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Inelastic scattering from surfaces
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A treatment of inelastic scattering of low-energy probes from surfaces is developed that bridges
the gap between the zero- and single-quantum regime and the multiquantum regime. Observations
of the multiphonon background directly give the form factor of the unit cell, which in turn provides
information on the interaction potential. A semiclassical limit is extracted in which the differential
reflected intensity appears as the product of a form factor for scattering from a unit cell, a Debye-
Waller factor, a structure factor, and an energy exchange factor. This is compared with previously
developed semiclassical scattering approximations. Good agreement is obtained with recently mea-
sured multiphonon backgrounds in the scattering of He by alkali halide and metal surfaces over a
large range of surface temperatures and incident conditions. The comparisons with experiment
demonstrate the rather large difference in interaction potentials between He scattering from an al-
kali halide and a metal surface.

I. INTRODUCTION

Inelastic stattering from surfaces provides important
information on the bonding forces between surface
atoms' and the nature of the surface electronic distribu-
tion. There are several primary scattering probes which
give surface-sensitive information, x-rays, electrons, and
small-mass atoms. This paper is primarily concerned
with atomic probes, and in particular, we address the
question of how much surface-specific information can be
obtained without explicit knowledge of the interaction
potential between probe and surface. Because many of
the conclusions do not depend on the interaction poten-
tial, with suitable modification the methods and results
can also be applied to other surface probes.

We briefly review elastic scattering and single-phonon
inelastic scattering, but the major emphasis and new re-
sults are on exchanges of multiple-phonon quanta in the
collision process. In principle, measurements of single-
phonon scattering intensities directly provide the vibra-
tional spectral densities of the surface atoms, which in
turn depend on the surface bonding forces. However, the
specific information on the phonon spectral density can
be extracted only if the influence of the interaction poten-
tial is understood, since the intensity depends on both the
spectral density and the scattering amplitude from the
surface unit cell. An additional complication arises in the
case of a surface unit cell with a basis, as, for example, a
stepped or reconstructed surface. In this case the
inelastic-scattered intensity is a much more complicated
superposition of pairwise atomic spectral densities to-
gether with scattering amplitudes from all of the com-
ponents of the unit cell. We show here that the
multiphonon-scattering intensity can provide information
on the interaction potential (or scattering amplitudes)
which allows one to extract the spectral density from the
single-phonon intensity measurements. Furthermore, for
the more complicated case of unit cells with a basis, the

multiphonon intensities provide information which can
be useful in untangling the complicated dependence on
the scattering potential, and can lead to information on
the vibrational properties of individual components of the
unit cell.

In a typical experiment with energy resolution of the
scattered beam through time-of-flight methods, the elas-
tic and single-surface-phonon intensities appear as sharp
peaks, while the multiphonon contribution is usually as-
sumed to provide a smooth and continuous background.
However, recent studies have demonstrated that in
many circumstances the multiphonon background can
have sharp features which, if not properly identified as
such, could be mistaken as anomalous single-phonon
peaks.

We consider here the multiphonon-background intensi-
ty of a quantum-mechanical theory, and at the end ex-
tract the semiclassical results which have been obtained
previously, ' and relate them to other numerical treat-
ments. " ' We find, in agreement with the semiclassical
results, that there can be strong features such as peaks in
the measured intensity versus energy exchange, but in the
quantum-mechanical regime we obtain a dependence on
surface temperature that is quite different. There are ad-
ditional features in the intensity that arise from a struc-
ture factor coming from the discrete periodic nature of
the surface, and this structure disappears in the semiclas-
sical limit. However, probably the most important result
is the information on the interaction potential provided
by the multiphonon background. Since the multiphonon
background is the result of the exchange of many quanta,
its form depends only very weakly on the specific nature
of the surface-phonon spectral density. Instead the en-
velope of the multiphonon-background intensity gives the
form factor, or the modulus of the transition matrix, for
inelastic scattering. Using this inelastic form factor ob-
tained from the multiphonon intensity, one can in princi-
ple extract the phonon spectral densities from the single-
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phonon peak intensities.
Using simple methods for the phonon spectral density,

a number of comparisons are made with experiments of
the multiphonon background obtained in time-of-Aight
measurements of He scattering from alkali halide or met-
al surfaces. Good agreement is obtained for the behavior
of the background structure as a function of surface tem-
perature and momentum exchange. It is found that the
form factor, or transition matrix, is very strongly depen-
dent on momentum and energy exchange. There is a
large difference in the inelastic scattering between alkali
halides and metals, in both total scattering and in the dis-
tribution of scattering intensities in energy and momen-
tum. The inelastic scattering from the alkali halide sur-
faces is substantially stronger, and this appears due to the
much more rapid decay of the form factor as a function
of energy and momentum exchange in the case of metals.
It is this strongly varying behavior of the form factor that
is a significant distinguishing feature of He scattering, as
opposed to electron or x-ray probes for which the form
factor is weakly dependent on the total momentum ex-
change.

where V is the interaction potential coupling the projec-
tile to the solid. Since in an experiment only the initial
and final state of the particle can be monitored, the mea-
sured quantity is the particle transition rate from k; to
k~, which is Eq. (5) summed over all final crystal states
and averaged over initial crystal states,

The double brackets (( » represent the ensemble average
over the crystal states.

Upon defining time-dependent operators in the interac-
tion picture according to

iHot/r) iHorlh-
t =e 'Te

the particle transition rate can be written as the Fourier
transform of the time-dependent correlation function' '
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II. DEVELOPMENT OF THEORY X (( n, I
V'„„(0) V „„(t ) I n, », (9)

The basic elements of the theory closely follow
methods that have been introduced in studying neutron
or x-ray scattering from bulk solids. ' ' We briefly re-
view the important features here and note the differences
imposed by the configuration of scattering from a two-
dimensional surface. The system is described by a Hamil-
tonian

H=H0+ V,
where H0 is the sum of a free-particle Hamiltonian for
the projectile and the unperturbed Hamiltonian of the
solid

$2
H = — V+H'0 0

where the notation Tk k stands for matrix elements off' i

the 7 operator of Eq. (6) taken with respect to the parti-
cle states Ik, & of Eq. (3).

Equation (9) is a convenient starting point for the
scattering of many types of particle probes from a collec-
tive system of matter. As an example, for the case of He
scattering from surfaces, the experimental quantity usual-
ly measured is the differential reAection coefficient
dR /d 0& dE& giving the fraction of the incident particles
which are scattered into a final solid angle of d 0& and en-
ergy interval dE&~. This is obtained from the transition
rate (9) by dividing by the incident Aux crossing a plane
parallel to the surface, j;=6k,,&mL and multiplying by
the density of available final particle states

The eigenstates of H0 are products of particle and crystal
states

d R

dQ~ dE~

L4 m Iky
u)(k~, k, ) .

(2iri)t )
(10)

HOjI& =F-, jI&=(& +&')Ik & n, &, (3)

where j is the collective quantum number describing the
particle momentum k and the set of crystal numbers n,
and E is the total energy of the combined system

Ak-
(4)

with E' the total energy of the unperturbed solid and E
that of the particle.

All quantities measurable in a scattering event can be
obtained from the transition rate

u)f) I 7f) I 6(Ef E)' )

where the Y&, are matrix elements taken with respect to
unperturbed states of the transition operator Y, which
obeys the equation

We adopt a notation in which the z direction is the
outward-pointing normal from the surface, and vectors
are divided into components parallel and perpendicular
to the surface according to k =(K,k, ). The quantity L
is a quantization length set to unity.

It should be noted that the differential reflection
coefficient of Eq. (10) is correct for the "standard" experi-
mental configuration in which the incident beam il-
luminates a spot on the crystal and the acceptance angle
of the detector includes the entire illuminated spot. In
many time-of-Aight configurations the situation is some-
what reversed, the illuminated spot can be considered
large and the detector acceptance angle subtends only a
small portion of the illuminated spot. For the latter
configuration Eq. (10) is multiplied by cosO; /cosO&,
where 0& and 0; are the incident and scattered polar an-
gles, measured with respect to the normal to the surface.

We are now in a position to establish the major ap-
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proximations upon which the remainder of this work is
based. The first assumption will be that the transition
operator can be written as a pairwise summation

f' i f' i
l, a

(12)

where k=k& —k; is the difference between incident and
final wave vector, rl is the equilibrium position of the
1~th element of the lth unit cell, and u& (t ) is the displace-
ment about the equilibrium position. The form of Eq.

where l denotes surface unit cells and ~ counts units of
the basis within each unit cell. Included in ~ is the count-
ing of layers within the crystal unit cell. Thus l' is a
discrete two-dimensional variable and ~ is discrete but
three dimensional. The approximation of (11) neglects
many-body forces which cannot be incorporated into
pseudopotential form, but it does include multiple
scattering within the unit cell and between different unit
cells.

The second major approximation is to assume that all
unit cells are identical and the surface is perfectly period-
ic, and then to write

(12) follows from (ll) if expIk u& (t)I commutes with r.
For the following we will make the more stringent as-
sumption that ~ is independent of the vibrational dis-
placement u& (t).

The approximation of (12) is a perfectly natural one to
make for the case of electron or x-ray scattering in which
the scattering center is the atomic hard core, and even
better for neutron scattering where the scattering center
is the atomic nucleus. For the case of atom scattering,
the potential is due largely to the correlation and ex-
change forces between the electron cloud of the incident
atom and the electronic density of the surface. Then Eq.
(12) is equivalent to assuming that the elements of the
unit cell vibrate rigidly and are themselves not distorted
by the vibrational motion. (Note that an element of the
unit cell, in this usage, does not necessarily have to corre-
spond to an actual atomic component of the cell; other
divisions are possible and may be, under certain cir-
cumstances, convenient. ) Nevertheless, the approxima-
tion of Eq. (12) should be good even for atom scattering
in processes dominated by low-energy, long-wavelength
phonons, such as the multiphonon-inelastic scattering
emphasized here.

Inserting the transition operator in the form of Eq. (12)
into the transition rate of (9) leads to

w(kk&)= I dt e ' 'g g P&r&e " '' ((n ~(e
'" e ''

~n &&,
l, x l', ~'

(13)

where we have used the shorthand notation r&; =~k k and tv=(Ef E; )IA. —
The third major approximation is to assume that all vibrational displacements can be treated in the harmonic approx-

imation. Then the average over crystal states can be carried out using well-known methods, ' and the final form for the
transition rate is

1 ~; &

—ik (r) —r), „,) —W (k) —W„,(k) 8n, k)u), , (.0)k u) „(t) n,)))

fi l, a I', ~'
(14)

where

W (k)= —,'((n;
~
tk. uI (t)I ~n; &&, (15)

is independent of l and t, and e is the classic expres-
sion for the Debye-Wailer factor governing the decay of
the scattered intensity as a function of target tempera-
ture.

Equation (14) is the starting point for the ensuing dis-
cussion of atom-surface scattering. The major approxi-
mation of Eq. (12) makes this a simpler expression in two
important respects: (i) there has as yet been no need to
specify an interaction potential describing the coupling
between incoming projectile and surface, and (ii) the only
time dependence appears in the exponentiated displace-
ment correlation function ((n; ~k u) .(0)k.u& (t) ~)n; &&.

Equation (14) can be easily related to more usual forms
used in atom-surface scattering, notably the Born approx-
imation and the distorted-wave Born approximation. In
the Born approximation, with the interaction potential
chosen to be a pairwise sum of interactions between the
incident probe and the atoms of the target

V= g v'(r —r, ,—u, ),
l, a

(16)

the transition rate is cast into exactly the form of (14)
with P&; equal to the Fourier transform of v'(r). In the
distorted-wave Born approximation, perturbation theory
is developed starting from a distorting potential which
back reflects all incident particles. In this case the transi-
tion rate again appears very similar to (14), but differs in
two important respects: (i) r&; is replaced by a matrix ele-
ment of the thermally averaged potential taken with
respect to eigenstates of the distorting potential, ' and (ii)
the Debye-Wailer factor contains only terms involving
momentum transfer parallel to the surface. The contri-
butions to the Debye-Wailer thermal attenuation coming
from momentum transfer perpendicular to the surface,
which constitute by far the dominant contribution, come
from higher-order terms in the distorted-wave perturba-
tion series.

As it stands the transition rate of Eq. (14) contains all
possible phonon-exchange processes, both real and virtu-
al. We can select out the elastic, single-quantum, and
multiquantum processes by expanding the exponential of
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the displacement correlation function to zeroth, first, and
higher orders, respectively. In the next two sections we
brieAy discuss the elastic and single-quantum contribu-
tion, and in Sec. V we develop the multiphonon contribu-
tion.

III. ELASTIC SCATTERING

tion rate becomes

w' '(k, , kf ) g 5~ Q5(Ef Ef)

2—W (k) —Ik.r
X

graf

e e (19)

The transition rate for elastic scattering is obtained
from (14) by replacing the exponential of the displace-
ment correlation function by unity. Then

w' '(k k )= 5(E~ E~) —g g r r' e=2" —ik (r —r, , )

I, K 1,K

W~(k) —WK, (k)Xe e

(17)

The sum over unit cells gives rise to the diffraction condi-
tions. Writing r1 =R1+r„where R1 is the vector paral-
lel to the surface which denotes unit-cell positions, we
have

The 6 functions show that the elastic-scattering intensity
is nonvanishing only when the conditions of conservation
of energy and momentum parallel to the surface are
satisfied. The intensity of each diffraction peak is
governed by the squared amplitude in (19), which is a
double sum over the elements of the unit-cell basis in-
volving the scattering amplitude, scattering phase, and
Debye-Wailer factor. If the unit cell if a Bravais cell con-
taining only one atom, then (19) reduces to

w' '(k;, kf )= g ~rf, ~
e '"'5 G5(E&~ Ep), —(20)

the standard form for the diffraction in which the intensi-
ty given by the product of a form factor, a Debye-Wailer
factor, and a structure factor.

—iK.(R1 —Ri )
—i K.Ri

I G
(18)

IV. SINGLE-QUANTUM INELASTIC SCATTERING

where G is a surface reciprocal-lattice vector, and X is
the number of surface unit cells. Then the elastic transi-

The exchange of a single real phonon is described by
expanding the exponential of the displacement correla-
tion function in Eq. (14) to first order:

w'"(k;, kf)= j dt e ' 'g g rf rf e " '' e ' e ' (( n~k. uI. , (0)k ui, (t)~n; )) .
I, K 1', K'

(21)

The ath Cartesian component of the surface-atomic-displacement operator can be expanded in the normal harmonic
modes of the crystal.

1/2

2AM co (Q)
(22)

where M, is the mass of the tcth surface atom, Q is the parallel wave vector, v is a discrete quantum number for surface
modes and continuous for bulk modes; e (tc~ ) is the polarization vector of the (Q, v) mode, co,(Q) is the mode frequen-
cy, and a, (Q) is the creation operator. The sum over Q is limited to a single surface Brillouin zone.

The displacement correlation function now becomes
3

((n; k ut, (0)k ut (t)~n }}= g k k g e Ic e, tc' e
q, 2&+M M, co,(Q)

where n(co (Q) } is the Bose-Einstein function

X I [n(co (Q))+1]e +n(co (Q))e

(24)

with T the temperature of the surface and kz Boltzmann's constant.
Equation (23) allows us to immediately evaluate the Debye-Wailer factor; the exponent W (k) is obtained from (23)

in the limit t ~0, l =I', and K —K':

8' (k)= g k k, g e tc [n(co (Q))+ —,'] . (25)

We note that the Debye-Wailer factor can be a very important correction even under circumstances where n(co) is
small. This is because a surface-scattering experiment is a backscattering configuration and k, = ~kf, ~+ ~k,, ~

can be
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rather large, which in turn makes W, (k) large. On the other hand, the parallel momentum exchange K=K& —K,. is
often small in comparison to k, and in many cases can be neglected.

Combining (25), (23), and (21), and carrying out the sums over l and l', the single-phonon transition rate is expressed
as

a, a'=1 K&K

3

w"'(k;, kI)=rrX g k k ~ g Hj, rI, e " e
1 —E'k (z —z, )Z K IC

QM M, co (K)

—KX ge l~~ e.a [n(co (K))+1]5(Ej~ EP+—fico (K))

+ g e & e K n(co, (K) )5(Eg~ Ef A—co (K—) ) (26)

Equation (26) shows that for the exchange of discrete surface modes (e.g. , Rayleigh modes) the intensity appears as a
sharp Peak in an energy-resolved measurement. The term proportional to n (co)+ I is for phonon creation and the term
proportional to n(M ) is for phonon annihilation The transition rate is cast into a somewhat similar looking form using
the standard definition of the phonon spectral density:

p, ', (K,co)= g e x e ~ l~' 5(co—co„(K)),K, K
2S„,co (K)QM, M,

(27)

where S„,is the surface area of the unit cell. Then (26) becomes

w"'(k;, k ) =i& f
3

k k ' g Pf'vf e' e'' e ' '
[p ',. ( —K co)[n(co)+ 1 ]+p '

~ (K,co)n(co)]
a, a'=1 K&K

We note that in the transition rates of (26) or (28) the
major influence of the interaction between the incoming
probe and the surface is contained in the scattering am-
plitudes ~&, which are not yet specified. However, just as
for the elastic case, connection can be made with previ-
ous calculations based on perturbation theory. In the
Born approximation, with a pairwise summation of po-
tentials, the only change in (28) is that r&; becomes the
Fourier transformation of the pairwise potential. In the
distorted-wave Born approximation, ~&, becomes a ma-
trix element of the thermally averaged potentia1 taken
with respect to distorted states, and in addition the

I

Debye-Wailer factor must be introduced through supple-
mentary considerations. ' ' An advantage of the expres-
sion (28) is its ability to directly relate the single-phonon
and multiphonon contributions, as discussed in the next
section, and its use for discussing single-phonon scatter-
ing from surfaces with complicated unit cells.

It is of interest to look at the simplest possible situa-
tion, scattering from a surface Bravais cell, which in this
case means only the outermost surface layer is con-
sidered, and the surface cell contains only one atom.
Then the transition rate appears as

2&NS„,
u&'"(k, , k )= "'

~r,. ~
e ~'"' g k k ~ [p ' ( — Kco)[ (neo) +1] p+(K,co)n(co)] .

a, a'=1
(29)

This has reduced to the standard form for a single-
quantum scattering process, the product of a form factor
describing the envelope of scattering by a single unit cell,
a Debye-Wailer factor giving the thermal attenuation, a
structure factor that is the phonon spectral density, and
the Bose-Einstein factor for the number of phonons of the
given frequency.

The form of the transition rate in Eq. (28) is very useful
in describing the scattering from more complicated sur-
faces (e.g., stepped or reconstructed surfaces) having unit

cells with a basis. For the case of atom scattering, the
repulsive hard core of the potential plays the major role
in elastic scattering, and it is usually sufhcient to consider
the interaction to be with only the outermost layer. (This
condition is usually not satisfied by electron or x-ray
scattering. ) If we consider the further simplifying as-
sumption that all atoms within the surface unit-cell layer
scatter similarly, i.e., their amplitudes ~&, and Debye-
%'aller factors are the same, then the transition rate ap-
pears as
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w" '(k;, kf ) =
3

l2
—2w(k)

a, a'=1 K, K

' Ip. .. ( —K, to)[n(to)+I]+p ~ (K, to)n( )) . (30)

This expression shows that such a scattering experiment
cannot measure the phonon spectral density of a single
atom, as in the case of a Bravais cell. Instead, what is
measured is a double summation over all elements of the
cell. This is given by the more complicated spectral den-
sity of the unit cell given by

p„, (K,co)= g e ' ' ' p, , (K,co) .
K, K

(31)

Inserting (31) into (30) leads to an expression for the tran-
sition rate which looks identical to (29) with p re-
placed by p„, . Note that there is a phase relation in the
summation of Eq. (31) depending on the relative vertical
heights z of the components of the unit cell. Even
though we have considered only the outermost surface
layer, the surface-cell atoms can still be at different
heights with respect to the surface plane, and even if
these relative heights are small, the phase can be impor-
tant since k, is often rather large.

0 0 —FV(k)(
—W (14)

fi +fi fi

Then the transition rate (28) appears as

(32)

Certainly, the assumption that all atoms in the unit cell
scatter similarly is not always valid, an example to the
contrary being vicinal stepped surfaces. In stepped sur-
faces it has been demonstrated in the case of He projec-
tiles that the scattering characteristics of the step edges
are quite different from that of the Aat terraces between
steps. This fact, together with the strong dependence
on scattering phase, can be used to selectively sample in-
dividual components of the unit cell. Following the very
illuminating and useful construction applied by Hinch
and Toennies to elastic scattering from steps, we write
the scattering amplitude of a terrace atom in the usual
form ~f;, but we characterize the different scattering am-
plitude of an edge atom, denoted here by ~=0, through
an additive term,

w"'(k;, kf ) =
2~VS„,

n( )toe '"' g k ka a'
a, a'=1 K, K —1

e ' ' ''
p „.(K, co)

+2 Reef;5f; g e
' ' '' '

p, '0'(K co)+ l6f l po,'o (K to)

where we have written only the energy-gain (phonon-
annihilation) term, and have assumed that all terrace
atoms scatter similarly.

Equation (33) writes the scattering as a "terrace" con-
tribution in le, l, an "edge" contribution in l5f;l, and
an interference between the two. However, the behavior
of rf, and 5f, are quite different; le; l

is a strongly vary-

ing function of k with a sharp peak in the neighborhood
of the specular direction or in the rainbow direction rela-
tive to the terraces. The edge-atom form factor l5f;l
scatters much more uniformly in all directions, with pos-
sibly a weak rnaximurn in the rainbow direction relative
to the step faces. (This behavior is clear in the experi-
mental data for elastic scattering ' and has been

I

demonstrated in calculations for inelastic scattering. )

Thus Eq. (33) shows that one can selectively obtain infor-
mation on the spectral density of the edge atoms or of the
terraces by choosing incident parameters (incident angle,
scattering angle, and incident energy) in order to ensure a
scattering configuration such that l5f, l

is large and le, l

is small, or vice versa.

V. MULTIPLE-QUANTUM SCATTERING

Now that the elastic and single-phonon contributions
have been developed in the sections above, it is a straight-
forward matter to write down the multiphonon contribu-
tion. It is given by Eq. (14) with the zero- and single-
quantum terms subtracted off,

1,K I', K'

X[e ' ' ' " ' —1 —((njlk u( (0)ku) (t)ln))] .
(( n; I k-ul K,(o]k.uI K~ ~ ~ I n; &&

(34)

For multiphonon exchange it is most convenient to write the displacement correlation function (23) in the form
3

(( l nuk), ,(0)ku) (t)ln;))= g k k g e v e, v' e
q, 2NQM M, to (Q)

X I [2n(~o (Q))+1]cos[co (Q)t] i sin[co (Q—)t]I (35)
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In practice Eqs. (34) and (35) can be used as the starting
point for a completely numerical calculation of the multi-
phonon scattering. The time-dependent displacement
correlation function (34) can be evaluated by using any
standard calculational method for surface vibrations, e.g. ,
a slab calculation or Green-function's methods. Then
the Fourier transform over time in (34) is well behaved
and can be carried out. More importantly the sum over
lattice positions in (34) converges rapidly, as we show in
the section below, and usually only a few terms are need-
ed.

In the simplest case of a Bravais unit cell, the multi-
phonon transition rate of Eq. (34) is again the product of
a form factor ~rf; ~, a Debye-Wailer factor, and a struc-
ture factor which rejects the periodic nature of the sur-
face. It is of interest to emphasize that, within the ap-
proximations used here, the form factor is identical to
that for single-phonon scattering, as seen, for example, in
Eq (29). This implies that measurements of both the
single-phonon intensity and the multiphonon background
provide suScient information to unambiguously deter-

mine both the form factor and the spectral density in-
dependently. Measurements of the single-phonon intensi-
ty alone are not sufTicient for this, since the form factor is
always multiplied by the spectral density, and only the
product can be determined by measurement.

VI. MODEL CALCULATIONS

The multiphonon contribution can be explicitly evalu-
ated for several simple phonon lattice-vibrational models.
We exhibit here several of these forms in the correspon-
dence limit of large numbers of phonons, while still re-
taining the quantum-mechanical nature of the projectile
motion.

To begin, we adopt the case of a Bravais unit cell with
only the surface layer contributing to inelastic scattering.
In the correspondence limit in which large numbers of
low-energy, long-wavelength phonons are transferred, the
exponential in the displacement correlation function (35)
can be expanded

3

(( n, ~

k. u, +, ( 0) ku, (t)~n;)) = $ k k . $ e Q e . Q [1+iQ R, —
—,
'.(Q.Rt) —i —,'(Q.R, )'+ ]

X [ [2n(co,(Q) )+ 1]cos[co (Q)t ] i sin[—co,(Q)t ]] (36)

Due to symmetry, terms which are odd in Cartesian components of Q will vanish upon integration, and up to fourth or-
der in the expansion, only the zeroth-order term and that in (Q Ri ) survive.

Also consistent with the correspondence limit is a first-order expansion of the sine and cosine functions in (36), lead-
ing to

3

(( n;~ k. u& +&( 0) ku&(t)~n; })= g k k ~ g e e ~

q, 2NMco (Q)

X [ ice,(Q)t—+ [2n(co,(Q) )+ 17[cos(co (Q)t ) ——,'(Q. R& ) 7] . (37)

w(kf, k;)= ~rf, ~
e '"'S(K,co)I(K,co), (38)

Inserting (37) back into the transition rate of Eq. (34) (ig-
noring for the moment the extraction of zero- and one-
quantum terms) leads to the following form:

with

(t)= k k. 'V
2NM „(Q)

Xe Q e ~
Q [2n(co,(Q))+1]

S(K,co)= g e 'e
I

(39)

X cos[co,(Q ) t ], (42)

with

and

fi(Q.Rt )
k.k., yg, 2NMco, (Q)

X e Q e, Q [2n(co(Q) )+ 1],
(40)

J(K,co)= f dt e ' e&"' (41)

Ak

2M
(43)

In the limit t ~0, Q(t ) is just the Debye-Wailer exponent
of Eq. (25), and F& is a closely related sum in which the
summand is weighted by the square of the parallel
momentum.

The transition rate of Eq. (38) is the product of a form
factor ~rf, ~, a Debye-Wailer factor, a structure factor
S(K,co) arising from the periodic distribution of surface
atoms, and an energy exchange factor I(K, co). The
structure factor is a rapidly convergent sum over lattice
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sites, since Eq. (40) shows that F& varies as R&.
The energy shift ~o appearing in the Fourier transform

or energy transfer factor of (41) has its origins in the
zero-point motion of the lattice, as is evident from Eq.
(35) or (36). It is interesting that even though the zero-
point motion is usually considered a low-temperature
efFect, here it has an important manifestation in the ex-
treme semiclassical limit of high temperature and in-
cident energy. In this limit %coo is the average energy
given up to the surface. The importance of the zero-
point motion in this context is noted even in the case of
high-energy ion scattering. '

We can evaluate Q(t) in the high-temperature limit,
where n(co)~fico/ks T, by assuming an isotropic, disper-
sionless phonon distribution in which the frequency and
wave vector are related by co=ck, where c is the sound
velocity, and this is equivalent to a three-dimensional De-
bye phonon distribution. Interference terms between
different Cartesian components of the phonon polariza-
tion vectors are zero, and the result is

3k ks T sin(co~t)
Q(&)= (44)

where coD is the Debye frequency. The familiar expres-
sion for the Debye-Wailer exponent (25) is obtained from
(45) by setting t ~0,

3k k~ T 6cook~ T
2W(k) =

M AD AcoD
(45)

The summand in Eq. (40) for FI involves the momen-
tum transfer parallel to the surface, and following the
lead of previous work, we can evaluate this expression
for a two-dimensional dispersionless and isotropic surface
mode in which co =vz K and vz can be taken as a parame-
ter roughly equal to the Rayleigh phonon velocity. This
is equivalent to a two-dimensional Debye model with the
two-dimensional Debye frequency related to vz by

cozD =4m v~ /S„, . (46)

The result is

~ok@ TRF-
2%v~

(47)

f' i ~2 f'

—iKR,
X ge 'exp

I

xl dte

cook& TRI

2%v~
—i (a)+ ~0) t

X exp 2 W(k)
sin(coD r )

(48)
Expression (48), with zero- and single-quantum contribu-

With the Debye-model evaluation of Eqs. (44), (45),
and (47), the transition rate in the correspondence limit
of large numbers of quantum exchange and large T takes
the final form

tions subtracted out, has been used in all of the compar-
isons with experiment carried out in the next section.
The structure factor involving the sum over lattice sites
has been evaluated by direct numerical summation. The
Fourier transform in time can be carried out by direct
numerical integration, but we have found it most efficient
to expand the integrand to high order and carry out the
integral term by term using the well-known Fourier
transform of [(sinx)/x]". Both methods give identical
results.

It is of interest to discuss the form of the structure fac-
tor appearing in (48), which we write as

—iK RI —F(k)RI laSK,co = e 1

I

(49)

where F(k)=co kosT a/2A'vz, with a taken as a con-
venient length comparable to the lattice spacing. This
has the appearance of the structure factor for elastic
diffraction, but the summand is modified by a Gaussian
damping function depending on T and total momentum
exchange k. S(K,co) is peaked at values of K equal to
the reciprocal lattice vectors Cx, and near these positions
can be approximated by a Gaussian function. For non-
simple surface unit cells, such as that of the fcc (111)sur-
face, S(K,co) may exhibit additional structure between
the diffraction peak positions. In the extreme semiclassi-
cal limit of high T and large k, S(K,co)=1 and only a
single term in the summation over lattice sites contrib-
utes. This behavior is quite physical: It implies that the
multiphonon intensity can be associated with the
diffraction peak positions, and the coherent region of the
crystal surface which contributes to the multiphonon sig-
nal is roughly of area a /F(k). In the extreme semiclas-
sical limit, F(k)))1, the association with diffraction
peak positions is lost, and the coherence area shrinks to
zero implying that the multiphonon intensity arises essen-
tially from scattering with a single-surface atom. Thus in
this extreme semiclassical limit, the structure factor for
scattering from a perfectly ordered surface is no different
from the structure factor associated with an isolated de-
fect, and the only difference between the coherent and in-
coherent multiphonon intensity distribution will be due
to the difference in form factor.

VII. THE SEMICLASSICAL LIMIT

There have been several recent and interesting treat-
ments of semiclassical and classical-trajectory approxi-
mations to the multiphonon scattering of atomic and
molecular particles at surfaces, " as well as treatments
based on numerical calculations. ' '' It is of interest to
consider the present theory in this limit as it leads to
closed-form expressions for the scattering intensities, and
gives criteria for the validity of the extreme semiclassical
limit.

For the energy exchange factor the semiclassical limit
is obtained by carrying out the Fourier transform in Eq.
(41) by the method of steepest descents. This is effected
by expanding Q(t) of Eq. (42) to order r, and the result
in the Debye model of Eq. (44) is
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1/2

I(e,~)=e'~'"' exp
cookB T

fi(co+ coo)
(50)
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sc 2N
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The Debye-Wailer factor is cancelled, and the energy ex-
change in this limit is a Gaussian function of the energy
exchanged, but shifted to the energy-loss side by the
amount A~o. The width of the energy exchange function
is roughly 2+k& TRAD in energy units, and the peak am-
plitude decays with increasing temperature as
(kii TRIO)

The steepest-descent evaluation of Eq. (50) also implies
a criterion for the validity of the semiclassical result,

2W(k)/6»1 . (51)

F(k) 4F(k)

27TAUR
exp

a cuokBT

—2avRZ'

4&0kB T
(52)

This is a very stringent criterion, and is in fact rarely
satisfied in typical He-scattering experiments, and often
not satisfied even when the projectile is a heavier atom
such as Ne or Ar. Note that as discussed above, the aver-
age number of phonons exchanged in a collision process
is approximately equal to 2W, thus (51) implies that for
the semiclassical approximation to be valid, a truly large
number of quanta must be exchanged. In practice we
find that for 2 W & 6 the energy transfer factor of (50)
differs strongly from Gaussian form and is an increasing
(rather than decreasing) function of T. For values of
2W ~ 6 the Gaussian form of Eq. (50) is a reasonable ap-
proximation.

A semiclassical approximation to the structure factor
has been developed that has the form of a Gaussian in
parallel momentum transfer. We can obtain this limit
from the structure factor of (49) by approximating the
summation over lattice sites by an integral. The result
for a square surface unit cell of dimension a is

X exp
fi(co+coo) +2fivzK

(53)
4kB Tcop

This, with ~rf, ~
taken to be constant is essentially the ex-

pression developed by Brako and Newns and can be ar-
rived at by purely classical thermodynamical treatments
of scattering from an isotropic continuum surface. The
choice of ~0 often made in a semiclassical treatment is
the Baule expression derived from binary particle col-
lisions, modified by the presence of the attractive well:

Rcoo-— (Eicos 8, +D ),4p
(1+@)

(54)

where p =m /M is the ratio of projectile to surface-atom
mass, and D is the depth of the attractive potential well
in front of the surface. The present treatment gives a nat-
ural evaluation for coo in Eq. (43), which in the semiclassi-
cal limit where kf, —-k,, is very close to (54), namely

4A k,,
%coo —— =4pg. icos 0;, (55)

differing from the Baule expression only the absence in
the denominator of the factor (1+@) . We could readily
include the well depth D in our treatment by using the
same arguments inherent in (54), that the attractive part
of the particle surface potential is rigid (and consequently
does not contribute to inelastic exchange) and is
sufficiently smoothly varying that it also does not elasti-
cally backscatter an appreciable fraction of the incident
particle amplitude.

There is a clear difference between the semiclassical re-
sult of Eq. (53), and the present result of Eq. (48) ex-
pressed in the semiclassical limit. The semiclassical limit
of Eq. (48) makes use of (50), but the strucutre factor be-
comes a constant, thus

This is essentially a Gaussian function of E having the
same width dependence as the energy exchange function
(50), and with a peak value which decreases with temper-
ature as 1/kB Tficop.

There is a definite problem with the approximate form
for S(K,co) of Eq. (52). The validity of the transition
from sum to integral depends on F(k) being smaller than
unity, while the approximations leading to the original
summation form of Eq. (49) depend on the semiclassical
condition F(k) ))1. Thus there is a very narrow range of
validity in which Eq. (52) can be considered a reasonable
approximation for the structure factor. Clearly the ap-
proximation of Eq. (52) does not exhibit the periodicity
inherent in Eq. (49), but the most striking difference is in
the temperature dependence. The summation over lattice
sites in (49) becomes exact in the semiclassical limit and
approaches a constant, while the approximation of (52)
decreases as 1/T.

The semiclassical transition rate based on the approxi-
mations of Eqs. (50) and (52) is

N 2 A~
tv(kf, k, )-+

~okB T

' 1/2

exp
A'( co+ coo)

4kB Tcop

(56)

The temperature dependence of the peak intensity varies
as 1/&T as opposed to 1/T in (53), and there is no
dependence on parallel momentum in the exponential.

In calculations for comparison with experimental data
discussed in the next section, we have found that Eq. (56)
is usually not even approximately valid for the scattering
of He atoms. With typical He incident energies in the
10—100-meV range, the behavior of (56) is recovered only
at surface temperatures several times the bulk Debye
temperature eD. On the other hand, the transition rate
of Eq. (48) agrees well with experimental data taken at
temperatures even smaller than OD, and it is found that
the multiphonon intensity typically increases with tem-
perature at values of T comparable to eD.
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VIII. COMPARISON WITH EXPERIMENT IUaCI 4QO'C & IOO&

An excellent experimental test of the theories
developed here for multiple-quantum inelastic interac-
tions is the scattering of He by surfaces. In typical exper-
iments where incident wave vectors range between 5 and

0 0
20 A ', the de Broglie wavelength is of the order of 1 A,
and hence the motion of the He probe is quantum
mechanical. With surface temperatures ranging from T
less than OD to several times OD, the inelastic back-
ground is characterized by the average number of ex-
changed quanta 2W(k) which ranges from the purely
quantum-mechanical, single-phonon limit up to about 10.

We choose the widely disparate examples of He
scattering by alkali halide insulators and by close-packed
metal surfaces. The alkali halides are strong inelastic
scatterers, while close-packed metal surfaces are weak in-
elastic scatterers because they are very Aat and have a rel-
atively soft repulsive potential.

In order to make quantitative comparisons with experi-
ment, the scattering amplitude ~f;, or rather the form
factor

i rf,. i
must be specified. This has been extensively

studied in previous work explaining the intensities of
single-phonon inelastic peaks. ' Harten et al. have
found, through a careful consideration of pairwise sum-
mation potentials for the He-surface interaction V, that

can be expressed as the product of a cutoff function
in parallel momentum K and the Mott-Jackson matrix
element ' in the perpendicular momentum:

CQ

20—

10—

p I
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—2&'IQ,' 2'UM, (kf„k;, ) . (57) 20—
The Mott-Jackson factor is the matrix element of the

one-dimensional potential U(z)=e ~' taken with respect
to its own distorted eigenstates. The form factor (57) is
then normalized to unity for specular scattering, has ex-
ponential decay in K, and the Mott- Jackson factor
behaves roughly as an exponential decay in the normal
momentum difference ikf, —k;, ~. The two parameters Q,
and p are best known for metal surfaces where it is found
that the cutoff momentum Q, is around 1 A ', while the
ran~e parameter p is usually somewhat larger than 2
A . In all of the following comparisons we adopt (57)
for the scattering form factor of the surface unit cell.

Recently Skofronick et al. have carried out exten-
sive investigations of both single-phonon and multipho-
non scattering of He by alkali halides. Figure 1 shows an
energy-resolved scan of the scattering of 44-meV He
beam from a NaC1(001) surface in the (100) azimuthal
direction at two different temperatures, 673 and 523 K.
The experiment is a so-called "specular" scan
configuration in which 0; =Of and in this case 0, is 45'.
The increasing amount of background noise on the
energy-loss side is simply an artifact of the conversion
from the experimentally measured time-of-flight intensi-
ties to the energy exchange scale.

The solid curve in Fig. 1 is the theoretical result given
by the differential refiection coefficient of Eq. (10) using
the transition rate of Eq. (48) and the form factor of Eq.
(57). The effective Debye temperature is determined by
comparison of measurements of the specu1ar intensity
with the Debye-Wailer factor of Eq. (45) and is 224 K.

I
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Energy (rneV)

20 40 60

FIG. 1. The scattered intensity as a function of energy ex-
change for He on a NaC1(001) surface in the (100) direction.

o

The incident beam wave vector is 9.2 A, and the angle of in-
cidence and the detector angle are both 45', measured from the
surface normal. The solid curve is the calculation. (aj Surface
temperature of 673 K. (b) Surface temperature of 523 K.

The cutoff parameter is Q, =5 A and the range param-
' —1

eter is P= 6 A ', which is a very weak dependence of the
form factor on the energy and momentum exchange. The
value of vz is unimportant, as the structure factor
S(K,co) is essentially unity even for temperatures of or-
der OD.

The agreement between theory and experiment is ex-
cellent, and this agreement extends to all temperatures
measured, from T =200 to 800 K. There is a sma11 in-
crease in the multiphonon background with T, and a
small, nearly linear increase with T in the full width at
half maximum of the multiphonon intensity; both of
these behaviors agree well with theoretical calculations.
Note that the two extreme semiclassical results (53) and
(56) would predict a decrease in inelastic intensity with T,
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and a &T dependence for the width, clearly in disagree-
ment with experiment. For the higher temperature of
623 K, the value of 2W'is about 4 (implying about 4 real
phonons exchanged per collision), and the energy shift
Amo is about 10 meV. This energy shift, although arising
from zero-point motion, is clearly non-negligible; without
it the experimental and calculated curves cannot be made
to agree regardless of how the parameters are varied.

Figure 2 shows a similar comparison of He scattering
by the NaCl(001) surface, except now for the (110)
direction and at the much lower incident energy of 28
meV. The surface temperature is 773 K. In this case the
inelastic background is strongly shifted to the energy-
gain side, and the agreement with calculations is again
excellent. Values of 28' and %coo at zero energy transfer
are about 3 and 6 meV, respectively. Again, without the
energy shift the data and calculations cannot be made to
agree.

Figure 3 shows an energy-resolved specular scan of the
scattering of a 37-meV incident beam of He on an Al(111)
surface in the (112) direction, with the crystal tempera-
ture at 500 K. ' The effective Debye temperature, again
determined from the temperature dependence of the spec-
ular peak, is OD=333 K. The solid curve shows the
agreement with the calculations that is obtained using

Q, =1.3 A ' and p=2. 5 A . The value of 28'is about
3 and the energy shift is somewhat more than 10 meV.
Again, Uz is unimportant as the structure factor is essen-
tially unity.

Figure 3 shows that the nature of the multiphonon
background from metal surfaces is radically different
from that of the alkali halides. In Figs. 1 and 2 the in-
elastic background formed pronounced and broad shoul-
ders on which the specular intensity could be seen as a
distinct, narrow spike. For metal surfaces the inelastic
background is substantially weaker in intensity at all en-
ergies, and does not form distinct shoulders under the

NaCI (001) &110&
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FICx. 2. Same as Fig. 1, except the scattering is in the (110)
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direction, the incident wave vector is 7.36 A, and the surface
temperature is 773 K.
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FIG. 3. Same as Fig. 1, except for an Al(111) surface in the
o

(112) direction, incident wave vector of 8.37 A, and surface
temperature of 500 K.

specular peak. This difference between insulators and
metals is explained by the energy and momentum depen-
dence of the form factor. The values of Q, and p for Al
(both choices being in agreement with typical values
known for a wide range of metal surfaces ) imply a form
factor correction as a function of energy exchange that is
substantially stronger than that used for the alkali halide
surfaces. These observations lead to two important con-
clusions: (i) the form factor of scattering by the unit cell
can play a dominant role in the shape of the multiphonon
background because of its strong dependence on the
momentum transfer, and (ii) the strong dependence of the
form factor on k is particularly pronounced in metals, be-
cause the potential is Hat (implying small Q, ) and soft
(small p), and this fact explains why the inelastic back-
ground from metals is weak and rapidly decaying as a
function of energy exchange.

Figure 4 is a series of energy resolved experimental
data for He scattering from a Pt(111) surface in the
(110) direction, with T=160 K and Ef=69 meV.
These are not specular scans as in the previous figures;
they are scans taken with a fixed angle of 90 between in-
cident beam and detector, with the incident angle 0,
ranging from 40' to 32. Shown also are three different
sets of theoretical calculations; the present theory, and
two calculations by Celli et al. , one based on the Brako
and Newns semiclassical limit of Eq. (53) and another us-
ing a somewhat more elaborate version of the Brako-
Newns theory.

This set of experimental data is interesting because it
shows the importance of the structure factor in multipho-
non scattering. The calculations of Celli et al. clearly
identify a major peak structure in the data as being due
to multiphonon exchange. This peak moves outward in
the energy-loss direction as the angle 0, is decreased. This
peak is equally well distinguished in the present calcula-
tions, but in addition the present calculations show at
L9, =37 and 35 the presence of a second structure, which
gives rise to a substantial amount of inelastic background
under the diffuse elastic peak located at AE =0. None of
the calculations reproduces the anomalous peak appear-
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FIG. 4. The scattered intensity as a function of energy ex-
change for He on a Pt(111) surface in the (110) direction. The
incident energy is 69 MeV, the surface temperature is 160 K,
and the fixed angle between incident beam and detector is 90',
and four different angles of incidence are shown: (a) 40.2', (b)
37', (c) 35', and {d) 32.2'. The dash-dot curve is the present cal-
culation, while the dashed and solid curves are two different
semiclassical calculations of Celli et al. (Ref. 6).

ing at hE = —8 meV in the 0; =32.2' scan. This anoma-
lous peak is critically dependent on experimental condi-
tions and is probably due to other effects. ' However, ad-
ditional data not shown here were taken at 0;=28',
where the anomalous peak does not appear, and the dou-
ble structure evident in the present calculations at all in-
cident angles of 35 or greater agrees well with the mea-
surements.

Under the conditions of this experiment the structure
factor differs from unity primarily because of the small
mass ratio p= 95 0.02 and the low surface temperature.
The structure factor has prominent peaks at the
reciprocal-lattice vector positions which are at multiples
of 4.52 A in the ( 110) direction. In addition there is a
small peak halfway between at 2.26 A ' corresponding to
constructive interference between scattering by alternate
rows of surface atoms normal to the (110) direction.
This second peak in S(K,co) gives rise to the second mul-
tiphonon structure at smaller energy loss shown in the
calculations at 0, =37', 35, and 32.2'. The structure fac-
tor of the Brako-Newns semiclassical theory has only the
peak centered at K=O, which explains why the calcula-

IX. CONCLUSIONS

We have presented here a treatment of inelastic
scattering which is capable of providing straightforward
ways of calculating the elastic, single-quantum, and the
multiquantum components of the scattered intensity.

600-
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FIG. 5. Scattered intensity as a function of surface tempera-
ture for the Pt(111) surface of Fig. 4 and incident angle of 37.
Shown are five different temperatures varying from the value
T= 160 K of Fig. 4 to T= 1200 K.

tions of Celli et al. do not exhibit the large multiphonon
contribution at smaller energy transfer which appears un-
der the diffuse elastic peak.

The Debye temperature used in the present calcula-
tions was 250 K and the sound velocity vz =1234 m/s
which corresponds roughly to the Rayleigh sound veloci-
ty in Pt and is 0.65 of the value used by Celli et al. The
parameters used for the form factor correction were
Q, =2 A ' and /3= 10 A . These parameter choices for
the form factor, being quite different than expected for a
metal surface, show that the form factor of the inelastic
potential for such large-angle inelastic scans is very poor-
ly known. This probably explains the rather poor overall
agreement with data in the curves of Fig. 4, as opposed to
the previous figures. It also underscores the importance
of the potential (or form factor) in determining the shape
of the inelastic background.

For these experimental conditions, the energy shifts
Acro are about 3 MeV, and 28 =0.5 implying that a semi-
classical calculation cannot be expected to give reliable
results. Figure 5 shows the evolution as a function of sur-
face temperature of the present calculations for the ex-
perimental conditions of the t9; =37' curve of Fig. 4. Un-
fortunately, there are as yet no data at higher tempera-
tures for comparison. As the structure factor S(K,co) ap-
proaches a constant at higher temperatures, the scatter-
ing intensity increases overall and gradually forms a
Gaussian shape [modulated by the density of states factor
in Eq. (10) peaked at an energy loss of about 15 meV].
The true semiclassical behavior of Eq. (56) is not achieved
in this instance until the temperature is greater than 1200
K.
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The motion of the particle and the surface are treated
quantum mechanically, and the transition to the
correspondence limit of large numbers of quanta and to
the semiclassical limit for particle motion are straightfor-
ward. The treatment is based on one major approxima-
tion, that the basic elements of the surface unit cell,
which can be chosen in many different ways, remain rigid
while undergoing vibrational displacements. This model
should work well for multiquantum processes involving
the exchange of low-energy, long-wavelength phonons. A
number of calculations show excellent agreement with
the multiphonon inelastic background observed in He-
scattering experiments. This theoretical approach shows
the limits to which information on surface vibrational
properties can be obtained from analysis of an experi-
ment, without extensive knowledge of the specific and de-
tailed nature of the He-surface interaction potential.

The treatment of the single-quantum scattering limit
shows clearly the extent to which the phonon spectral
density can be measured in a given experiment. For large
surface unit cells, such as for reconstructed surfaces, a
scattering experiment typically measures a complicated
sum of surface-particle spectral densities weighted by
scattering amplitudes. In the case of vicinal stepped sur-
faces, the greatly different nature of the scattering ampli-
tude from the step terraces as opposed to that of the edge
atoms, allows the possibility of selectively sampling the
spectral density of edges or the terraces.

The treatment of the multiphonon scattering processes
which forms the bulk of this work, shows the readily an-
ticipated results such as the importance of the multipho-
non intensity in identifying inelastic background in ex-
perimental data; it gives the average number of quanta
exchanged in a collision, and shows the passage from
quantum-mechanical to various stages of the classical
limit. However, the multiphonon background is very
strongly dependent on the nature of the interaction po-
tential between incident probe and surface, and can be
used to determine the form factor (modulus of the
scattering amplitude) for inelastic scattering. The form
factor in the present theory is the same for both single-
phonon and multiphonon processes, but in single-phonon
scattering the form factor always appears as a product
with the phonon spectral density. Since the phonon spec-
tral density may be imperfectly known, an experimental
measurement of only the single-phonon intensity cannot
separate it unambiguously from the form factor. Howev-
er, the multiphonon inelastic intensity depends much
more weakly on the detailed nature of the phonon spec-
tral density, and thus allows a ready determination of the
form factor for the potential. Thus a careful examination
of the single-phonon peak intensities, together with mea-
surements of the multiphonon background can be used to
obtain independently the momentum and energy depen-
dence of the scattering amplitude of the interaction po-
tential and the phonon spectral density of the surface-
phonon modes.

The treatment of multiphonon scattering allows pas-
sage to the semiclassical limit at several different levels.
We find a semiclassical limit in which the coherent multi-
phonon background can be expressed as the product of a

form factor depending on the interaction potential, a
Debye-Wailer factor for thermal attenuation, a structure
factor arising from the periodic nature of the surface, and
an energy exchange factor. The structure factor ap-
proaches unity in the extreme semiclassical limit but in
the quantum regime is peaked at momentum values cor-
responding to the two-dimensional surface diffraction
peak positions, and for complicated surface unit cells can
have additional structure between the diffraction peaks.

The energy exchange function becomes a Gaussian
function of the total energy exchanged between probe
and surface with a shift %coo in the direction of energy
gain by the surface. The value of ~o depends on incident
and scattered conditions, but is completely specified.
However, we find that the transition to the classical limit
occurs only for 28') 6, where 28'is the exponent of the
Debye-Wailer factor and is roughly equal to the average
number of real or virtual phonons exchanged in the col-
lision. This condition is usually not satisfied for He
scattering under typical conditions involving thermal en-
ergies. The fact that the structure factor approaches a
constant in the high-energy semiclassical limit implies
that the interaction of the probe is constrained to a small
region of coherence on the surface and in the limit in-
volves only one surface atom. This means essentially that
the major difference between scattering from an ordered
surface, or from defects or disordered surfaces, arises in
the nature of the scattering form factor of the interaction
potential. This behavior of the structure factor is quite
different from that found in previous completely semi-
classical treatments using continuum models for the sur-
face. ' There it was found that the structure factor was a
Gaussian function of the square of the parallel momen-
tum exchange, modulated by an envelope in 1/T.

We have tested this theory by comparison with a num-
ber of different experiments measuring the multiphonon
background in the surface scattering of He, and very
good agreement was obtained. The temperature and en-
ergy dependence of He scattered in the specular direction
by a NaC1(001) surface agrees well with calculations
based on a Debye model phonon spectrum, in each of the
two different major crystal symmetry directions. Similar
specular scan experiments for He scattering from an
Al(111) surface also agree well with the calculations. The
shape of the inelastic background is quite different for the
alkali halide and metal surfaces. For NaC1 the elastic in-
tensity appeared as a distinct narrow peak sitting on the
broad shoulders of a well-defined background, while for
the Al surface the multiphonon background appeared as
tails leading away from the elastic peak. The difference is
readily explained by the nature of the form factor of the
interaction potential; as compared to the alkali halide,
the weakly inelastically scattering metal surface has a so-
fter repulsive potential and is much smoother and flatter.
The comparison shows the strong dependence of the mul-
tiphonon background on the interaction potential and the
power of this method for extracting such information.

A comparison with experiment was made for the
scattering of He by a Pt(111) surface in the (110) direc-
tion at relatively low surface temperature. Measurements
were made of background intensity versus energy ex-
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change in several nonspecular scattering directions, and a
comparison with other calculations was possible. It is
found that the conditions are sufficiently quantum
mechanical that the structure factor deviates substantial-
ly from its semiclassical value of unity, and this structure
is observed in the experiment.

We have found that the multiphonon inelastic back-
ground in a surface-scattering experiment is strongly
dependent on the nature of the interaction potential, but
rather weakly dependent on the details of the phonon
spectrum and hence can be calculated using simple mod-
els. In addition to its usefulness in subtracting off back-
ground, the comparison with experiment of calculated

multiphonon intensities determines the form factor, and
thus provides useful information on the interaction po-
tential.
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