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Dynamics of self-interstitial atoms in bcc metals
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We present calculations of the local frequency spectrum of (110)-split-interstitial atoms in bcc
metals with the use of the Green's-function method. The dumbbell vibrates with low-frequency res-
onant modes and high-frequency localized modes with little contribution from the host frequencies.
In agreement with experiment the spectrum leads to enhanced mean-square thermal displacements
of the dumbbell atom. The frequencies of the librational modes B&g and B,g provide a consistent
explanation of the observed changes in the shear moduli of irradiated Mo. The long-range migra-
tion of the interstitial atoms is discussed in view of the obtained resonance modes.

I. INTRODUCTION

The dynamical behavior of self-interstitial atoms
(SIA's) is of considerable interest in understanding the
properties of irradiated metals. The properties of SIA's
in fcc metals including their stable configuration and dy-
namics are fairly well understood. ' Especially interest-
ing is the occurrence of resonance modes of SIA's which
are instrumental in explaining the physical properties of
irradiated metals. ' They provide simple physical inter-
pretation to interstitial elementary jumping processes
with low activation energy and lead to high shear polari-
zability of SIA's. The earlier expectation of the direct
observation of the resonance modes in diffuse inelastic
neutron scattering has now been realized with the mea-
surements on electron-irradiated Al.

In the case of bcc metals the symmetry and structure
of SIA's have been studied by computer simulation and
the (110)-dumbbell configuration, at least in a-Fe, '

Mo, ' ' and W, ' ' has been found. Experimentally, the
(110)-dumbbell configuration has been confirmed by x-
ray diff'use scattering in Mo (Ref. 15) and a-Fe, ' ' by
internal friction measurements in Mo, ' W, ' and u-Fe,
by elastic aftereff'ect in a-Fe (Ref. 21) and W, and by
magnetic aftereffect in e-Fe. But the studies on the
dynamical behavior of this defect have not been reported.
Similar to the (100) dumbbell in fcc metals the (110)
dumbbell in bcc metals is expected to vibrate with
characteristic low-frequency resonance modes ' and
high-frequency localized modes. Recent Mossbauer
study on trapped interstitials in Mo gives clear hints for
the existence of low-frequency resonance modes of the
( 110) dumbbell.

In this paper we report the calculation of dynamics of
the ( 110)-dumbbell interstitials in a bcc metal presenting
the local frequency spectrum of the defect in Mo which
shows the occurrence of both kinds of characteristic
modes. The case of Mo is of special interest, since there
seems to be some controversy about the interpretation of
resistivity recovery and long-range migration of
SIA's. ' While computer simulation ' favors
three-dimensional migration involving reorientation of
the dumbbell axis no such reorientation is observed in

II. LOCAL DENSITY OF STATES

In a defect-lattice dynamical study the basic quantity
of interest is the lattice Green's function for the defect
crystal. One of the most important consequences of the
presence of defects in solids is the excitation of the
characteristic modes of the defect, i.e., localized and reso-
nance modes. The occurrence of a resonance mode is sig-
naled by an increase in the density of states near the reso-
nant frequency, which is generally observed as resonant-
type peaks in the frequency spectrum of the defect crys-
tal, whereas the localized modes are identified as addi-
tional peaks in the spectrum. The density of states can be
expressed in terms of the Green's function of the lattice.
Very often the characteristic modes are dominated by the
vibrations of the defect and a few of its neighbors. In
such a situation the local representation of the density of
states is more suitable where the total frequency spec-
trum of the lattice is expressed as the sum of the local
spectra of all the atoms in the lattice. Especially interest-
ing is the Green s function at the defect site whose imagi-
nary part represents the local density of states of the de-
fect. Thus the resonant vibrations of the defect are best
described by the defect Green's function G (d, d;co)
which is the dynamic response of the defect d, i.e., its dis-
placement in the o.th direction due to a unit force with
frequency ~ acting on the defect d in the direction a.
The local density of states of the defect d for vibrations in
the a direction is given by

Z (d, co)=
2coMd

ImG (d, d; co),

elastic aftereffect measurements. The long-range migra-
tion of SIA's is supposed to be mediated by the libration
mode of a dumbbell having strong displacements in the
(110) plane while observed strong reduction in shear
modulus C' of irradiated Mo indicates strongest softening
of the lattice in the [110] direction. The dynamics of
the ( 110) dumbbell would be of immense help in clarify-
ing the situation and is expected to give much needed in-
sight in understanding the behavior of SIA s in bcc met-
als.
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where M& is the mass of the defect atom. If we write the
imaginary part of the same site Green's function in terms
of the eigenvectors and eigenfrequencies of the lattice it is
easily seen that Z (d, co) gives the number of frequencies
in the interval (co, co, +dco) multiplied by the square of the
amplitude of atom d in the a direction. Thus the local
density of states is the quantitative measure of the num-
ber of modes contributing to the vibrational behavior of
the atom d. In a defect lattice Z (d„co) will, in general,
be different for each direction and therefore the local den-
sity of states of the defect is defined by the average

2mM~
Z(d, co)= Q ImG (d, d;co) .

377

GRR =G —6 tG

where the I; matrix is given by

t = VRR (1+6 VRR )

with

(4)

Green's function and the force-constant change matrix
Vzz for the subspace I when the interstitial is kept fixed.
The function CRR is calculated in exactly the same way
one calculates the defect-lattice Green's function for the
case of substitutional impurities

The concept of local density of states is quite useful in the
context of the defect-lattice dynamics. In fact, the local
frequency spectrum of a defect completely describes the
vibrational behavior of the defect atom. It is particularly
useful for calculating those vibrational properties of the
defective crystal which do not depend on correlations of
different atoms, e.g. , mean-square thermal displacement,
defect contribution to thermodynamic quantities like en-
tropy and lattice specific heat, etc.

We discuss the local frequency spectrum of the (110)
dumbbell using the standard Green's-function method for
the interstitials. The entire space is divided into two
subspaces: a central subspace &I consisting of the
dumbbell atoms and a subspace R containing the rest of
the lattice atoms. The defect G reen's function
G (d, d;co) can be obtained from that for the interstitial
subspace

Gcc(~ ) l. @cc @cR~RR (~ )@Rc™cc~
where N&& is the Einstein force-constant matrix for the
subspace C, 4~+ is the force-constant matrix coupling
the subspace C to host space R. It is observed that Eq.
(3) has the form of the Einstein approximation for the in-
terstitial region where the correction —NcRGRR(co)C&Rc
to the Einstein term @c& describes the effect of the dy-
namic relaxations of the atoms in the rest lattice. For the
case of the interstitial the subs ace lR contains all the
atoms of the ideal lattice and RR =(&ERR —MRRco )

can easily be calculated in terms of the ideal lattice

In Eqs. (4) and (5) quantities with superscript zero refer
to the ideal lattice. In the present case the defect mass
M& is just equal to the host atom mass M.

We use a defect model with second-nearest-neighbor
interactions. In a recent study the problem of self-
interstitials in cubic metals has been discussed in detail
where complete group-theoretic analysis of second-
neighbor defect models for the ( 100) dumbbell in the fcc
lattice and the ( 110) dumbbell in the bcc lattice has been
presented. The (110)-dumbbell configuration in the
bcc lattice is shown in Fig. 1. The defect is described by
an assumed vacancy at the origin and interstitial atoms at
(+x,+x,0)a/2 where a is the lattice constant. In this
model the dumbbell is surrounded by 8 nearest neighbors
and 6 second-nearest-neighbors and as such the defect
space consists of 17 sites and one has to deal with 51 X 51
matrices. In order to reduce the complexity of the calcu-
lation the orthorhombic symmetry (point group Dzh) of
the (110) dumbbell is used to obtain symmetry coordi-
nates for the interstitial and its neighbors. The required
symmetry coordinates are given in Table I. The defect
space is decomposed as

8 ~g +5B Ig +6B2g +5B3g +3 ~ + 8-8 I + 8B2

+8B3„.
The dumbbell motion occurs in all the modes except B3g
and 3„.The defect Green's function can be projected in
different subspaces of the defect space:

Cgp (7p

6 (d, d;co) =(d~lG(co)ld~& = y y y &dcclrpj & & rpjlG(co)lrpj') &rpj'ld~&,
I" p=1 j,j'=1

where o.„gives the number of times that the I th irreduc-
ible representation with the dimension d& occurs in the
total representation I 2&. With the help of the symmetry
coordinates U (1 pj ) =

l
1 pj) the coefficients ( d a

l
I pj )

are readily evaluated, facilitating the calculation of the
defect Green's function in terms of the G-reen's functions
6&& of the interstitial subspace for different irreducible
representations. The C-space Green's function Gz& for
each irreducible representation I reduces to a scalar. In

terms of Gc& the elements of the defect Green's function
are

6 „(d,d;co)=6 (d, d;co)

= —,( Gcc +Gcc'+ Gcc +Gcc )

B2 BluG„(d,d;co)= —,'(Gcc~+Gcc ) .

The local density of states of the defect is given by
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FICr. l. (110)-dumbbell configuration in the bcc lattice.

Z(d, co)= —,'g Z (d, u~)

A@M B
l B~g B

1 u B2,ulm( Gcc+ Gcc'+ Gcc'+ Gcc +Gcc

+Gcc" )

We consider a longitudinal force constant A and a trans-
verse force constant B for interaction between two atoms.
In the highly compressed region near the interstitial;he
force constants are very large, and even the transverse
force constants become comparable to nearest-neighbor
longitudinal force constant A, in the ideal lattice. How-
ever, due to repulsion of the atoms the transverse force
constants are always negative. In fact, the typical low-
frequency resonance modes of SIA's are results of only
these negative transverse force constants. As far as the
vibrations of the (110) dumbbell are concerned, from
the elements of the defect Green's function G(d, d;co)
and the symmetry coordinates we see that the dumbbell
atoms move parallel to its axis in A and B3„modes and
perpendicular to it in all the other modes. In B& and
B2„modes dumbbell atoms move along [110] while in

B2g and B,„modes they move along the Z direction.
The motion of dumbbell atoms and its four nearest neigh-
bors in the (110) plane in different modes has been de-
picted in Fig. 2. As is evident from Fig. 2, the force con-
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/

1 ~~ ~
-0

/
/

Lot'l j

Bpq

FICs. 2. Vibrational modes of the (110) dumbbell in the bcc
lattice: localized (Ag) and resonance modes.

stants between the dumbbell atoms are involved only in
the case of even modes (A, B, , and B2g) While . in the
case of the A mode the dominant longitudinal force con-
stant between dumbbell atoms is involved and the rela-
tively weak transverse force constant is not important, in
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TABLE I. Symmetry coordinates in defect space of the ( 110) dumbbell in the bcc lattice. U(la) is the amplitude of displacement
of the 1th atom in the nth direction. See Fig. 1 for identifying different atoms.

Representation Symmetry coordinates

B)g

Bqg

B,„

Bzu

U( Ag, 1)=
z [U(lx)+ U(ly) —U( lx) —U(ly)]

U(Ag, 2)=(l/8' )[U(2x)+ U(2y) —U(3x) —U(3y) —U(2x) —U(2y)+ U(3x)+ U(3y)]
U( A, 3)=—'[U(2z)+ U(3z) —U(2z) —U(3z))

U( As, 4) =( I/8'~')[ —U(4x)+ U(4y)+ U(5x) —U(5y)+ U(4x )
—U(4y) —U(5x)+ U(5y)]

U( A, 5) = —,
'

[ U(4z)+ U(5z) —U(4z) —U(5z) ]
U( A, 6) =

—,
'

[ U(6x)+ U(7y) —U(6x ) —U(7y )]
U( A, 7)= —'[ U(6y)+ U(7x) —U(6y) —U(7x) ]
U( AR, 8) =(1/2' )[ U(82) —U(82) ]

U(B~s, 1 ) = z [ U( lx) —U( ly) —U( lx )+ U{ly)]
U(B, , 2) =(1/8' )[ U(2x) —U(2y) —U(3x)+ U(3y) —U(2x )+ U(2y )+ U(3x )

—U(3y)]
U(B, , 3) =(I/8'~')[ —U(4x) —U(4y)+ U(5x)+ U(5y)+ U(4x)+ U(4y) —U(5x )

—U(5y)]
U(B,g, 4) =

—,
'

[ U(6x) —U(7y) —U(6x )+ U(6x)+ U(7y)]

U(B,~, 5) = —,
' [U(6y) —U(7x) —U(6y)+ U(7x)]

U(B2, 1)=(1/2' )[U(lz) —U(lz)j
U(Bzg, 2)=(1/8' )[U(2x)+ U(2y)+ U(3x)+ U(3y) —U(2x) —U(2y) —U(3x) —U(3y) j

U(B~s, 3)=
~ [U(2z) —U(3z) —U(2z)+ U3z)]

U(Bzs, 4) = (1/8'~') [ U(4x) + U (4y)+ U(5x)+ U(5y) —U(4x )
—U(4y )

—U(5x )
—U(5y ) ]

U(Bzg, 5)= —'[U(6z)+ U{7z)—U(6z) —U(7z)]
U(Bz, 6)= —'[ U(8x)+ U(8y) —U(8x) —U(8y)]

U(B~, 1)= (1/8'~ )[u (2x) —U(2y)+ U(3x) —U{3y) —U(2x )+ U(2y ) —U(3x )+ U(3y )]
U(B~,2) =(1/8' )[ U(4x) —U(4y)+ U(5x) —U(5y) —U(4x )+ U(4y )

—U(5x )+ U(5y)]
U(B, , 3)= —'[ —U(4z)+ U(5z)+ U(4z) —U(5z)]

U(B,g, 4) =
~ [U(6z) —U(7z) —U(6z)+ U(7z)]

U(B&g, 5)=
z [U(8x) —U(8y) —U(8x)+ U{8y)]

U(A„, 1)=(l/8'~ )[U(2x) —U(2y) —U(3x)+ U(3y)+ U(2x) —U(2y) —U(3x)+ U(3y)]
U( A„,2) = ( I /8'~ ) [ —U(4x) —U(4y)+ U(5x)+ U(5y) —U(4x ) —U(4y )+ U(5x )+ U(5y)]
U( A„,3)= ~ [ U(6z) —U{7z)+ U(6z) —U(7z) j

U(B,„,1)=(I/2'~')[U(lz)+ U{ lz)]
U(B,„,2) = U(oz)
U(B,„,3)=(I/8'~ )[U(2x)+ U(2y) —U(3x) —U(3y)+ U(2x)+ U(2y) —U(3x }—U(3y)]
U(B,„,4) =

—,
'

[ U(2z)+ U(3z)+ U(2z)+ U(3z)]

U(B,„,5)= (1/8'~ ) [—U(4z)+ U(4y)+ U(5x) —U(5y}—U(4x )+ U(4y )+ U(5x ) —U(5y) ]

U(B,„,6)= —,
'

[ U(4z)+ U(5z)+ U(4z)+ U(5z)]

U(B,„,7) = —,
' [U(6z)+ U(7z)+ U(6z)+ U(7z)]

U(B,„,8)=(1/2' )[U(8z)+ U(8z)]

U(Bz„, 1 ) = —'[ U( lx) —U( ly)+ U( lx) —U( ly )]
U(B,„,2) = (1/2'") [ U (Ox) —U(Oy) j
U(Bz„,3)=(1/8'~ )[U(2x) —U(2y)+ U(3x) —U(3y)+ U(2x) —U(2y)+ U{3x)—U(3)]
U(Bz„,4) =

( I /8'~~) [ U(4x) —U(4y)+ U(5x) —U(5y)+ U(4x )
—U(4y )+ U(5x ) —U(5y )]

U(B,„,5) = —,
'

[ —U{4z)+ U(5z) —U(4z)+ U(5z)]

U(Bz„,6) = —,
' [U(6x) —U(7y)+ U(6x) —U(7y)]

U(Bz„,7)= —'[ U(6y) —U(7x)+ U(6y) —U(7x) ]

U(B,„,8)= —,
'

[ U(8x) —U(8y)+ U(8x) —U(8y)]
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TABLE I. (Continued).

Representation Symmetry coordinates

U(B,„,1)= —,
' [U(lx)+ U(ly)+ U(1x)+ U(ly)]

U(B,„,2)=(1/2' )[U{Ox)+U(Oy)]

U(B,„,3)={1/8'~ )[U(2x)+ U{2y)+ U(3x)+ U(3y)+ U(2x)+ U(2y)+ U(3x)+ U(3y)]
U(B3„,4) =

2 [U(2z) —U(32)+ U(2z) —U(3z)]

U(B3„,5) =(1/8' )[U(4x)+ U(4y)+ U(5x)+ U(5y)+ U(4x)+ U(4y)+ U(5x)+ U(5y )]
U(B3„,6)= —'[ U(6x)+ U(7y)+ U(6x)+ U(7y) ]

U(B,„,7)= —,
' [U(6y)+ U(7x)+ U(6y)+ U(7x)]

U(B,„,8) = —,
' [U(8x)+ U(8y)+ U(8x)+ U(8y)]

the other two modes the longitudinal force constants are
not involved and, therefore, the transverse force con-
stants are quite effective. Consequently, in the 3 mode
one expects a localized mode, while in other modes we
may get a localized mode or a resonant mode depending
on the motion of the neighboring atoms of the dumbbell.
If the neighbors move in phase or out of phase with the
dumbbell atoms we get a resonance or localized mode ac-
cordingly. For odd-symmetry translation modes B,„,
B2„,and B3„also the nature of the characteristic mode is
decided by the phase shift between motions of the
dumbbell and its neighbors, i.e, these are in phase for the
resonance modes and are out of phase for the localized
modes.

III. APPLICATION TO Mo

We have calculated the local frequency spectrum of the
dumbbell atom in Mo. In order to calculate the local
spectrum we have to evaluate the force constants in the
vicinity of the defect in addition to computing the ideal
lattice Green's functions. For calculating force constants
in the defect space we use the potential constructed by
Johnson and Wilson ' (JW) from elastic constants and
unrelaxed vacancy formation energy. The JW potentials
are simple and can easily be applied in defect calcula-
tions. They have been used in calculations of
irradiation-produced point defects in bcc metals and give
the correct trend for the properties of point defects in
various bcc metals. ' More importantly, the JW poten-
tials clearly represent the difference in elastic property
between two groups of bcc metals, i.e., between so-called
normal metals a-Fe, Mo, and W and superconductors, V,
Nb, and Ta, a property quite vital for the configuration
and migration characteristics of SIA's in these metals.
However, apart from the use of the constant unrelaxed
vacancy formation energy of 1.8 eV for all the bcc metals
considered, the JW potential has a shortcoming in that it
leads to a very high value of activation energy of intersti-
tial migration. " This indicates that the electronic
effects might be quite important in bcc metals as many
other pair potentials also fail to give low activation ener-
gies found in experiments. Incidentally, the improved
X-body potentials based on the embedded atom
method give lower values of migration energy, though

still much larger than experimental values, but they fail
to give the correct configuration of SIA's in Mo and W.
Under these circumstances, the JW potential is con-
sidered to be the only available set at present which
represents the crystal properties rather well and gives the
correct trend for the defect properties though some pair
potentials have been constructed by a similar method. In
fact, except at some high symmetry points in the first
Brillouin zone, the phonon dispersion in Mo is correctly
described by the JW potential. ' Nevertheless we feel
that the use of the JW potential, in general, will result in
upward shift of phonon frequencies because the most
dominant nearest-neighbor force constant calculated with
the JW potential, A, (JW ) =6.4578 X 10 dyn/cm, is
much higher than that occurring in lattice dynamical
model A, (phonons)=3. 97X10 dyn/cm, fitted on the
basis of the experimentally observed phonon frequen-
cies and which are to be used for the evaluation of the
perfect lattice Green's functions. As far as the defect
spectrum is concerned, the possible resonant-mode fre-
quencies are likely to be overestimated because of the
close correlation between the resonant modes and the mi-
gration energies of SIA s. In view of this discussion,
therefore, the JW potential will be used only to estimate
the relative magnitudes of different force constants in the
defect space and the actual force constants to be used in
the calculations will be obtained by scaling these force
constants according to the lattice-dynamical force model
derived on the basis of the experimental phonons.

The equilibrium position of the dumbbell is taken to be
(+ 0.5283, +0.5283, 0)a/2 as found by Taji et al. ' in
molecular-dynamics simulation using the same JW poten-
tial. Having fixed the dumbbell position, we have used
the Green's-function method of lattice statics to find the
equilibrium positions of other atoms in the defect space.
The strongest distortion is suffered by four nearest neigh-
bors of the dumbbell in the (110)plane, i.e., atoms 2, 3, 2,
and 3 (see Fig. 1). However, in view of the known fact
that the Green's-function method based on harmonic ap-
proximation underestimates the distortion nearest to the
dumbbell, it was thought to be necessary to use alterna-
tive values for the displacements of these atoms. As there
is no published result on the displacement field of the
(110) dumbbell in Mo, the magnitude of distortion for
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A ):7~ 4714A ]~ A~ =9~ 1731A ] A3 =0 5582A ]

A4=2. 2972A i, A5 =0.5309A i,
(10)

B]= 0.6845A
&

B~= 0.8838A ]

B3= 0.0451A &~ B4= 0. 1634A )~ B5=0 0485A
&

where A, is the nearest-neighbor longitudinal force con-
stant in the ideal lattice. The perfect lattice Green's
function of Mo was calculated by a modified Gilat-
Raubenheimer method utilizing phonon data calculated
on the basis of a third-nearest neighbor axially symmetric
force model derived from Born —van-Karman fits to the
measured phonons. In the actual calculation of the lo-
cal frequency spectrum the nearest-neighbor force con-
stant A, for the ideal lattice figuring in Eq. (10) was set
equal to that occurring in the lattice-dynamical model
used for the phonon calculations. This amounts to scal-
ing the force constants calculated on the basis of the JW
potential by a factor equal to A, (phonons)/A, (JW)
(=0.641 51). This type of procedure is essential for
ensuring consistency between used phonons in the calcu-

these atoms was taken to be 0.29a/2, a value found for
a-Fe in another computer simulation, ' instead of
0.2250/2 found for a-Fe, Mo, and W in the lattice-statics
calculation. In view of the fact that in the units of a/2,
the separation between the dumbbell atoms is almost the
same for all the three normal metals a-Fe, Mo, and W, '

and the distortion of the nearest neighbors as calculated
by the lattice statics is also the same ( =0.225a/2) for all
the three metals the use of a-Fe displacements is unlikely
to have any important effect on the calculated force con-
stants and on the resulting frequency spectrum. With the
equilibrium position of the atoms in the defect space thus
taken into account, we consider five types of force con-
stants A, ,B; (i =1, . . . , 5) corresponding to different dis-
tainces characterized by the following pairs of atoms:
(1,1), (1,2), (1,4), (1,6), and (1,8) (see Fig. 1). The vacan-
cy is described by zero coupling to its neighbors. The fol-
lowing values of force constants are obtained:

There are six localized modes one of which is just above
u, „. The frequencies are

A
2QvI =8.26, vI
'" =8.07, B3u

vI
'" =10.965,

(12)B2 BIu A
VI 12 17~ vl 12 38~ vl 12 77

lation of the Green's functions and the used force-
constant changes in the defect space. Furthermore, this
type of scaling has the effect of reducing the defect-
induced phonon frequencies thus offsetting the overes-
timation of resonant-mode frequencies suspected with the
use of the JW potential. Since the potential function cor-
responding to the force-constant model used for generat-
ing the perfect lattice Green's function is not known, an
alternate and more consistent procedure would have been
to use the same pair potential (JW) to calculate the
Green's functions. However, is using phonon-based force
constants for the Green's functions, the idea is to ensure
that the perfect crystal is correctly described within the
harmonic approximation and possible uncertainties
remain confined to the force constants in the vicinity of
the defect alone. In any case, after the scaling of the
force constants according to the lattice-dynamical model,
clearly a consistency has been achieved between the force
constants used for Green's functions and the force con-
stants in the vicinity of the defect.

The calculated local frequency spectrum of the
dumbbell atom and the host lattice spectrum are plotted
in Fig. 3. The characteristic feature of the defect spec-
trum is the occurrence of sharp resonance modes within
the allowed band of frequencies and localized vibrational
modes above the crystal maximum frequency co „.As a
matter of fact, the defect spectrum is described by reso-
nant and localized modes alone with little participation of
the normal modes of the host lattice. There are in all six
resonance modes, five at low frequencies and a resonance
mode of B& symmetry just below the band edge. The
frequencies of the resonance modes are (in THz)

Bl B3„ B~v„' =1.39, v, '" =2.59, v, ' =2.73,
(11)

v„'"=2.83, v„'"=3.29, v, ' =7.995 .
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FICx. 3. Local frequency spectra of the ( 110) dumbbell ( ) and an atom in the host lattice ( ———).
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The long-range migration of SIA's can be explained in
terms of the resonant modes. By sufFicient thermal exci-
tation of the resonant modes the dumbbell atoms acquire
enough energy to overcome the saddle point forming a
new dumbbell with one of the neighboring atoms. An in-
spection of Fig. 2 shows that purely translational mode
B3„may give rise to one-dimensional migration whereas
the librational modes B,~ and B2 may cause rotations by
90' in the (001) plane and by 60 in the (111) plane, re-
spectively. The long-range migration is possible through
a combination of the translation and one of the rotations.
However, migration in the (001) plane, either through
pure translation or through a combination of the transla-
tion (B3„)and the rotation by 90 (Bis), is unlikely since
such jumps involve distances larger than the nearest-
neighbor distance in the lattice. Threfore the long-range
migration of SIA's should occur through the combination
of the translation B3„and the libration B2g . However,
there could be two possible mechanisms: (i) a three-
dimensional migration with a reorientation of the
dumbbell axis by 60', a process found in computer simula-
tion" and (ii) a two-dimensional migration without re-
orientation in which the dumbbell jumps to a neighboring
site while its axis remains in the (110) plane. Similar to
the elementary jump of the ( 100) dumbbell in fcc metals
one would suspect that the jumping process involving the
reorientation of the (110) dumbbell should be favorable.
However, in elastic aftereffect measurements a reorienta-
tion of the (110) dumbbell has not been observed up to
500 K. We conclude, therefore, that a two-dimensional
jump through the combined effect of the B3„ translation
and the B2 libration provides a consistent picture of the
long-range migration of SIA's in Mo. Thus unlike the
(100) dumbbell in fcc metals, where the libration E is
involved in both the long-range migration of SIA's as
well as strongest softening of the lattice, in the present
case two different libration modes of the (110) dumbbell
are involved in these phenomena, i.e., while B2g is in-
volved in the long-range migration of SIA's the B& mode
has the lowest frequency and causes the strongest soften-
ing of the lattice.

We note that one shortcoming in the calculation is the
use of the JW potential. Nevertheless, the calculated lo-

cal frequency spectrum gives an excellent account of ex-
perimental results in Mo and we feel that the broad
features of the spectrum are unlikely to be changed with
an improved potential.

IV. CONCLUSION

We have discussed the dynamics of self-interstitial
atoms in bcc metals with the use of the Green's-function
method. Employing a second-nearest-neighbor defect
model, we have discussed the conditions for the oc-
currence of the resonant and localized modes of (110)-
split-interstitial atoms. We have shown that the local fre-
quency spectrum of the (110)-split-interstitial atoms in
bcc metals is described by resonant and localized modes
alone and an almost negligible contribution comes from
the eigenfrequencies of the perfect lattice. In agreement
with experiment the spectrum leads to much enhanced
thermal displacements of the defect. The calculated reso-
nance frequencies of librational modes B, and B2 pro-
vide consistent explanation of observed changes of shear
moduli in irradiated Mo. The long-range migration of
SIA's in bcc metals results from two-dimensional jumps
of (110) dumbbells in their (110) habit planes which is
made possible though the combined effect of the transla-
tional mode B3„and the librational mode B2 . The result
for the vibrations of the (110) dumbbell in bcc metals is
very similar to that of the (100) dumbbell in fcc metals.
However, there is an important difference: while in fcc
metals the librational mode E of the (100) dumbbell
figures in both the long-range migration of SIA's as well
as the strongest softening of the lattice, in bcc metals two
different librational modes of the (110) dumbbell figure
in these processes, i.e., the long-range migration of SIA's
is helped by the Bz mode but the strongest softening of
the lattice is caused by the librational mode B

&
. Finally,

the present result for the (110)-dumbbell vibrations are
considered to be typical of bcc metals.
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