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A simple many-body interatomic potential is proposed. This is an empirical extension of the
embedded-atom method (EAM). The EAM models the lattice energy and elastic compressibility us-

ing a pair interaction plus a many-body term. It does not include any contribution of many-body

terms to the crystal elastic shear. This contribution is included in the model developed here. It im-

plies a simplified treatment of the angularity inherent to covalent bonding in transition metals. A
set of interatomic potentials is deduced for bcc Nb, Fe, and Cr. While in previous works in the

literature the EAM has already been successfully applied to the fitting of interatomic potentials for
Nb and Fe, this was not the case for Cr, for which the elastic-constant values implied a negative

Cauchy pressure.

I. INTRODUCTiON

Computer simulation of defects in lattices has gone
through different periods. In the early 1960s, the method
was already applied to relatively complex defects like
dislocations. ' Computer speed and storage were the two
major limitations of the technique until the mid-1970s.
Recent advances in computing facilities as well as the de-
velopment of efficient numerical algorithms have largely
overcome these two drawbacks. However, even nowa-
days, the efforts to increase the complexity of problems
studied using computer simulation are hindered because
of the unavailability of simple, easy to compute, intera-
tomic potentials, which, in addition, treat forces in a
physically realistic way. To our knowledge, the pair in-
teraction approximation has been used almost exclusively
in the 1960s and 1970s. More realistic approaches to the
interatomic forces in metals and semiconductors, which
can also be used for the computer simulation of defects
structure, have been only recently reported in the litera-
ture; see Refs. 2, 3, 4, 5, and 6 for a review. One must
remember that, by using pair interaction potentials, the
physical validity of the calculation is somewhat limited,
the major drawbacks being that (i) if the experimental
elastic constants are correctly reproduced, a fictitious
pressure has to be imposed for holding the lattice at equi-
librium; (ii) nearly equal cohesive and vacancy formation
energies are predicted, at variance with the experimental
observations; and (iii) those potentials generally predict
unrealistic relaxation of the free-surface atoms.

Finnis and Sinclair (FS), Daw and Baskes (DB), who
named the method the embedded-atom method (EAM),
and Ercolesi et al. calculated the energy of an assembly
of metal atoms defined through their atomic coordinates
by including in the interatomic potential pair interaction
terms plus the essential band character of the metallic
cohesion. This latter was assumed as an explicit local
volume dependence of the total energy. Their approach
allows for the modeling of defect properties not accessible
to the simple pair interaction potentials; in addition, the
simplicity and speed in calculation are retained. Howev-

er, even nowadays if we want to simulate defects in co-
valent materials like Si or Ge or in transition metals, it is
difficult to find appropriate interatomic potentials. For
the case of Si bonding, the covalent interaction has been
included in a potential function by Stillinger and Weber.
Those authors proposed a model of three-body interac-
tion forces. Also for Si and Ge, Baskes and Baskes
et al. developed a semiempirical potential based on a
modified embedded-atom method (MEAM). This in-
cludes some dependence of the local electron density on
the angle between the vectors joining two neighbor atoms
to a central one.

In a previous paper, ' we also proposed to extend the
EAM, adopting an empirical approach based on consid-
ering each lattice atom as a defect embedded in an
efFective continuum host. That approach allows the con-
tribution of a many-body term to the energy involved in
shearing a crystal to be included. In Ref. 10 only many-
body terms were considered in the fitting of the materials
properties. The conclusions of that work are fully ex-
ploited below to develop interatomic potentials for bcc
transition metals.

It is worthy to remember here that, as early as in 1981,
Matthai et al. " discussed that experimental perfect lat-
tice properties in bcc transition metals reAect departures
from central force fields. They invoked, among others, (i)
the deviation of the x-ray-scattering form factor from
free-atom calculations, (ii) the wide range of elastic con-
stants, and (iii) the negative Cauchy discrepancy observed
in Cr. As a result of those experimental facts, Matthai
et al. had to include bonding charges in their model of
bcc transition metals. On the other hand, Johnson and
Oh, ' concerned about the large dispersion found in the
elastic constant values in bcc metals, performed a careful
study of the EAM parametric fitting procedure. Those
authors found that their method for developing intera-
tomic potentials failed in the case of Cr, for which the
Cauchy pressure is negative. We show here how to over-
come this situation, and shall conclude that, unless the
contribution of the many-body terms to the shear elastic
constants is included, the elastic constants of a crystal
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with a negative Cauchy pressure cannot be fitted by phys-
ically valid expressions for a potential based solely on the
EAM. Incidentally, that pressure is also strongly nega-
tive for the case of Si and Ge, this being a further
justification for the need of developing for those crystals a
MEAM, as already done by Baskes et al. ' As promised
in Ref. 10, we develop in this paper an empirical many-
body potential that can be used easily in computer simu-
lation studies. The metallic character of the interaction
forces is similar to the one of EAM, whereas the covalent
aspect of bonding is averaged within a pair interaction
plus a many-body approach. The expressions deduced
below allow for a clear separation between the pair and
many-body contributions to the calculated elastic con-
stants. We also deduce an expansion for the potential-
energy parametric with the crystal cohesion and the va-
cancy formation energy. Although our procedure is
somewhat similar to the MEAM, ' we obtain simpler ex-
pressions for the potential function; this is achieved by
taking full advantage of the crystal symmetry. Also the
basic idea of considering each atom as an impurity em-
bedded in the host field of the lattice appears very clearly
as the basis of our approach, however empirical.

Consistently with that idea, we shall call our
empirical-potential the embedded-defect (ED) potential.
We expect ED to be particularly useful for the computer
simulation of defects in transition metals with partially
covalent bond character. As an application we deduce
the interatomic potentials for Nb, Fe, and Cr.

II. INTERATOMIC POTENTIAL

A. Many-body terms

The EAM of FS (Ref. 3) and DB (Ref. 4) is based on
considering every atom in the crystal as an impurity, a
"quasiatom, "' embedded in the efFective field' of the
other crystal atoms. Around each atom i, a local electron
density function p, is defined. This function is taken as

p, = g P(R, ),
j (&0

the dipole tensor associated to the defect forces and the
perfect lattice response.

The dipole tensor is defined as

P~= g K RP~, (4)
j (&&)

where K,- is the Kanzaki force' acting on a displaced
atom j due to an impurity located at site i. K,. and R, .

denote, respectively, the a component of E, and. the P
component of R; . K can be calculated consistently by
deriving the crystal energy with respect to atomic dis-
placements at the relaxed atom configuration, allowing
therefore for the inharmonicity of the lattice straining. '

One must realize that the dipole tensor represents the de-
fect, source of the lattice distortion, as a set of forces and
near-neighbor coordinates.

The approach of the preceding paragraph provides a
hint of how to expand the local electronic density in a
way consistent with the lattice symmetry and within the
EAM spirit. A tensor function A, can be defined at each
atomic site i in the lattice:

P(R, )(r;, r;, ), (&)

j (wi)

where is the tensor product, i.e., (ab ) ~=a b~, P is a
function that depends only on the distance R; between
atoms i and j; r; is the unit vector joining the i and j
atom. The vector K(R; ) = [P(R; )/R," jr, mimics, th"ere-

fore, the Kanzaki force of the impurity, Eq. (4), while, as
discussed below, the function P will be related to the one
in Eq. (l). At the perfect lattice configuration, the tensor
A, of Eq. (5) can be written as a function of the atomic
shells around atom i and within the range of P:

g (r, r, , ),
v gEv

where jEv denotes all the atoms at the atomic shell v
around the atom i.

It is convenient to decompose the tensor k as a sum of
two terms:

A, =S+D,
where R, is the distance between atom i and j, and P is a
function which depends solely on R; . The total energy
of an assembly of atoms is the addition of an X-body
term, D o.P

A, ~—
—,
' tr(A), a=/3.

(7)

and a standard pair interaction term, U, i.e.,

U=U~+U

In close analogy with the EAM, we shall also consider
every atom in the crystal as an impurity embedded in the
crystal effective field.

The theory of defects in a continuous media as
developed, for example, by Kanzaki, ' Flinn and Mara-
dudin, ' Tewary, ' Nowick and Berry, ' and Schober, '

shows that the distortion field of an impurity within the
harmonic approximation for the energy is determined by

The first term in Eq. (7) is isotropic and the second, so-
called deviatoric tensor, has null trace. These two ten-
sorial quantities belong to orthogonal subspaces. The X-
body energy contribution being a scalar magnitude, its
dependence on the tensor field k must be through invari-
ants of the latter. If we only consider up to the second-

order ones, these are the trace of S (normalized), and the

norm of D, namely,



6954 R. PASIANOT, D. FARKAS, AND E. J. SAVINO 43

E, = —,
' g V,, +F(I', )+G( Y~),
j (wi)

(10)

where V; is a pair interaction term, F agrees with the
many-body cohesive function of the EAM, and the new
term G ( Yz) is a many-body shear term related to bond
angles in a global (average) sense. We call this empirical
expression for the energy of an ensemble of atoms the
embedded-defect (ED) potential.

Equation (9) also defines the product (DD ), further
used below.

Note that the above decomposition of the tensor A, is
independent of the lattice symmetry. However, for any
particular symmetry, a set of tensors can always be found
that constitutes a natural basis for expanding the physical
magnitudes.

We now propose to associate the local tensor A, with
the electronic density and we shall call this tensor the di-
pole electron-density tensor. If P in Eq. (5) is taken as the
same function f in the electron density equation (1), we
have I'i =—p, /&3. Therefore, the above separation of k in
two contributions qualitatively agrees with the separation
of the electron density into an s-electron-density part,
modeled by the I', term, and a d-electron-density part,
modeled by Y2 plus a pair interaction contribution.

Following Harrison's remark, according to Keating,
that "an arbitrary potential energy which is suitably in-
variant is decomposable into parts which are separately
invariant, " the energy associated to a site i can be written
as

vara+BGoD x & r;k)=0,
k (Wi) k (Wi) ik

(13)

which is identically null for a centrosymmetric lattice.
While Eq. (13) holds for the equilibrium configuration,

for computer simulation the forces at any configuration
are needed. The many-body-term contribution to the
force on an atom i due to the neighboring ensemble of
atoms is

—4 g (G,'D, ~r&)+GkDk~(rk)) .
k (Wi) ik

(14)

In Eqs. (13) and (14) the compact vector notation has
been used, namely

(D~r)), = QD, krk .
k

In the Appendix the expression for the many-body-terms
contribution to the force constants is deduced [Eq. (A2)].
There, it can be seen that if F"& 0 and G') 0, the Ein-
stein eigenvalues for the many-body part of the force-
constant matrix are positively defined.

The elastic constants are either deduced from the
force-constant matrix or calculated by applying a uni-
form infinitesimal strain to the perfect lattice
configuration and evaluating the corresponding change of
the energy. The algebra is relatively simple if the proper
symmetry tensor basis is used. For a cubic element, one
obtains

B. Forces, force constants, and elastic constants C, )+2C)2
(15a)

6U~ —Go 5Y2, (12)

where Go is the first derivative of G with respect to its ar-
gument.

Replacing the variation of )(. in Eq. (12) as deduced in
the Appendix [Eq. (Al)], and applying Eqs. (8) and (9),
the force equilibrium condition at the perfect lattice state
is given by

Hereafter, we assume, without loss of generality, that
in Eq. (10) dF/dI'( =0 for the perfect lattice at equilibri-
um. This is a convenient choice that transforms the func-
tion V into an effective pair interaction potential. ' In
this scheme, algebraic expressions are simpler. We also
take G ( Yz ) =0 for the perfect lattice value of Y2 (=0 for
cubic symmetry).

The crystal cohesive energy is

E„„=U' + U)'v =
—,
' g V;, +F(),

JWl

where FO=F(I', ) for I', calculated at the perfect-lattice
configuration.

The forces on an atom can be calculated through the
principle of the virtual displacements. If a crystal atom i
suffers an infinitesimal displacement 5x(i), the variation
of the N-body term contribution to the energy near the
equilibrium state results:

0 =
—,
' g N, p (R,V —R V' )+G+2, (15b)

2

AC44= —,
' gN y' (R V,"—R V' )+G()P3, (15c)

being

P, = gN, R P'/3,

where Q is the atomic volume, v is a shell index, % is the
number of atoms in shell v, and P, and y are cubic
symmetry-shell-related fractions (see the Appendix). The
first terms of the above expressions are the effective pair
contributions, whereas the second terms are the many-
body contributions. Further details on deriving Eq. (15)
are given in the Appendix. Note that the term 6, as ex-
pected, only contributes to shear modes. Also the many-
body-terms contribution to the crystal shear and bulk
elasticity appear clearly separated.

Within the above scheme to the Cauchy pressure re-
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suits

P, = (C,2
—C4~)

[Fo'P, —Go(2P~+3P3 )] . (16)

As on physical grounds F" is expected to be positive for
the equilibrium lattice configuration (also F"(0 for the
equilibrium lattice would imply a maximum in the
many-body contribution to the energy), it is clear from
Eq. (16) why simple EAM schemes, where the term G is
not included (G'=0 and F")0), are not suited in cases in
which experimentally P, & 0.

creating a vacant site, can be deduced either from Eq.
(17) or Eq. (19). It is interesting to realize that if, for ex-
ample, a second-neighbor interaction range is assumed
for the function P in a bcc lattice, the forces on atoms at
the unrelaxed perfect lattice configuration reach the
sixth-neighbor shell around the vacancy. Also the lattice
symmetry imposes those forces to be generally radial (to-
wards or away from the origin at the vacant site) except
for the (311) shell. A further study of the vacancy relaxa-
tion will be included in a forthcoming paper.

III. VACANCY FORMATION ENERGY
IN A bcc LATTICE

As the vacancy formation energy will be used in the
next section for fitting the interatomic potentials, we
deduce the expression here. From Eq. (10), the formation
energy of a vacancy at site 0 in an unrelaxed lattice is
given by

Ef = —
—,
' g Vo;

i (WO)

+ g [F(I',d) —F(I', )+G(Y2d) —G(Y2 )],
i (WO)

(17)

where I', d I~~ and Yzd, Yz~ correspond to the values of
I', and Y2 at the defect and perfect lattice, respectively.
A finite range is generally assumed for the function P; for
example, FS (Ref. 3) took a second-neighbor range. For
that range the formation energy of the vacancy (17) in a
bcc lattice results in the following expression:

7,+6 2 8 i+5
V'o,. + 8F +6F

i (%0)

80i+ 66—14F v'3

IV. INTERATOMIC POTENTIAL FOR
TRANSITION METALS

A. Fitting procedure

In this section we develop a scheme to construct the
potential outlined in the preceding sections, and treat
below the cases of Nb, Fe, and Cr. The parameters to be
fitted are cohesive energy E„h, lattice constant a, elastic
constants C», C,2, C44, and the vacancy formation ener-
gyE

The cohesive energy is fitted to the Rose et al. '

universal expression as a function of the first-neighbor
distance R „

E(a) = —
( 1+a )exp( —a ),

gN, R, V' =0, (21)

where a =a(R, /R „—1), R „being the equilibrium
value of R, and o, =9QB /E„h, where A is atomic
volume and 8 the bulk modulus. Once the pair function
has been fixed, this equation is used to extend the range
of the embedding function beyond the vicinity of the
equilibrium state.

The condition of zero pressure at the equilibrium lat-
tice constant results in the simple equation

+8G( —,'p, )+6G( —', p2), (18)

Ef = —
—,
' g N V, + — +2G0 g N p

+o'

3 2
(19)

Here the subscript 0 stands for the perfect lattice
configuration. Equation (19) will be used in Sec. IV as a
first-order approximation, i.e., previous to lattice relaxa-
tion, for the fitting of the potential to the vacancy forma-
tion energy.

The unrelaxed lattice Kanzaki forces, ' i.e., the forces
induced onto an atom of an otherwise perfect lattice by

where the pair (term Vo, ) and many-body contributions
are explicitly shown. P, and Pz stand, respectively, for
the values of P at first- and second-neighbor distance. If
we assume the differences between perfect and defect
values for the arguments, I& and Yz of the many-body
functions to be small, Eq. (12) can be consistently applied.
This implies that the formation energy can be obtained
by varying the perfect lattice energy as

where Fo =0; only the effective pair interaction term is
involved.

For the vacancy formation energy we use Eq. (19) as a
zeroth-order approximation but the calculated value is
fitted to the experimental one by allowing for the relaxa-
tion of the lattice configuration.

The problem of finding an appropriate interatomic po-
tential is reduced to satisfy the system of equations
formed by (i) Eqs. (15) (three equations for the eigenval-
ues of the matrix of elastic constants), (ii) Eq. (20) for the
lattice cohesive energy, (iii) Eq. (21) for null pressure at
the equilibrium lattice configuration, and (iv) Eq. (19) for
the vacancy-formation energy. This constitutes a system
of six equations. For fitting an interatomic potential to
the above equations we have to find somewhat arbitrary
functions for the different-term contributions. To obtain
the dipole electron-density tensor A., we must choose an
expression for the function P. For this purpose, we select
a simple Thomas-Fermi screening function,
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exp —P r r]e
(22)

With electronic calculations that consistently predict a
range of f3 between 4 and 5, we have fixed the value at 5.
We find minor variations between predicted values of 13

are not critical to the fitting scheme.
For the pair part of the interaction we propose a poly-

nomial form,

(x —d) (a3x +a2x +aix +ao) x —d
~()= 0 )d (23)

B. Interatomic potentials for Nb, Fe, and Cr

As an application of the theory and procedure
developed above, the interatomic potentials for Nb, Fe,
and Cr are computed. First, the matrix A, is fixed by P,
the Thomas-Fermi function, and the lattice symmetry
(the electron density p is normalized to the equilibrium
value). Then a given value of g is selected; for the time
being this value is arbitrarily chosen by an educated
guess. The feasible values are restricted by constraining
the relative contribution of the many-body terms to the
elastic constants to be a positive fraction.

Once g has been selected, an appropriate effective po-
tential pair potential can be determined. This should
satisfy the system of equations discussed in the preceding
section. Also, the pair part of the interaction plus the
many-body function I' must satisfy the Rose et aI. ex-
pression [Eq. (20)], while the second derivative of F at
equilibrium is constrained to give the correct bulk
modulus.

where x =R /R „,R being the distance between atom po-
sitions and d a cutoff parameter. For a fixed value of d
Eq. (23) leaves four unknowns free for fitting material
properties. The remaining unknowns to be fitted come
from the many-body part of the ED potential, Eq. (10).
Those are Io, Fo, and Go. It can be seen that I"

0 is solely
determined by the cohesive energy. On physical grounds
we must impose I'""& 0 at the equilibrium configuration.
Also, in order to avoid possible instabilities, we shall re-
quire that Go &0. Even within those restrictions the
above seven quantities are only required to fit six equa-
tions. Therefore one parameter remains to be deter-
mined. One of the main advantages of the EAM type of
potentials is that they can be accommodated to model the
local electronic charge distribution in the neighborhood
of a lattice defect; we choose this parameter to be the
many-body contribution to the unrelaxed vacancy-
formation energy. We define this as a positive fraction,

—,'(F()'/2+2GO) g X P,
(24)Ev

The variable g can also be taken as a measure of the rela-
tive contributions of the many-body terms to the bulk
modulus (c»+2ci2)/3, to the shear mode (c» —c,2)/2,
and to the shear mode c44. Those contributions will be
called 0&, 02, and 03 respectively.

For G we shall choose here a straight line through the
origin with G &0. In turn, this implies that the poten-
tials fitted below can be considered as a first-order expan-
sion of the EAM with respect to a many-body angular
term Y2.

For Fe and Nb we fit a simple EAM potential and our
ED potential, which includes the linear term G. As dis-
cussed above, for Cr, a metal with a negative Cauchy
pressure, only ED is able to provide a fitting to the mea-
sured elastic constants. Therefore, only an ED potential
is reported for Cr. The ED effective pair functions are
shown in Fig. 1, whereas the experimental values used for
the fitting are reported in Table I, and the parameters
defining the above functions are given in Table II for the
three metals. Those experimental values are exactly
reproduced by the different potentials reported in Table
II (with small deviations in the relaxed vacancy-
formation energy). The calculated difference in cohesive
energy with respect to the fcc phase is reported also. The
fcc phase is metastable under the corresponding poten-
tial; its first-neighbor distance, relative to the one of the
bcc phase, is also given. As already pointed out by
Johnson and Oh, ' the stability of the bcc lattice with
respect to the fcc one is mainly determined by the pair
part of the potential. bcc stability is favored, for in-
stance, if the pair function remains relatively Aat between
first and second neighbors.

All potentials are fitted to provide the largest possible
difference in energy between the bcc and fcc lattice. This
procedure implies that other material properties could
also have been fitted (within certain limits) while keeping
the relative stability of the bcc lattice. In that respect the
potential parameters reported in Table II should be taken
as preliminary and further development is forthcoming.

For the case of Cr we find that imposing the function
and its first derivative to be null at the end of the range,
forces a small positive value of Vbetween the second and
third neighbors. This feature helps the stability of the
bcc lattice against the fcc one. However a shorter-range
potential, obtained by suppressing any pair interaction
beyond the second-neighbor distance, can also be fitted to
determine a stable bcc lattice. Therefore the results for
this second, shorter-range potential for Cr are also re-

TABLE I. Fitted experimental values.

Fe

0 (A)
E„h (eV)

Ef (eV)
C„(eV/A )

Cl2 (eV/A )

C „(eV/A }

12.00
4 10'
1.2'
2.215'
0.443
0.630

11.78
4.28'
1 79'
1.510'
0 914'
0.699'

17.98
7.57'
2.04
1.536'
0.836'
0.179'

'C. Kittel, Introduction to Solid State Physics, 4th ed. (Wiley,
New York, 1971).
T. Gorecki, Z. Metallk. 65, 426 (1974).

'De Schepper, Phys. Rev. B 27, 5257 (1983).
H. J. van Rijn and H. L. Alberts, J. Phys. F 13, 1559 (1983).

'J. P. Hirth and J. Lothe, Theory of Dislocations, 2nd ed. (Wiley,
New York, 1982).
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0.4

0.3
Cr

0.2

0.1

Nb

—0.2

—0.3
0.7 0.9

/Ri

1.3 1.4 1.5 1.6 1.7

FIG. 1. ED effective pair potentials for Cr, Fe, and Nb.

ported in Table II.
If for a feasible value of g it turns out to be Go =0,

then our potentials should be equivalent to a simple
EAM. This is the case indeed for Fe and Nb. The
eQ'ective pair functions so obtained are drawn in Figs. 2
and 3, respectively, together with the corresponding func-
tions of FS. It is seen that the agreement is good, partic-
ularly for Fe. The difFerences may be attributed to higher

values of the unrelaxed vacancy-formation energy used in
Ref. 3, namely 2.05 and 2.64 eV for Fe and Nb, respec-
tively.

V. CONCLUSIONS

In this paper, we have extended the EAM interatomic
potential by expressing the energy of an ensemble of

TABLE II. Potential parameters for Cr, Fe, and Nb.

ED
Fe Fe

EAM
Nb

ag

a2
a&

ao

0)
02
0~
Fo'

Go
Ef' (eV)
E' (eV)
E„, (eV)
r1f„/r1~„

'Unrelaxed.
After relaxation.

—0.2795 90
10.012 28
—21.668 08
11.498 81
165; 1.4
0.2
0.061 5

6.34 x 10-'
0.397
47.73
1081
1.5
1.5; 1.3
4.05; 4.08
103; 1.04

0.481 147
5.116408
—17.445 40
10.980 53
1.5
0.2
0.436 7
2.04 X 10-'
0.387
716.6
1147
1.8
1.7
4.22
1.035

—0.686 1140
—5.709 385
8.803 652
—2.656 076
1.5
0.2
0.771 3
3.19X 10
0.934
1856
1083
2.1

2.1

7.43
1.025

0.308 839 2
12.583 42
—33.674 37
19.694 71
1.5
0.012
0.1934
0.0
0.0
317.4
0.0
1.8
1.6
4.24
1.04

28.981 68
—92. 165 65
90.006 36
—27.989 78
1.5
0.048
0.614 6
0.0
0.0
1479
0.0
2.1

2.0
7.44
1.04
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0.5

0.4

0.3

0.2

0.1

0

—0.2

—0.3

—0.4
0.7 0.8 0.9 1.2

/R,

1.4 1.6

FIG. 2. EAM effective pair potential for Fe: (a) this work (b) from Ref. 3.

0

—0.1

—0.2

—0.3

—0.5
0.7 0.8 1.2 1.3 1.4 1.6

FIG. 3. EAM effective pair potential for Nb: (a) this work (b) from Ref. 3.



43 EMPIRICAL MANY-BODY INTERATOMIC POTENTIAL FOR. . . 6959

atoms as the addition of a pair and a many-body func-
tion, already included in the EAM plus a new term, a
function G in Eq. (10). This term introduces many-body
contributions to the shear elastic moduli, which in the
EAM are fitted only by the effective pair interaction con-
tribution. We consider each lattice atom to be embedded
in an effective continuum host. The embedding is ob-
tained as perturbation of the perfect lattice electron den-
sity. By arguments based on the theory of point defects,
the source of distortion is simulated by a set of forces on
neighbor atomic locations. This allows the electron den-
sity and distribution to be related to a tensor parameter,
called above the dipole electron-density tensor. The ap-
proach provides, therefore, a simple way of introducing
many-body angle-dependent forces within the EAM spir-
it. Recognizing the basis of the model, we have called the
empirical potential obtained above the embedded defect
(ED) potential.

The idea of including angular force many-body terms
into an empirical extension of the EAM was previously
developed by us in Ref. 10. There, we found that the
elastic constants of cubic lattices could be used to fit a
many-body empirical potential with no pair-term contri-
bution. In the case of cubic symmetry defects (A, ~A, ) can
be expanded in its cubic symmetry invariants and a
separate function can be assigned to each. Consistent
with that idea, in Ref. 10, we proposed three different
many-body terms in the energy: the term F already used
in the EAM, and two new ones, H and G. Both of them
are connected with shear modes of the lattice but each
one depends on different cubic symmetry components of
the density tensor A, . These shear contributions proved to
be relevant to the simulation of the static configuration of
an octahedral interstitial. However the arguments of
those functions are not invariants for a distorted lattice
whenever a lattice atom or a defect separates from the cu-
bic symmetry. As said above, in the ED potential we in-
clude the pair and many-body term F of the EAM plus a
function G in Eq. (10), which accounts for the many-body
contribution to the energy of "shearing" the lattice. The
arguments of F and G are, respectively, the trace and an
invariant related to the deviatoric part of A, . These two
functions are fully rotational invariant and not related
therefore to any lattice symmetry. We expect the many-
body function G to be mainly determined by the d-
electron contribution to lattice cohesion. To reinforce
that expectation, we want to stress that the tensor D of
Eq. (7) can be decomposed into a five tensor basis, where
each tensor keeps the symmetry of a d orbital. We have
obtained very simple relations between physical measured
quantities and the functions used both in the EAM and in
ED. In the scheme presented above for generating the
ED potential, all elastic constants can be fitted without
some of the drawbacks that appear in the classical EAM.
Particularly, the physical condition of positive curvature
of the embedding function F is preserved, which would
not be the case within the EAM for lattices with negative
Cauchy pressure (this being the case of Cr and the reason
why Johnson and Oh' failed to fit an appropriate EAM
potential to this metal). As reported in the literature"
and summarized in Sec. I, several properties of transition

F.„„=E~(1 g)+F0 . — (25)

Equation (25) shows that the difference between cohesive
energy and vacancy formation energy is given by the
many-body contribution to cohesion Fp and to the va-
cancy formation energy gE& Also, withi. n the procedure
previously discussed, the many-body terms contribution
to the elastic constants depends solely on the parameter

For fitting pure covalent bonds, like those of Si and Ge,
materials that also show a negative value for the Cauchy
pressure, Baskes et al. ' developed a modified
embedded-atom method (MEAM). Those authors as-
sumed an electron density that includes angular term
contributions as an argument of the many-body function
F of the EAM. Baskes adopted in his paper an angular
expansion of the electron density that is further extended
by Baskes et al. in Eq. (14) in their paper. It is interest-
ing to realize that Baskes's expression for the electron
density reduces to

p; =aI'i +bY2 (26)

where I& and Y2 are the invariants of the dipole density

metals show departures from a central force field, among
those the negative value of the Cauchy discrepancy in Cr.
In that d-band metal, Finnis et al. claim that the
many-body part of the EAM should stand mainly for the
difference between the sum of one-electron energies re-
sulting from embedding the atom into the jellium with
respect to creating a vacancy plus a free atom, while in an
s-band solid the main contribution should come from the
embedding energy of the atom in a jellium. This implies
in turn that the expression for the many-body term
should not necessarily agree in both metals. Therefore
the ED potential is expected to be particularly useful for
calculating perfect lattice properties and computer simu-
lating defects in transition metals.

We shall now comment on the fitting of the interatom-
ic potentials to Nb, Fe, and Cr. It can be seen in Table II
that, for ED, the many-body-term contribution to the
shear elastic constants (0~ and 03 fractions) is nearly null
for (c» —c&~)/2, while it is relatively important for c4&.
This latter, 03 seems to be the largest for Nb, the metal
with the largest value for the Cauchy pressure. However,
for Fe or Nb we cannot claim that ED should in principle
provide any better potential than the EAM. Finally, we
want to stress that if G' is taken as null for the ED intera-
tomic potentials reported here, then they have the
characteristics of an EAM potential for which the experi-
mental elastic constants are those reported in Table I, ex-
cept for the shear constants (c&&

—c&&)/2 and c44, frac-
tions 02 and 03 have to be subtracted, respectively, to get
the proper values.

Our scheme for fitting the potential energy provides a
nice way not only of expanding the elastic and force con-
stants but also of differentiating between the many-body-
terms contribution to the cohesive energy and vacancy
formation energy. Our definition of the parameter g, Eq.
(24), implies that the cohesive energy and the formation
energy for the vacancy are approximately related by
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tensor A, in Eq. (6). Baskes fit the electron density to
theoretical calculations, which is equivalent to finding a
value for the ratio a/b in Eq. (26). Therefore, his model
is quite equivalent to ours. Essentially, both models fix
independent many-body contributions to the force on a
lattice atom. We model separately the many-body contri-
bution to an angular dependent energy from the one due
to local-density changes, which allows for a clear rela-
tionship between potential parameters and experimental
quantities. On the other hand, Baskes et a/. included
new terms in their density function with respect to the
one of Baskes; this might, in turn, aHow properties of
the lattice not accessible to our potential to fit.
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APPENDIX: FORCE, FORCE CONSTANTS,
AND ELASTIC CONSTANTS CALCULATIONS

Forces on a lattice atom and force constants are ob-
tained by expanding the cohesive energy with respect to
the virtual displacements of the atomic coordinates. Un-
der such virtual displacement, the corresponding varia-
tion of the tensor A. at a lattice point k, Eq. (6), is

5kk = g 5 4~ (Rk~ Rk~ )
m

+ g Qk~ (5Rk~ Rk~ +Rk~ 5Rk~ )

m

+ XPk~( k km»
m

where

K(R; ) (t(R; )
f(R; )= R" R"

V lJ

(Al)

E(R, .) is the module of the pseudo-Kanzaki force in Eq.
(5), and

I

(r„ l5Rk )'1&+—
2 Rk

I

+ —' " (5Rk. I5Rk. ) .
2 Rk

ln Eq. (Al) either a k or m atom coordinate must have
imposed a virtual variation 5X for a given term km to be
non-null. The force on an atom, Eq. (13), is obtained by
replacing the above variation of A, in the corresponding
terms of Eq. (12).

The derivation of the force constants for the ED poten-
tial energy (10) is straightforward. For a given com-
ponent aP that relates an atom i with an atom j, the cor-
responding variations in the atomic coordinates must be
imposed and the energy change calculated. The general
result is, however, cumbersome. For a cubic symmetry
lattice at equilibrium, the many-body contributions are
given by

+o'
,'y, ,

~=5 ~ ——+2Gog N (P' ) + 4, Go g N, R
V V

(A2)

II

xz 5 ~4Go 2 AkPJk(R, klRJk )+ g r; rk ,'p'kpJk ——2Go +.
2GoP kPjk (R;k R)k )

k(Wij) k (Wij)
&J J 3 & J

+4Go g (R;k lRJk )(rp~rg p'kpJkR, k+rJkr&~QJkgkRJk ),
k (Wij)

where the i,j,k indexes stand for atomic positions and the Greek indexes for Cartesian components.
We said in the main text that the fitting of interatomic potentials to experimental elastic constants can be simplified

by using an appropriate tensor base (see, for instance, Ref. 23). For cubic symmetry such a base (normalized) can be
written as

0
0

1

E . Bi= 0
0

0 0
1 0 1

v'6 '

0 2

1 0 0
B2= 0 1 0

0 0 0

1

2
(A3)

T2g '

0
C)= 1

0

1 0
0 0 1

0 0

0 0 1

C2= 0 0 0
1 0 0

1

V'2 ' C3=
0 0 0
0 0 1

1

0 1 0
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2 = 3
E=aA+ g b, B;+-g c;C;, (A4)

resulting in the elastic energy density,

C» +2C12 C

2

where

I, (E)=a,

The above tensors span nonequivalent irreducible repre-
sentations of the cubic group OI„ indicated by the ap-
propriate symbols at the left in (A3). Therefore, the
tensors (A 1) are eigenvectors of the elastic constants ma-
trix C; kt, with eigenvalues (in Voigt s notation):
(C11 + 2C12 ), (C11 —

C12 ), 2C44.
The strain tensor may be expanded as

In the base (A3), Eq. (A7) is expanded as

M, = —,
' gN R P', aA

2

+ g —,'N„P +gN R P'g g b;B;

3

+ g 23N P —+gN R, ttj'„y g c C, ,

where

f32 1 (( 2 2)2+( 2 2)2+( 2 2)2j

y„=—32[(r r ) +(r„r, ) +(r r, ) ]

(A7)

(A8)

2 3

&2(E)= gb, + gc,

5R =c. R,
while the tensor k varies by

(A6)

In order to find the expression for the elastic constants,
we must now expand the ED energy, Eq. (1O), for a un1-
form lattice deformation (A4), i.e., the atomic positions
change by

&, r~, &, in (A8) are the Cartesian components of a unit
vector pointing to an atom at the vth shell of neighbors.
Note that the following relation holds:

P2+ 3 y2 —1

(A8) can be replaced in Eq. (12) and the many-body con-
tribution to the elastic constants (15) may be obtained by
comparison with (A5). On the other hand, the pair in-
teraction contribution agrees with the standard one re-
ported in the literature.
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