that
it is small so that the uncorrected classical path (4.9) can
be used in Eq. (4.6). The Fourier transforms of the com-
ponents 1&„and M, are [for the n =0 case in Eq. (4.9)]

v'2ire
M (co)= (v 3cosha+&3sinha)/(3+4sinh a),

3cop
(4.1 1)

g =—'[( A —8) +2C ]M (4.5)

(4.6)

with A =a~zz+7 zzyy and C =azyzy.
We can thus write down a single unified expression for

S& for the symmetries we are considering:

oo COS, (M) = den des
0 —

( 2+ —2)

XM)(co) M) (co)J(co),

27TE
j. (3+4sinh a) .

M (co)= (3cosha —sinha)/(3+4sinh a),v'2n ~ 2

3cop

where u =wm/6coz. We thus find

(4.12)

with
The integrals in Eq. (4.6) can then be done and we obtain

~22 ( 5)
J(CO) =

2
CO

24mp2 ( I+2rj)2
(4.7)

8(EUPg~ ) ('c2 )
S, =

2 COpCO~
81''3irp2 (I+2i))

(4.13)

provided we retain only the x components in the dot
product in Eq. (4.6) for the orthorhombic case. In fact,
with this understanding Eqs. (4.6) and (4.7) apply to all
lower symmetries as well —the coupling constant g, is
given by a more complicated expression, but is still of or-

The quantity g, /p2c, where c is an average sound
speed, is of the order of K~E, the strain-induced change
in the anisotropy coeKcients; typically, this is 10 —10
times smaller than the anisotropy coef5cients them-
selves. ' The ratio S& /So is thus approximately
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Sr KME amII
=(const)6

i0 C

2

(4.14)

where a is the radius of the particle, coH=yH„and the
constant is of order unity. Each one of the remaining
three factors in this expression is of the order 10, giv-
ing a relative correction to the WKB exponent of order
10-'.

We have shown that magnetoelastic dissipation causes
practically no reduction in the tunneling rate for macro-
scopic magnetization tunneling. This is in contrast to the

case of junction-based systems where dissipation is be-
lieved to be quite large. Barring other sources of dissipa-
tion, the smallness of this effect makes it very promising
to look for MQT in magnetic particles.
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