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Electronic structure of short-period n-p GaAs doping superlattices
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We present the electronic structure of compensated, noncompensated, and nonequilibrium uni-

formly doped short-period GaAs doping superlattices. Self-consistent calculations are described,
which include miniband dispersion, and can be applied to arbitrarily shaped superlattice potentials.
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For n-p superlattices with periods less than 200 A, we find significant dispersion in the first conduc-
tion subband and weak confinement of electrons to the donor layers. Band filling is shown to be the
major contribution to the tunability of the electronic structure in these superlattices under excita-

0

tion, while for periods greater than 200 A, carrier screening of the superlattice potential dominates
the variation. The calculated carrier-recombination lifetimes in short-period doping superlattices
are comparable to bulk GaAs.

I. INTRODUCTION

Doping (also known as n i p i) sem-ic-on-ductor superlat-
tices are composed of a periodic sequence of n- and p-
type impurity layers, possibly with intrinsic regions be-
tween, in an otherwise homogeneous semiconductor.
They possess a space-charge-induced one-dimensional
periodic potential, which creates wells for electrons and
holes that are offset by one half period. The attributes of
doping superlattices fall between two extremes, depend-
ing upon the degree of wave-function coupling through
the superlattice barrier between adjacent wells. For
long-period doping superlattices with inherently high
and wide potential barriers, significant confinement of
charge carriers to the doped layers occurs, giving rise to
nondispersive energy sublevels in the direction of growth.
By contrast, the wave functions in ideal short-period dop-
ing superlattices extend into the barrier regions as a
consequence of greater tunneling; thus in this regime
there is miniband dispersion and significant overlap be-
tween electron and hole wave functions.

The electronic structure, i.e., the superlattice potential
profile, subband energies, wave functions, carrier distri-
bution, and Fermi energy is dependent upon the density
of free carriers for doping superlattices in the ground
state. Likewise electrical or optical injection of charge
carriers into these materials will have an effect on the
nonequilibrium electronic structure. The presence of ex-
cess carriers increases the Fermi energy and reduces the
superlattice potential by screening the ionized impurities.
Knowledge of the electronic structure for the conditions
of compensated (depleted ground state), noncompensated
(free carriers in ground state), or nonequilibrium (free
carriers due to excitation) is crucial in understanding the
tunable properties of doping superlattices.

Early research, ' including electronic-structure calcula-
tions, has concentrated on uniformly doped GaAs
structures with period lengths greater than 500 A.
Shorter-period 6-doped n-i-p-i superlattices have been
studied, and energy-band calculations of short-period
uniformly doped compensated n-i-p-i structures have
been published. ' Recently we have investigated the op-
tical properties of short-period n-p doping superlat-
tices. ' In this paper we present detailed calculations of
the electronic structure of ideal n-p GaAs superlattices
with period lengths less than 300 A for compensated,
noncompensated, and nonequilibrium conditions. We de-
scribe in Sec. II the doping superlattice model and our
self-consistent calculations, which take into account
miniband dispersion and contain no assumptions on the
shape or symmetry of the superlattice potential. The
characteristics of long- and short-period doping superlat-
tices are presented and discussed in Sec. III.

II. DOPING SUPERI.ATTICE
MODEL AND THEORY

Figure 1 shows the band diagram of a long- and short-
period n-p doping superlattice. In our model we assume
an ideal superlattice consisting of a periodic and uniform
distribution of impurities within the doped layers. The
charge of the ionized dopants is considered to be homo-
geneously smeared out in their respective layers. We
therefore omit two aspects: (i) Auctuations in the super-
lattice potential that would arise from a random spatial
distribution of impurities, and (ii) the point-charge char-
acter of the dopants, which could lead to bound impurity
states or impurity energy bands. Noting this caveat here,
the pragmatic significance of the first point is discussed in
Sec. III, while the latter aspect is important in the treat-
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E

the NFE model is applicable for conduction electrons,
while the TB model is appropriate for heavy holes in
GaAs doping superlattices. Therefore donor impurity
states are neglected in our model, whereas excess holes
are expected to populate acceptor impurity states above
the superlattice modulation of the valence band.

A. Compensated doping superlattices

FIG. 1. Real-space band diagram and dopant layer sequence
of n-p doping superlattices. (a) Long-period superlattice with
first electronic energy level and wave function; (b) short-period
superlattice with first conduction subband denoted by the
hatched area.

ment of excess electrons and holes.
Will free carriers occupy superlattice subband states or

impurity states in uniformly doped GaAs doping super-
lattices? Using similar arguments as given in
Ref. 4, we consider a simple cubic array of impurities
with concentration n, , nearest-neighbor distance l,
=2(4~n, /3) '~', and associated Bohr radius a, . A
tight-binding (TB) model corresponding to impurity-
bound carriers would be appropriate when I, &&2a, , or

3
n, (&

4~a,

The opposite extreme is the nearly-free-electron (NFE)
model in which the charge carriers are only slightly per-
turbed by the periodic potential of the ionized dopants
and hence will populate subband states. The NFE model
will be relevant when the carrier kinetic energy at the
Brillouin-zone boundary, fi ~ /2m *I, , is greater than the
Fourier component of the impurity array potential,
e /el, , where m * is the efFective mass, e is the electronic
charge, and e is the dielectric constant. The NFE cri-
terion is then

48(m*) e
n, ))

A m. e

Table I shows the criteria limits for silicon donors and
beryllium acceptors in GaAs. Since impurity concentra-
tions typically range from 10' to 10' cm, we see that

TABLE I. The criteria limits for the tight-binding (TB) and
nearly-free-electron (NFE) models for Si and Be impurities in
CxaAs.

e
~max = n

nD

2

+nz P

2

Notice that through judicious selection of the superlattice
fabrication parameters a continuous variation of poten-
tial amplitude and pcI lodiclty can be indepenclently
achieved. However, for thin dopant layers, large impuri-
ty concentrations are necessary to maintain a meaningful
superlattice potential amplitude, and thus short-period
doping superlattices require highly doped layers.

It has been well established for semiconductor super-
lattices that charge carriers near the band edges behave
as free carriers with an effective mass determined by the
bulk band curvature in the directions parallel to the su-
perlattice layers, but are strongly perturbed in the direc-
tion of superlattice growth. Using the effective-mass ap-
proximation, the energy-band structure of the superlat-
tice is given by

A' k,
E(k„k, )=E;(k,)+-

2m
(4)

where E, is the subband energy (i is the subband index)
and k, and k, are the wave vectors perpendicular and
parallel, respectively, to the superlattice layers (z is the
direction of superlattice growth). We use the envelope-
function approximation to separate the wave functions
into bulk and superlattice components, and thus the sub-
band energies and wave functions 4;k can be determined' z

from the one-dimensional Schrodinger equation:

d
[+E( k)

—Vs„(z)]%;„=0.

Compensated doping superlattices have an equal num-
ber of donors and acceptors in each period
(nDd„=nod„). In this simplest case, the compensated
superlattice potential profile VsL(z) is dependent only
upon the fabrication parameters: donor concentration
nD with layer thickness d„and acceptor concentration
n~ with layer thickness d . The depletion widths of the
individual p-n junctions are greater than the dopant layer
thicknesses for the superlattices considered here. Thus in
the ground state (no carrier injection) the superlattice po-
tential arises from only the ionized impurities and can be
determined analytically from Poisson's equation. The
amplitude of the compensated superlattice potential
modulation will be

Carrier

Electrons
Heavy holes

TB

nD ((10' cm
ng ((10

NFE

nD &&10' cm
n „»10" When the superlattice potential modulation is large and

the band index is small, the energy subbands will have no
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k, dependence; however, for short-period structures even
the lowest-energy subband will exhibit dispersion. '

To solve Eq. (5) at an arbitrary point in the superlattice
mini-Brillouin zone, we utilize a procedure similar to that
described by Zeller et al. , but without assumptions con-
cerning the symmetry ' or shape ' of the potential, nor
demands for parabolic bands, as other methods require.
Given the superlattice period length d, we choose two
functions PL and gl defined on the left half of the super-
lattice unit cell by the initial conditions

p ikdp (13b)

ikd 0
0 Ikd

QL QL
(14)

which leads to the eigenvalue equation

Tr[W] —cos(kd) =0 . (15)

Using Eqs. (11), (13a), and (13b), we evaluate the eigen-
value condition to be

' dz~' 2
(6b)

This method of solving the Schrodinger equation can be
applied to any arbitrary one-dimensional periodic poten-
tial and thus is applicable to other problems, for example
nonsymmetric quantum wells or compositional superlat-
tices with modulation doping.

Similarly we choose two functions gR and gR defined on
the right half of the unit cell by the initial conditions

=1, P —=0,
2

L E.

A2 dz 2
(7b)

The functions g' and f are independent solutions of Eq.
(5), and can be integrated to the center of the unit cell by
standard numerical techniques.

A general solution of the Schrodinger equation may be
written as

Q(z)=a/'(z)+pg (z),
where a and P are arbitrary complex constants. Match-
ing the wave function and its first derivative at the center
of the unit cell yields

B. Noncompensated doping superlattices

For noncompensated doping superlattices
(nDd„&nod ), the superlattice potential arises from both
ionized impurities and excess free carriers. For n-type
noncompensated superlattices, the one-dimensional su-
perlattice potential is

Vs„(z)= f 'dz' f '
[n ~ (z" ) nD(z" )]d—z"

+ ' f''dz'f'n, (z")dz"
E 0 0

1/3
3n, (z)—0.611

e 4m.
(16)

The last term is the local exchange potential, ' where n,
is the free-electron density. Since electrons populate su-
perlattice subband states, the electronic distribution is
given by

QL Q&

ML p
=MR

where

(9) n, (z)= g J ~Pk i dk, f f [E,+E (k, )]dE, ,
I

(17)

VL', R(0) P~L, R(0)
MI., ~

L' R(0)
d QI. R(0)

. dz 8Z

(10)

It can be easily shown that detML R =1. Thus Eq. (9)
may be rewritten as

where f [E] is the Fermi-Dirac distribution. The Fermi
energy EF is found from satisfying the condition

n, = g f dk, f f [E,+E, (k, )]dE, , (18)
o o

where
QL

=MR 'ML
p

=W
QL

PlDA~ Pf g Gfp

d
(19)

Using Bloch's theorem we know that

ikdq
2

iked
g8Z 2 8Z

from which follows

—e lkdQ

(12a)

(12b)

(13a)

The electronic structure of n-type noncompensated su-
perlattices is found by numerically solving Eqs. (5) and
(16)—(18) utilizing an iterative self-consistent scheme.
For p-type noncompensated doping superlattices, a
space-charge model to account for the efFect of excess
holes is utilized, as discussed in the following section.

C. Nonequilibrium doping superlattices

The preceding sections have considered doping super-
lattices in the absence of carr'ier injection. The excited-
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n (2) nj d

ng
(20)

where nh
' is the areal hole concentration per superlattice

period. (Note the hole quasi-Fermi-level is pinned at the
acceptor impurity-state energy. ) Therefore excess holes
are included in the self-consistent calculation by simply
neutralizing a portion of the ionized acceptor charge in
the determination of the superlattice potential, VsL(z).

To conclude this section, we derive an expression for
the carrier-recombination lifetime in nonequilibrium dop-
ing superlattices. Observe that within our model the hole
density is 0 or nh(z) ))n, (z), which allows us to write the
recombination rate in terms of the minority carrier. "
Thus within the hole accumulation region,

state electronic structure of a doping superlattice can
differ dramatically from the ground state because of long
carrier-recombination lifetimes, which arise from the
confinement of nonequilibrium electrons (holes) in the n
layers (p layers) and from the spatial separation of the
carriers. Thus with weak optical or electrical carrier in-
jection, excess carrier densities can be maintained, which
screen the ionized impurities, reducing the space-charge
potential, and lead to a variation in the superlattice elec-
tronic structure.

For excited compensated superlattices the electron and
hole densities n, and nI, , respectively, are the nonequili-
brium concentrations. Noncompensated excited super-
lattices will have a contribution to the free charge from
the dominant impurity as well as from carrier injection.
The self-consistent calculation of the superlattice poten-
tial profile, conduction subband states, the electronic dis-
tribution, and the electron quasi-Fermi-energy follow as
described in the preceding section, only now the contri-
bution of holes must also be included. We have shown
that holes will populate impurity states rather than
valence superlattice states; due to the confining superlat-
tice potential we assume that the filled acceptor states lie
within the central region of the p layers. Excess holes
then create a neutral region within the acceptor layers of
width

d
n, (z)dz

0 +bulk e
+ef +bulk (24)

f "n, (z)dz f 'n, (z)dz
0 0

It can be seen from Eq. (24) that the effective recombina-
tion lifetime scales inversely with the fraction of the
nonequilibrium electron density within the hole accumu-
lation region in the acceptor layer. Notice no explicit as-
sumption concerning the recombination mechanism has
been made, rather we assume only that the same recom-
bination processes apply to both the bulk semiconductor
and the doping superlattice.

III. RESULTS AND DISCUSSION

In Fig. 2 we show the ground-state conduction-band
electronic structure versus period length for compensated
n-p GaAs superlattices with equal impurity layer
thicknesses. In this and the following figures the zero of
energy is the bottom of the conduction potential well,
which is V,„/2 below the bulk GaAs band edge. The su-
perlattice potential amplitude increases quadratically
with layer thickness, as expected from Eq. (3), and the
lowest sublevel becomes dispersive at a period length of
200 A. Either subband states or miniband gaps can be
engineered to coincide with the top of the potential well
depending on the fabrication parameters.

Figure 3(a) depicts the ground-state electronic struc-
ture versus period length for n-type noncompensated su-
perlattices with equal dopant layer thicknesses and an ex-
cess electron density of n, =7.5X10' cm . Similar
trends as seen in Fig. 2 also hold, only now the potential
modulation increases less with period length due to
screening of the ionized impurities by the free electrons.
Notice that for this particular carrier density the Fermi
energy lies above the space-charge potential for periods
less than 160 A. In Fig. 3(b) we plot the electronic distri-
bution across a period for n-type superlattices with
periods of 250, 150, and 120 A. The superlattice with the

dn, (z)

dt
n, (z)

+bulk
(21)

200

where ~bulk is the bulk radiative recombination lifetime
and nonradiative transitions are neglected. The effective
recombination rate for areal charge density is then given
by

dn,"' i„dn, (z)
dz = n, (z)dz .

dt 0 dt 7 bulk 0
(22)

In analogy with Eq. (21), we define an effective recom-
bination lifetime, ~,z, for the areal charge density,

0
80

I

160
Period (A.)

I

240 320

dn (2) (2)
ne ne

dt

and conclude

(23)

FIG. 2. Ground-state electronic structure of compensated
GaAs doping superlattices with nD=n~ =4X10" cm and
d dp 2 d The hatched areas represent dispersive subbands
and the dashed curve is the superlattice potential magnitude
~max '
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FIG. 5. Effective recombination lifetime for excited-state
GaAs doping superlattices with nD =n„=4X10' cm
d„=d~ =—'d, and period lengths of 120 and 300 A.

0

slope discontinuity observed for the 300-A-period super-
lattice at n, =6X10' cm occurs when the electron
quasi-Fermi-energy rises through the second energy sub-
level. Notice that at low injection densities the recom-
bination lifetimes of the two superlattices differ by many
orders of magnitude. The short-period superlattice life-
time approaches to within a factor of 10 the bulk lifetime
for carrier densities greater than 6X10' cm . This
occurs at a much lower carrier concentration than for the
longer-period superlattice because of less carrier
confinement [e.g., see Fig. 3{b)] and therefore greater
overlap between electron and hole wave functions in the
shorter-period structure. When the effective recombina-

tion lifetime becomes comparable to the bulk lifetime, ex-
cess carrier densities and tunability of the electronic
structure will not persist. In fact, 5-doped n-i-p-i GaAs
superlattices with sufficiently small period lengths exhibit
stable optical band gaps.

The electronic-structure calculations presented herein
have assumed an ideal doping distribution within the su-
perlattice layers. A random arrangement of impurities
will give rise to random potential Auctuations in the
space-charge potential. A growth technique such as
migration-enhanced molecular-beam epitaxy' coupled
with a correlated dopant distribution predicted' for
highly doped layers might accomplish a greater degree of
ordering of the impurities in uniformly doped layers. It
has also been shown that 5-doped n-i-p-i superlattices ex-
hibit reduced random potential Auctuations, ' and thus
our findings are also applicable to these doping superlat-
tice materials.

In conclusion, we have outlined a self-consistent
scheme to determine the space-charge potential profile,
subband energies, wave functions, carrier distribution,
and Fermi energy of ideal short-period doping superlat-
tices. - The results of compensated, noncompensated, and
nonequilibrium cases are shown for uniformly doped n-p
GaAs superlattices with periods less than 300 A. We find
significant dispersion in the first conduction subband for
periods less than 200 A and weak confinement of elec-
trons to the donor layers, which results in carrier-
recombination lifetimes comparable to bulk GaAs. For
these short-period superlattices we determine that band
filling effects dominate confined carrier screening of the
superlattice potential, both of which lead to tunable prop-
erties in semiconductor doping superlattices.
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