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A method is described for the calculation of thy two-photon momentum distribution for positron
annihilation, which employs the eigenvectors from a fully relativistic band-structure calculation.
Although the usual nonrelativistic positron-electron overlap integral is used, effects of spin-orbit
coupling on the two-photon momentum distribution are introduced via the band structure and the
wave functions. The method is implemented for the relativistic linearized augmented-plane-wave
method and applied to tungsten.

I. INTRODUCTION

The measurement of the angular correlation of annihi-
lation radiation in two dimensions (2D-ACAR) is a valu-
able technique to obtain information about the electronic
structure of solids. With this method the Fermi surface
of a great number of metals and intermetallic compounds
has been studied. ' In general, the interpretation of 2D-
ACAR experiments is facilitated by a computation of the
momentum distribution of the two photons emitted in the
annihilation process. Integration of this calculated two-
photon (2y) momentum distribution along a specified
direction in momentum space yields a two-dimensional
distribution that can be compared directly with the mea-
sured 2D angular correlation.

In recent years attention has focused on compounds
containing atoms from the rare-earth and actinide series.
The more or less localized character of the f electron in-
troduces entirely new physical properties, which express
themselves most clearly in the class of heavy-fermion sys-
tems. Calculations of the band structure and the two-
photon (2y) momentum distribution of these solids in
general require a fully relativistic formalism involving the
eigenvectors of the full Dirac Hamiltonian. The cross
section for two-photon annihilation has been derived in
several textbooks on quantum electrodynamics. Howev-
er, the matrix, which couples positron and electron, was
only obtained explicitly in the nonrelativistic limit. De-
vanathan and Iyakutti computed the 2y momentum dis-
tribution employing this matrix to couple wave functions
that were obtained from the relativistic augmented-
plane-wave (RAPW) method. However, as far as we
know, to this date no numerical calculations of a 2y
momentum distribution have been performed using fully
relativistic wave functions (possibly for this reason very
few 2D-ACAR measurements on high-Z materials have
been reported).

Section II discusses the form of the relativistic wave

II. COUPLING OF RELATIVISTIC PARTICLES

In the independent-particle model the two-photon
momentum distribution p2& at momentum p is given by

pz (p)=g f„(k)A„(p,k)~
k, n

with the nonrelativistic overlap integral

A„(p,k) = f e 't"P+(r)g„(k,r)dr . (2)

Here P„(k,r) and g+(r) represent the (single-
component) wave functions of the annihilated electron
with wave vector k and band index n, and the positron in
its ground state k=0, respectively. The Fermi-Dirac dis-
tribution function f„(k)determines the occupation of the
electron states. The integration extends over the entire
crystal of volume V. The spin indices have been omitted,
but Eqs. (l) and (2) imply opposite positron and electron
spins as only a spin-singlet pair can annihilate into two
photons. In the nonrelativistic approximation and zero
magnetic field the spatial part of the wave functions is in-
dependent of the spin and therefore both allowed spin
singlets give rise to the same expression.

functions and the coupling of the positron and electron
wave functions in the two-photon annihilation process.
We derive the RAPW expressions for the 2y momentum
distribution in Sec. III. This derivation differs from that
in Ref. 4 only in the treatment of the positron wave func-
tion. Section IV discusses how these expressions can be
modified to make them suitable for use of the relativistic
linearized augmented-plane-wave (RLAPW) method,
whereafter the results are presented of numerical calcula-
tions on tungsten. For the first relativistic calculation of
a 2y momentum distribution tungsten was chosen as the
model material because its band structure shows prom-
inent effects of the spin-orbit interaction. Finally, Sec. V
summarizes the conclusions of this work.
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y(m)
(k, r) =N(k)

y(m)1+0

ik-r (3)

where the spinor

For solids containing high-Z atoms, the kinetic-energy
term in the Schrodinger equation becomes large, which
results in strong oscillation s of the wave function.
Hence, the Schrodinger equation should be replaced by
the relativistic Dirac equation. Approximations to the
Dirac equation essentially leave out the spin-orbit cou-
pling and neglect the small components of the wave func-
tion. These semirelativistic methods work well for solids
containing atoms. with Z ~ 60, say, but for higher Z a ful-
ly relativistic approach is required. In addition, the use
of the full Dirac equation allows one to concentrate on
the potential as being the major approximation. Until re-
cently the efforts involved in this approach were consid-
erable, but with the generalization of the linearized
methods to full relativity numerical band-structure cal-
culations have become manageable nowadays even for
complex crystal structures.

In a fully relativistic treatment, the particles are
represented by four-component wave functions. The
wave function of a free electron with wave vector k is

0
0

0 —1 0
0 0 —1

—1 0 0
0 —1 0

0
0

(both the coupling matrix y5 and the charge-conjugation
matrix yzK are defined according to Ref. 8, and differ
from those in Ref. 3 by factors i and—i, respectively),
which implicitly assures singlet annihilation for these
particles. Although in the present problem we are not
dealing with free particles with zero velocities but with
relativistic particles moving in a crystal potential, we
shall nevertheless use the y~ matrix to couple the posi-
tron and the electron. For a thermalized positron with
k=0 the overlap integral then becomes

(S is the sign of m ).
The coupling between the annihilating relativistic par-

ticles should be represented by a properly relativistic ex-
pression for the overlap integral A„(p,k). In most calcu-
lations of the cross section for 2y annihilation free parti-
cles are considered with vanishing velocities. It can be
shown that in that case the coupling is established by the
Dirac matrix

1 0
and y( —

—,')=
A„(p,k)= I dre '~'[g+(r)) y, P„(k,r) . (5)

0 0 0 —1

0 0 1 0
0 1 0 0

—1 0 0 0

with K denoting the operator of complex conjugation.
Charge conjugation of Eq. (3) yields the positron wave
function

(k, r) =N(k)S e
—i k.r (4)

The matrices o, o.z, and o., are the well-known Pauli
2 X 2 spin matrices. The normalization constant
N(k)=[(1+k )/2k )'~, where k =(1+k )'~, and
k = ~k~ is expressed in relativistic units (a transformation
to atomic units replaces k by 2k/c, where c is the speed
of light). This normalizes the wave function to one parti-
cle per unit volume. The index m in Eq. (3) refers to
wave functions with spin up or spin down only in the
nonrelativistic limit, where the lower spinor vanishes and
the upper one reduces to the nonrelativistic wave func-
tion with spin included. From Eq. (3) it can be seen that
the spatial and spin-dependent parts of a relativistic plane
wave can still be separated. In an external potential, on
the other hand, each of the four components is a different
function of r due to spin-orbit coupling.

The expression for the positron wave function can be
obtained from its electron counterpart by application of
the charge-conjugation operator

The large components of the positron and electron spi-
nors couple to each other and so do the small com-
ponents. In the laboratory system the contribution from
the latter vanishes in the free-particle case due to the pos-
itron wave vector being zero. In a solid, on the other
hand, the repulsion of the atomic nuclei reduces the posi-
tron density in the core region of the atoms, where the
potential is strong. Therefore, the upper positron com-
ponents can be neglected in solids as well, which is sup-
ported by calculations of Iyakutti and Devanathan.
Hence, only the product of the large components survives
the coupling by the y5 matrix in A„(p,k). In spite of
this, the small components of the electron wave function
affect the results implicitly through the normalization.

In zero magnetic field, two eigenstates correspond to
each eigenvalue as long as the crystallographic point
group has an inversion center. These states are related to
each other by the combined operations of time reversal
and parity, which is equivalent to spin degeneracy in the
nonrelativistic limit. ' In Eq. (1) the overlap integrals of
all four combinations of degenerate electron and positron
states have to be included.

Although Eq. (5) is a nonrelativistic approximation, to-
gether with Eq. (1) it enables us to calculate the 2y
momentum distribution corresponding to a fully relativis-
tic band structure. The Fermi surface causes discontinui-
ties in the momentum distribution through the Fermi-
Dirac distribution function; hence, the position of these
discontinuities reAects the fully relativistic Fermi surface.
The overlap integral may to some extent be influenced by
the nonrelativistic nature of Eq. (5). However, as the
square of the overlap integral is a relatively smooth func-
tion of momentum its lack of relativistic invariance will
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not affect the position of the Fermi-surface discontinui-
ties.

j ((kGr, )
A „(k)=Q N(kG) e

III. THE RAP& OVERLAP INTEGRAL

In this section the RAPW expressions for the wave
functions will be substituted into Eq. (5). The band index
n will be omitted for clarity. The RAPW method has
been discussed extensively by Loucks" and his notation
is followed here as much as possible.

As usual, the muffin-tin form for the crystal potential is
adopted, which spherically averages the potential at the
atomic sites. The electron wave function can then be
written as a linear combination of relativistic plane waves
[cf. Eq. (3)], augmented inside the muffin-tin spheres with
the solutions of the Dirac equation for a spherically sym-
metric potential. These solutions are equal to the numer-
ical solutions of the radial Dirac equations multiplied by
the spin angular functions

y"„(p)=g C(i—,
' j;p —m, m ) YI„(p)y(m) .

X g a G (k )C ( l—,
' j;p, —m, m ) YI*„~(kG ),

m

(9)

g+(r) = V ' g co S N(G)
G, m

y(m)
~+ GO

y(m)
—iG.re

(10)

with RAPW expansion coefficients cG . Inside the vth
muffin-tin sphere the angular momentum decomposed
positron wave function is (see also Ref. 8, p. 160)

where jI is the spherical Bessel function of order I.
The positron wave function is obtained from the elec-

tron wave function by charge conjugation. In the inter-
stitial region the wave function of the positron in its
ground state at k =0 becomes

y(m)
Q(k, r)= V ' g ao (k)N(kG) cr kGG, m y(m )

i+kG

iko-r
e

Here, C(l—,
' j;p —m, m ) are the Clebsch-Gordan

coefficients and Y&„complex spherical harmonics.
The quantum numbers for each l ~ 0 are
~=1,j =l —

—,'(1&0), and ~= —l —1,j=i+ —,', with

p = —j, —j+ 1, . . . , j—1,j. The augmentation process
yields basis functions inside the spheres which are formed
by a superposition of these solutions for all ~ and p. The
appropriate coefficients are found by matching the large
components of all terms in the summation to the Ray-
leigh expansion of the plane wave on the surface of the
sphere (see Ref. 11).

For the full electron wave function in the interstitial
region we have

g+(r) =4~V ' g ( —i )'C,
„

where, similar to Eq. (9),

—if:+ (p)x"-.(p)

g + (p )g"(p )

j((«.) —G.R,C „=gN(G) e
g,+(r )

Xg c& S C(l—,'j;p —m, m ) Y&*„(Cx).
m

A (p, k) = 2 ' "'(p, k)+ 2 '""(p,k) . (13)

Please note that the treatment of the positron has been
fully relativistic up until now.

The integration in Eq. (5) for the overlap integral
separates naturally into a contribution from the spheres
and an interstitial part

where kG=k+Cz. The RAPW expansion coefficients
aG (k), labeled by reciprocal-lattice vector 6 and spin
index m, are to be determined in a band-structure calcu-
lation. Let R„denote a direct-lattice vector, R the posi-
tion of the vth atom in the unit cell, and r the radius of
the vth muffin-tin sphere. Then, with r =R, +R +p and
p(r, the angular momentum representation of the elec-
tron wave function in the vth sphere yields

g.(p)y"„(p)
P(k, r) =4~V ' e " ' g i'A;„(k) .

(8)

where g and f are the large and small components of
the solution of the radial Dirac equation. The coefficients
A ~p are

Substitution of Eqs. (8) and (11) for the electron and posi-
tron wave functions, respectively, into Eq. (5) and restric-
tion of the integration to the spheres gives

2

g (sph)(
'T

X g g i '+' g e 'A,"„(k)
KP KP

X C„"*„I;„,„(p),
(14)

where ~ is the unit-cell volume and K the reciprocal-
lattice vector that reduces the momentum p to the corre-
sponding electron wave vector k in the first Brillouin
zone. The factors I „„denotethe integrations over the
vth sphere,
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&:„.„(p)= f e "'[g.'(p)g. +(p)IX".'(p))'X".(P)
V

f —(p)f '+ (p)

X [X"— (p)] X"—(p)]1p . (15)

Using the Rayleigh expansion for the plane wave, this in-
tegral can be factorized into radial and angular parts. At
this point it is convenient to use the fact that the small
components of the positron wave function are negligibly
small, i.e., f + ((g,+. The derivation then proceeds in a

I

manner similar to the nonrelativistic APW formalism. '

A second approximation concerns the almost spherically
symmetric nature of the positron wave function inside
the muffin-tin spheres. In Eq. (11) all terms with
l&0(~W —1) may be neglected with little loss of accura-
cy. The orthonormality of the spherical harmonics then
simplifies the angular parts of the integrals substantially.
With the radial integrals

r
T [p,E(k),E+ ]=f p j,(pp)g„(p)g, +(p)dp, (16)

0

the contribution of the spheres becomes

2

A "~"'(p,k)= — 5 z

&ate

' g (4')'~ C *&„gC(l—,'j;p —p', p')Y&„„.(p)A,„(k)T[p,E(k),E+ ] .
V I + 1 KJM

(17)

Also, the expressions for the wave functions in the interstitial region for the electron (7) and for the positron (10) are
substituted into Eq. (5). Limiting the integration to the interstitial region yields

O. O'CT kGA'""(p, k)= —V 'g g ao (k)cG,S N(ko)N(G')I(p —ko —G') 5, +X (m') X(m)(1+G' )(I+ko)

where I denotes the integral

I(p ko —G')=—f e dr .
int

(19)

If Q is the volume of the vth sphere,

X (K—G)

In general, due to the convergence of the electron wave
functions kG/(I+ko ) =kG ((1 for all non-negligible
RAPW expansion coefficients. Since this is true a fortiori
for the positron the second term between the large
parentheses in Eq. (18) can be neglected. The integral of
Eq. (19) is solved in the usual way by first extending the
integration over the whole crystal and then subtracting
the contribution from the spheres, which results in the
final expression for the interstitial contribution

A'""(p, k)= —5 j, &g aG (k)N(k&)S X (K—G) .
Gm

is retained in the interstitial region. Devanathan and
Iyakutti assume a constant positron wave function in
that region.

As mentioned before, in zero magnetic field or moment
and in the presence of an inversion center each electron
or positron eigenvalue is doubly degenerate. The second
eigenvector of this pair of states is obtained from the first
by the combined operation of time reversal and parity.
The operator is

~X4~3r i& =
0 i 0 0
—i 0 0 0
0 0 0 —i
0 0 i 0

and, when applied to the calculated wave functions be-
fore substitution into Eq. (5), yields equations for A (p, k)
similar to the ones in this section. The square of each of
these overlap integrals must be included in the summa-
tion in Eq. (1) to yield the total momentum density.

=g cG,
GI

v —i(K —G —G') R
~x —G, o IV. NUMERICAL CALCULATIONS FOR TUNGSTEN

3j~(IK—G —G'Ir )

(21)

This expression does not depend on p and k, hence it can
be conveniently tabulated for all K—Ci. Note that the
full plane-wave expansion of the positron wave function

For practical calculations of the band structure and the
eigenvectors we adopt the relativistic linearized
augmented-plane-wave (RLAPW) method. '3 The equa-
tions for the 2y momentum distribution derived in Sec.
III are easily extended to the linearized version. This
leaves the interstitial contribution to the overlap integral,
Eq. (20), unchanged. Inside the muffin-tin spheres the ra-
dial solutions of the Dirac equation (g,f, ) are evaluated
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at a fixed energy. The price to be paid consists of the in-
clusion of extra terms, which contain the energy deriva-
tives (g,f ). This yields for the electron

P(k r)=4~V '~ e

1.2

0.8

(22)

The coefficients 8 „andD „areobtained in a way simi-
lar to 3

„

in Eq. (8) by matching the upper components
of the RLAPW basis functions on the surface of the
spheres. The contribution of the spheres to the overlap
integral now involves four types of radial integrals, which
are independent of the energy eigenvalues and can be tab-
ulated for all p and stored for future reference.

In our calculations for tungsten the interstitial part of
the muffin-tin potential was expanded into 40 stars of
plane waves. This "warped" muffin-tin potential is well
suited for 2y momentum-distribution calculations in view
of the preference of the positron for the interstitial re-
gion. A self-consistent electron potential was obtained in
the local-density approximation and the eigenvalues were
converged to within 0.2 mRy. Exchange and correlation
effects were incorporated using the Hedin-Lundqvist
scheme. ' The contribution of the core states to the
charge density was calculated in every iteration, properly
taking into account the charge tails that extend into the
interstitial region. ' In the last few iterations an irreduc-
ible wedge of the Brillouin zone was sampled at 285 k
vectors. The RLAPW expansion of the electron wave
functions contained all reciprocal-lattice vectors with
6 &3.74 a.u. , and the angular decomposition inside the
spheres included all l ~8. A lattice parameter of 5.973
a.u. was used. The positron eigenvector was calculated
using the electron potential after sign reversal and omis-
sion of the exchange-correlation part. All terms with
I )0 together were found to contribute less than 1% to
the total positron charge inside the muffin-tin sphere.
Subsequently, the 2y momentum distribution was calcu-
lated for 24000 p vectors in the 4', th irreducible wedge
of momentum space within a radius of 4 a.u.

Figure 1 shows the relativistic band structure along
line I H. For the purpose of comparison the inset shows
the corresponding semirelativistic bands calculated by
Jansen and Freeman. ' In the semirelativistic calculation
three bands cross the Fermi level, one of which is doubly
degenerate. The spin-orbit interaction lifts this degenera-
cy and three bands appear with b7 symmetry (the labels
in Fig. 1 distinguish bands of the same symmetry by their
superscripts). Their mutual repulsion creates a small en-

ergy gap at the Fermi energy. The A7 bands, due to the
symmetry of their wave functions, do not contribute to
the 2y momentum distribution for momenta along the
( 100) direction. ' Therefore, the Lock-Crisp-West
(LCW) theorem' ' ' is used. In its three-dimensional
form the LCW procedure sums the 2y momentum distri-

0.4

0.0 '

FIG. 1. The band structure of tungsten along line I H. The
double-group symmetry notation is used to label the bands. The
inset shows the corresponding semirelativistic energy bands
(from Ref. 16).

bution for all momenta p that can be reduced to the same
wave vector k by addition of a vector K of the reciprocal
lattice

h(k)=g p~ (k+K) . (23)

In the approximation of a constant positron wave func-
tion

h(k)=g f„(k),

by wave-function normalization. For a realistic positron
wave function the effect of the LCW procedure is to di-
minish the influence of the overlap integral A„(p,k), so
that the remaining structure in h(k) is predominantly
caused by the occupation function f„(k),i.e., it reflects
the Fermi surface. Please note that the inhomogeneity of
the positron distribution is not the only reason that the
LCW distribution deviates from the number of occupied
bands. A]though the contribution of the small electron
components to the overlap integral is reduced through
multiplication with the small positron components in Eq.
(5) (for this reason it was neglected in our calculations);
they do contribute in a non-negligible manner to the nor-
malization of the electron wave function in a heavy-atom
solid. However, the reduction of the LCW distribution
due to this effect is generally small compared with the
reduction caused by the inhomogeneity of the large posi-
tron components.

The inhuence of the overlap integral of band n is readi-
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ly shown by application of the LCW procedure to
i A„(p,k)

~

. Figure 2 shows the result of the "LCW fold-
ing. " Large discontinuities arise where the bands A7

'

and 6& ' cross the Fermi level. In addition, a third
feature can be seen, the origin of which lies in the contri-
butions to h(k) of the h7 bands. The Fermi level lies in
the energy gap between A~

' and A~ '. The difference in
electron-positron wave-function overlap for the states in
the three bands results in an apparent transfer of momen-
tum density across the gap. Since the h~ ' band is not oc-
cupied, a net effect is visible in the total momentum dis-
tribution at about 0.3 the way along line I H. Due to its
significant amplitude it may be mistaken for a Fermi-
surface discontinuity in a 2D-ACAR experiment, but in
reality it is a combined effect of the strong hybridization
of the 67 bands and the inhomogeneity of the positron
distribution.

The present results can be compared to those of nonre-
lativistic momentum-distribution calculations by Singh
and Singru on isoelectronic Cr, the band structure of
which closely resembles the results of the semirelativistic
calculations on W shown in the inset in Fig. 1. In Cr the
two bands which cross just below the Fermi level display
rather Aat contributions to the folded momentum distri-
bution along line l H (Fig. 2 of Ref. 20). Their ampli-
tudes differ by roughly 25%, which causes the same in-
crease in the folded momentum distribution as in Fig. 2,
in addition to a maximum in the small interval of
momentum in which these two bands are both occupied.

3.0—

2.0—

1.0— (1j
7

(2j
7

p(3)"7

0.0
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FIG. 2. The folded 2y momentum distribution along the
(100) direction. The momentum distributions of the individual
67 bands are also shown. A dashed curve denotes empty k
states. The second Fermi-surface discontinuity is caused by

V. CONCLUSIONS

In this paper we have described a method to calculate
the 2y momentum distribution using fully relativistic
wave functions. An approximate expression, equivalent
to the customary nonrelativistic expression, was used to
calculate the overlap of the positron and electron wave
functions; the Fermi surface, however, is determined by
the fully relativistic band-structure calculation and enters
the 2y momentum distribution through the Fermi-Dirac
distribution function. Although the present method fa-
cilitates the interpretation of measurements on heavy-
atom solids, a fully relativistic treatment of the overlap
integral remains desirable.

Illustrative calculations on tungsten clearly show how
the spin-orbit coupling may affect the Fermi surface and,
consequently, the 2y momentum distribution.
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