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A simple model of fcc lattice dynamics is studied in the vicinity of a clean, unreconstructed,

high-Miller-index (i.e., stepped) surface. Depending on the vibrational modes spatial extent, they

are classified as either bulk phonons, surface phonons, or step phonons. The existence and charac-

teristics of the latter class of vibrational modes are presented throughout the (one-dimensional) step

Brillouin zone (BZ). Five classes of stepped surfaces are examined, each differing in the 1Vliller in-

dices of the terrace [(111)or (100)] and step face [(111),(100), or (110)]. All but one of the systems

exhibit modes truly localized to the edge. There are many similarities to the study of surface pho-

nons. For instance, when degenerate with the bulk- or surface-phonon bands, the step phonons ac-

quire a finite lifetime and become step resonances. A total of seven step phonons and four step reso-

nances are seen. Most of these are strongly localized to the edge only near the end of the step BZ.
Unlike regular surface modes, the step-phonon characteristics (frequency, polarization, and ampli-

tude) depend sensitively on the interatomic potentials near the steps. Two step-phonon measure-

ments have yielded information about these important step parameters. Using a crude estimate of
the inelastic-scattering intensity, I propose the possibility for a similar experiment with Ni(755) us-

ing existing techniques.

I. INTRQDUCTIQN

Surfaces figure prominently in such phenomena as ca-
talysis, nucleation, and crystal growth. Understanding
the energy transfer in such processes requires a detailed
knowledge of the phonons. In particular, a localized vi-
brational mode might catalyze a reaction which is other-
wise thermodynamically suppressed. ' In certain cir-
cumstances, stepped surfaces are considerably more reac-
tive than their Bat counterparts. This may be because ad-
particles diffuse freely across terraces until sticking on a
step, leading to high effective concentrations of reagents.
In other circumstances, the limited mobility of atoms ad-
sorbed on a step might decrease the reactivity, compared
to a Aat surface. Hence step vibrations are crucial in
nonequilibrium processes at surfaces.

Vibrations of Oat surfaces have been studied extensive-
ly. By comparing these with bulk phonons, one learns
how closely the surface interatomic potentials resemble
their interior counterparts. This has been done for a
number of low-Miller-index (MI) surfaces [i.e., (111),
(100), and (110) planesj. The experimental methods usu-
ally consist of either electron energy-loss spectroscopy
(EELS) or inelastic helium-atom scattering (HAS). ' To
extract information about surface properties, the energy-
loss spectra must be compared with theoretical predic-
tions. The theoretical methods involve either molecular-
dynamics simulations or, in the harmonic approximation,
ball-and-spring models whose Hamiltonian is diagonal-
ized by standard techniques of linear algebra. ' Non-
trivial inputs to either of these procedures require prelim-
inary estimates of the interatomic potentials, obtained ei-
ther empirically or from first principles. For low-MI sur-
faces, a few ( —3) vibrational modes propagate freely
parallel to the surface but decay exponentially into the

crystal interior. A general tenet of wave mechanics as-
serts that the presence of a defect is a necessary but not
sufficient condition for the existence of one (or more) lo-
calized mode. If viewed as a defect, a surface is strong
enough to localize vibrational modes, commonly re-
ferred to as surface phonons.

Near a surface, the bonding coordination number is

greatly reduced from the near-isotropic situation existing
in the bulk. This perturbation induces electronic charge
redistribution which may in turn substantially alter the
interatomic potential. Numerical studies show the
characteristics of surface modes (i.e., their frequency, po-
larization, and amplitude) to depend strongly on the sur-
face interatomic potential. For instance, stiffening
(softening) force constants near a surface tends to in-

crease (decrease) surface-phonon frequencies. This effect
is enhanced if the mode is strongly localized in the sur-
face layer, and specific details of these deviations are
governed by the phonon polarization. Careful analysis of
surface-phonon spectra (frequencies and intensities) can
yield substantial information about interatomic-potential
modifications induced by a surface.

Studies of high MI (also k-nown as vicinal or stepped)
surfaces have been hampered by the complex assortment
of surface phonons that exist on them, in addition to oth-
er experimental and theoretical difficulties. At fixed wave
vector, the number of surface modes increases (roughly)
linearly with the surface unit cell area —i.e., proportional
to the (maximum) MI. This greatly complicates the
spectrum. However, advances have been made in recent
experimental and theoretical studies of surfaces with un-
kinked steps. The surface phonons divide into two
classes. The first class is characteristic of the terrace and
consists of surface phonons refIected and transmitted by
the step edges. ' Features of these surface phonons are
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well approximated by folding the (two-dimensional) Bril-
louin zone (BZ) of the terrace. The second class, consid-
erably smaller in number, is localized at the edges, along
which they propagate freely. " This class had been
known to exist theoretically for macroscopic steps, ' and
experimentally for two systems with monatomic
steps, ' ' but had escaped verification for monatomic
steps of crystals with simple force-constant models. '

Near a step, further reduction of atomic coordination in-
duces even more charge-density redistribution and a
more substantially altered interatomic potential than for
a Aat surface. Unlike ordinary surface phonons, the
characteristics of step phonons are strongly sensitive to
changes in the near-step force constants, as will be seen in
Sec. VE. Hence the measurement of these vibrational
modes yields information about an important region of
the crystal.

One might view that the relationship of a step to the
surface is the same as that of a surface to the bulk.
Indeed, an isolated kink in a straight step on an otherwise
flat surface further decreases the dimensionality of the
translational periodicity (Fig. 1), thereby allowing for the
possibility of kink modes, vibrations localized in all three
directions. These modes are not expected to exist for the
simple model to be used here, as discussed in the Appen-
dix; therefore vibrations near kinks are not investigated
in this paper. To appreciate the differing dimensionalities
of these phonons, consider the aftereffects of a micro-
scopic disturbance (e.g. , an impinging gas particle) near a
kink on a surface. Quantitative description of this would
require arduous calculation, but qualitative aspects are
easily derived from geometrical considerations. Depend-
ing on the initial spatial dependence of the disturbance,
the energy propagates away via four simultaneous mecha-
nisms, in comparable proportions. First, bulk waves
propagate away into a solid angle of 2~ sr. Conservation
of energy mandates that the intensity (i.e., squared ampli-
tude) of these bulk modes decrease with distance as
I/R . Second, surface waves propagate into the terraces,
decreasing in intensity as I/R. (Macroscopically, these
are earthquake waves. ) Third, step modes propagate
away in two opposite directions, the intensity not dimin-
ishing at all (at least not algebraically) with R. Finally,
certain amounts of the initial energy will not propagate,
remaining instead as kink modes. Eventually, anharmon-
ic effects will perturb this noninteracting-phonon picture,
causing all of the energy to propagate into the crystal in-
terior as bulk phonons, thereby establishing thermal equi-

FIG. 1. Oblique view of an isolated kink in a step on an oth-
erwise Oat surface, to be contrasted with the unkinked step in
Fig. 2(a). Singly hatched circles and the cross-hatched circle
represent edge atoms and the kink atom, respectively.

librium between the kink, the step, the surface, and the
interior.

Section II describes the geometries of five classes of
stepped surfaces covered here, in real space and momen-
tum space. Section III discusses the simple lattice-
dynamics model used, as well as the different types of
spectral-density functions necessary for the description of
vibrations near an isolated step on an otherwise fiat sur-
face. Section IV presents the bands of bulk and surface
phonons relevant to these systems, and the method of nu-
merical calculation for the step phonons. The fairly sim-
ple results in Sec. V demonstrate infinite-terrace-width
behavior for the vibrations of vicinal surfaces whose ter-
races are only a few angstroms wide. Section V also
shows the dependence of step modes upon realistic devia-
tions of the force-constant model, thereby demonstrating
the step sensitivity of any experiment which could detect
such modes. Section VI summarizes the only two step-
phonon measurements to date and also proposes a third
such experiment, for Ni(755). Finally, Sec. VII contains
conclusions of these results.

II. GEOMETRY

A stepped surface is easily constructed by slicing a sin-
gle crystal at an orientation differing slightly from a low-
MI plane. This paper restricts itself to monatomic fcc
lattices with five of the simplest step environments,
represented graphically in Figs. 2(a)—2(e) and mathemati-
cally in Table I.

TABLE I. Stepped fcc surfaces covered in this paper. Key for last column (see Fig. 7 of this paper
or Fig. 1 of Ref. 5): CR is centered rectangular, PR is primitive rectangular, and PO is primitive ob-
lique.

C
D
E

Terrace

(111)
(111)
(111)
(100)
(100)

Step
edge

[110]
[110]
[21 1]
[011]
[001]

Step
face

(001)
(111)
(011)
(111)
(110)

Vicinal surface
Miller index
(N»n )0)

(NN N+n)
(NNN —n)

(NN+n N —n)
(Nn n)
(Nn 0)

Approximate
terrace width

(interatomic spacings)

&3N/n
&3N/n

N/n
N/2n

N/&2n

Shape of
Brillouin

zone

PR or CR
PR or CR

PO
CR

PR or CR
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To better appreciate the similarities and differences be-
tween these classes of vicinal surfaces, a few details are
worth emphasizing. First, the (111) and (100) surfaces
are the first- and second-most tightly packed fcc surfaces
(Fig. 3). The terraces of the stepped surfaces studied here
are of either one type (A, B,C) or the other (D, E).
Second, the [110]direction connects nearest neighbors so
yields a straight step edge. On the other hand, a [211]
edge on a (111)surface or a [001] edge on a (100) surface
are kinked. Both straight ( A, B,D) and kinked (C,E)
steps are investigated herein. Third, since the [110]
direction does not parallel a refiection plane of fcc(111),
there exist two different ways of constructing such a
monatomic step (Fig. 4) yielding step faces with MI s

(001) or (111). Both of these ( A, B) are discussed here.
For reasons of computational practicality, it is useful

to avoid vicinal surfaces with nonuniformly sized ter-
races. Using the A-type system as an example, fcc(113)
and fcc(112) have one and two atomic rows, respecitvely,

,
[OTIj

&cc (III)
= [211]

fcc (IOO)

fO I I]
Jt

t.ooI]

FIG. 3. Top views of surface atoms of fcc(111) and fcc(100),
with dashed circles representing second layer atoms.

(b}

(c}

in all of their terraces. However, fcc(337) has terraces
whose widths alternate in size between one and two rows.
The undesirability of this trait (to be detailed at the end
of Sec. IV) leads to the imposition of further restrictions
upon the MI's. For 3-, B-, and C-type surfaces, n is re-
stricted to 1 or 2 (see Table I). For D types, N is odd and
n equals unity. Lastly, n equals unity for type-E systems.
The BZ shapes listed in the last column of Table I reAect
these restriction.

The MI (h, k, l) of a crystal surface can be put into a
one-to-one correspondence with the unit sphere using the
transformation

(h +k +I )
'~ (h, k, l)=(sin8cosg, sin8sing, cos8),

a common way to represent surface orientation. For cu-
bic crystals, the irreducible element of the unit sphere is
the stereographic triangle (Fig. 5), whose corners corre-
spond to the three lowest MI surfaces: (111), (100), and
(110). The surfaces discussed here lie near either the
(111)or (100) vertex of this triangle. Of the five types of
step, four lie on the boundary and one occupies the interi-
or of the triangle. Two other common methods for repre-

(«~j
t.oo&]

?05' []hajj

(e}

FIG. 2. Oblique view of steps 2 —F. are presented in (a)—(e),
respectively. Hatched circles represent edge atoms.

FIG. 4. Cross section of f",c(111),with [110]direction point-
ing into the page. Removing dashed circles creates a (001) step
face ( A) whereas removing dotted circles creates a (111) step
face (B).
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FIG. 6. Surface BZ's for Ni(111) (hexagon) and Ni(755).
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FIG. 5. Stereographic triangle, which contains representa-
tions of all cubic crystal surfaces. Symbols depict specific sur-

faces investigated in Sec. V, and dashed line is the locus of all

type-C stepped surfaces.

sentation of high-MI surfaces are microfacet notation'
and a nomenclature which specifies the (small) angle be-
tween the vicinal surface and a low-MI plane. '

That these vicinal surfaces often reconstruct has been
detected by techniques sensitive to surface structure, such
as low-energy electron diffraction (LEED), elastic helium
scattering, and x-ray di8'raction. This crystalline re-
arrangement, which would make irrelevant many of the
results in this paper, occurs in one of two ways. First, the
steps might attract each other and combine to form po-
lyatomic steps. Second, the steps might form polyatomic
kinks, thereby increasing their total edge length. A
stepped surface which does not reconstruct when clean
might do so if covered with a small amount of light
atoms. ' Sometimes the opposite occurs, in that adsor-
bates stabilize a surface which otherwise reconstructs. '

In addition, these phenomena often depend upon the
temperature. Phase diagrams for vicinal surfaces have
been studied, perhaps none more thoroughly than for pla-
tinum, for which only E-type steps reconstruct. ' For
nickel, B-type surfaces reconstruct, whereas those of type
3 do not. '

Unreconstructed vicinal surfaces are periodic in both
the x (parallel to the step) direction and the y(lx) direc-
tion, but the period in the latter direction greatly exceeds
1 A. Hence the surface BZ more closely resembles a line
segment than a polygon (Fig. 6). An isolated step on an
otherwise Hat surface has only one periodic translational
symmetry, thereby yielding a truly one-dimensional BZ,
indicating that step modes propagate in only one direc-
tion. The length of the step BZ varies inversely with the
periodicity along the step, so surfaces with [011] edges
( A, B,D) have the longest BZ (with length Q,„=n/ro, .
where ro is the interatomic spacing). On the other hand,
the kinks on steps C and E result in BZ lengths rr/&3rD

and rrl&2~o, respectively (Fig. 7). The thin BZ's of the
surfaces discussed in this paper are of three slightly
diA'erent shapes, as illustrated in Fig. 7 and denoted in
the last column of Table I.

III. THEORY

The equation of motion for the displacements u(l) of
the atoms away from equilibrium is derived from the
Hamiltonian H, represented in the harmonic approxima-
tion as

H(u( 1, ), u(I2 ), . . . ) =Ho+ g u (I )
BN

au. (S)

+ —,
' g u ( I )u &(I' )

au„(r)au, (i )
'

where Ho includes the kinetic energy and the zero of the

(a) (

(b)

(c)

FIG. 7. Examples of the three differently shaped surface BZ's
for systems studied here: (a) fcc(342), a C-type stepped surface,
with a p-oblique BZ; (b) fcc(510), an E-type system with a p-
rectangular BZ; and (c) fcc(511), a D-type surface, with a c-

rectangular BZ. Circles indicate high-symmetry points of the
surface BZ, and dots delineate the "end" of the step BZ.
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potential energy. The function @(u(1,),u(12), . . . ) is the
adiabatic many-atom potential, the subscript a or P
specifies one of three Cartesian directions, and the vector
1=(1„,/, /, ) has integral components in a convenient,
nonorthogonal basis. The single index I, specifies a layer
of atoms parallel to the surface. In the harmonic approx-
imation, quantum and classical results coincide. The
second term in Eq. (1) vanishes, owing to the equilibrium
condition that Md u (I)!dt = —BC&/Bu (/)=0, where
M is the atomic mass.

To emphasize the generality of the results to be
presented in this paper, a very basic model of lattice dy-

I

namics is used. Later, step-phonon sensitivity to various
deviations from this model is tested. I restrict the many-
body potential to a sum of central two-body potentials:

@(u(l, ),u(/z), . . . )= —,
' g P(~r(/)+u(/) —r(1') —u(l')~),

where r(/) is the equilibrium position of the Ith atom.
An additional assumption is that p(~R~) vanishes for all
but the (12) nearest neighbors of each atom. This leads to
the following force-constant matrix:

n n& 5—
P if I and I' are nearest neighbors

ro "o

Bu (/)Bu&(l') 4 P"+2
ro

if 1=I', (2)

0 otherwise,

where n= [r(/) —r(1') j/~r(l )
—r(1') ~. The derivatives on

the right side of Eq. (2) are evaluated at ~R~ =ro Ofte.n,
P'/ro and P" are referred to as the tangential force con-
stant and the radial- or bond-stretching force constant,
respectively. In the bulk, energy minimization requires
that P'=0 (but this constraint might be lifted near a sur-
face or step, as will be done in Sec. V E}.

By tuning the one free parameter P", this model does a
reasonably good job of fitting measured bulk-phonon
characteristics for a large number of fcc materials (see,
e.g., Fig. 1 of Ref. 17), yielding a maximum phonon fre-
quency co,„=2i/2&/" /M (=36.6 meV for nickel). Un-
less otherwise specified, the units for all frequencies (and
the inverse of all spectral densities) will be the natural fre-
quency &P"/M. For simplicity, I hold the crystalline
interatomic potential and geometry in the vicinity of ter-
races unchanged from their bulk values. This does
reasonably well at predicting surface-phonon characteris-
tics. ' The last approximation is that the potential and
geometry in the vicinity of steps is unchanged from the
bulk. These assumptions are not expected to be very
reasonable near a step, where the atomic environment
differs greatly from both that of the bulk and that of the
Oat surface. However, in the absence of both ab initio
calculations of force constants and experimental mea-
surements of near-step geometry, this model generates re-
sults which should serve as convenient (and well-defined)
reference points for the interpretation of future experi-
ments. This model is identical to that used in Ref. 8, and
in fact a lot of the data presented here can be extracted
directly from that extensive paper.

Owing to two-dimensional periodicity near a surface,
phonons in this region are parametrized by the two-
dimensional wave vector Q. [Throughout this paper, I
will use the notation V to denote a three-dimensional
wave vector, V to denote its two-dimensional projection
onto the surface, and V (= V x=V x&~V~) to denote

their one-dimensional projection along the step edge. j To
find the normal modes for each Q, one must diagonalize
the dynamical matrix

d &(I„/,'; Q ) =M 'g, expig r(/ —I') .
8 /B p/'

(3)

A11 relevant information about phonons near surfaces is
contained in the spectral-density function

X 5( co —co„(Q ) ), (4)

where e'"'(/„Q) and co„(g) are the nth eigenvector and
eigenvalue, respectively, of the dynamical matrix. The
spectral density is simply related to various correlation
functions, and additionally appears in formulas for
inelastic-scattering intensities in which A'co and A'Q

represent the energy transfer and parallel-momentum
transfer, respectively. ' Where possible to avoid con-
fusion, explicit reference to the dependence of various
quantities upon the subscripts a and P will be omitted.
Plots of the spectral density will represent the trace
Trp(co)=p (co) +py (co)+p„(co).

Surface phonons manifest themselves in p(I„/,';Q, co)
as 5 functions in cu whose integrated strengths decrease
rapidly with increasing I, or /,

' (Fig. 8). When /, and I,'

are large, p( 1„1,' ) depends only on the difference
I, —l,'—:L„reducing to

p(/„I,'; Q, co)~p(L„'Q, co. ):—Ci fdg, p(Q, co)expig, r, (L, ) .

The function p(Q, co) = g3, e'"'(Q)e'"'*(Q)5(co
—co„(Q}} is the bulk spectral density, which relates
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FIG. 8. Surface spectral density of fcc(111) evaluated at
Q =M, a high-symmetry point of the surface BZ (dashed line).
Also shown is the same spectral density, evaluated 10 layers
deep (solid line). The peaks at co=1.24 (Rayleigh mode S& ) and
co=2. 59 ("gap" mode S2) are due to surface phonons, whereas
the two broad bands at 1.41&co&2.07 and 2.66&~&2.83 are
due to bulk phonons. By 10 layers, the surface mode peaks have
decreased by several orders of magnitude. In fact, the solid line
should be compared with the surface-projected bulk spectral
density p(L, ;Q=M, co) (dotted line). These and all subsequent
spectra have frequency units of &P"/M (= 12.9 meV for nickel,
as an example) and have been convolved with a Lorentzian
whose half width hen equals 0.02.

directly to the energy-loss spectrum of neutrons scattered
from a crystal. In this and other similar integrals over
one or more wave-vector components, the constants C.
and the range of integration are chosen so that
C j fd "Q equals unity. The surface-projected bulk

spectral density p(L, ;Q, co) contains no surface informa-
tion but serves two purposes. First, through Eq. (5) it can
be compared to the limiting behavior of p(l„l,'), thereby
serving as a check of the numerical calculation (Fig. g).
Second, bulk-phonon bands appearing in p(L, ;Q, cu) also
exist in p(l„l,'; Q, u), whose knowledge aids the interpre-
tation of features in the surface spectral density.

However, the main task of this paper will not hinge
upon the three different spectral-density functions dis-
cussed up to here, as these do not allow for the treatment
of an isolated step on an otherwise Aat surface. Near the
step of such a system, the spectral density is more ap-
propriately described by the inclusion of two indices Iy

FIG. 9. (a) Edge-projected bulk spectral density
[p(L» =L, =O;Q, co)] for fcc(ill) with a [110] edge, evaluated
for Q at the end of the step BZ (dotted line). This is compared
with the spectral density for fcc(755) for Q =S, evaluated deep
inside the crystal (solid line). (b) Edge-projected surface spectral
density [p(L» =0;I, = /,

' =1;Q, co) ] for fcc(111) with a [110]
edge, evaluated for Q at the boundary of the step BZ (dotted
line) ~ This is compared with the spectral density for fcc(755) at
Q =S, evaluated in the middle of the terrace (solid line). In ad-
dition to the bulk band (&2 & co & 2&2), the peak at co-1.23 is
a (substantially narrower) surface-phonon band. (c) Spectral
densities for (211) (solid line) and (755) (dotted line) surfaces,
evaluated at the step edge for Q=S. Note the rapid conver-
gence as the terrace width increases from approximately 2 to 5
(atomic rows). The bulk band (&2 & co & 2&2) is present but the
surface band (1.227&co& 1.241) is missing at m (or m')=1, sig-
nifying that the S& amplitude vanishes at the step. The peaks at
co= 1.10, 1.28, and 2.38 are due to step phonons. For clarity the
three pairs of curves are separated by bp=3. 0.

and l' which indicate horizontal distance of each atom
from the step edge:

p(I, I, ;I', I,';Q, co)= g e'"'(l, l, ;Q)[e'"'(I», l,';Q)]*

X5{co a»„(g)) .— (6)
The ordered pair (1,1, ) specifies a row of atoms parallel
to the step. Near an edge, step phonons manifest them-
selves in p(l, l„'I', I,';co) as 5 functions in co whose in-
tegrated strengths decrease rapidly as either ly Iy I or
I,' increase. When I, and I,

' are large, p(l», I, ;I», l,') de-
pends only on the pair of differences L, and ly ly Ly,
thereby reducing to

p(I», I„'I',I,';Q, co)~p(L, L, ;Q, co):—C2 f fdg dg, p(g, co)exp(i [Q r (L)+Q, r, (L)]] . (7)

The function p(L», L„'Q,co) will be called the edge-projected bulk spectral density. Figure 9(a) demonstrates Eq. (7)
graphically. If I» and I' are large, p(l, I„I',I,') depends only on 1„1,', and L, with the simplification

p(l, l, ;I', I,';Q, co)~p(L;I„I,';Q, co) =C3 f dg p(l„l,';Q, co)exp[ig»r»(L)] .
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IV. NUMERICAL DETAILS

The first item of business is to determine the extent (in
frequency) of the bands spanned by the edge projection of
bulk phonons p(L, L, ;Q, co). The boundaries of the bulk

TABLE II. DiAerent types of spectral-density functions. For
the third column, the superscript denotes the dimensionality of
the integral of the standard output required.

Symbolic notation Name
Calculation procedure

used here

p(Q, ~)
p(l„ l,'; Q, co)

p(L, ;Q, ~)
p(l», l, ;1~,l,'; Q, co)

p(Ly ', l„l,'; Q, cu)

p(Ly, L„'Q, co )

bulk
surface

surface-projected bulk
edge

edge-projected surface
edge-projected bulk

b
a' orb

c
bl

a' or b'

' Diagonalization of 3 X 3 matrix.
Green's-function method for low-MI surface (Ref. 20).' Green's-function method for high-MI surfaces (as described in

Sec. IV).

Here, p(L;l„l,'; Q, co) is the edge-projected surface spec-
tral density. Figure 9(b) verifies the asymptotic behavior
asserted by Eq. (8). Only p(l, l„l', l,') contains informa-
tion about step vibrations. However, the two edge-
projected spectral densities p(L; l„l,

'
) and p(L, L, )

prove useful for the study of vibrations near steps in
much the same way that the surface proj-ected spectral
density p(L, ) is important for studying surface vibra-
tions, as outlined in the previous paragraph.

The normalization of the functions listed in Table II is
determined by their precise definitions and by the com-
pleteness relation g„j,n )(n =I, where ~n ) is the nth
eigenvector of a dynamical matrix. For instance, the nor-
malization of the edge-projected surface spectral density
is Io"d co p l3( L;l„l,'; Q, co ) =5 l35, , 6L .

y

In addition to step-phonon peaks, the frequency spec-
trum of p( l~, l, ; l~, l,'; Q, co ) contains both bulk- and
surface-phonon bands, as will be specifically shown in the
next section. Strictly speaking, a step mode exists only if
it does not lie in either of these bands. Otherwise, it
would couple to these modes, radiate away its energy and
amplitude, and be a finite-lived step resonance, in the
same way that the excited states of the hydrogen atom
are nonstationary, owing to their coupling with the elec-
tromagnetic continuum. This also closely parallels the
situation for a Oat surface, where a surface resonance
represents the dissipative coupling of a surface model to a
continuous band of bulk modes. On flat crystals, it is
possible for surface phonons to be symmetry-decoupled
from degenerate bulk bands if the wave vector parallels a
mirror plane of the crystal. On stepped crystals, howev-
er, the only mirror plane is perpendicular to the step.
Hence the only wave vectors which would allow such a
decoupling are in a very small neighborhood around
Q=I, the origin of the BZ. Even this is untrue for step
C, which has no mirror plane [see Fig. 2(c)].

bands for a [110]edge are portrayed in Figs. 10(a), 10(b),
and 10(d); for a [112] edge, in Fig. 10(c); and for a [001]
edge, in Fig. 10(e). In all three cases the edge-projected
bulk band contains no frequency gaps, which contrasts
with the familiar gaps in surface proj-ected bulk bands
[e.g. , Figs. 7(e)—7(g) of Ref. 5].

The next task is to determine the extent of the bands
generated by the edge-projection of surface vibrations
p(L; l„1,'; Q, m ). Figure 10 depicts the surface-band
boundaries for a (111) surface with (110) edge [10(a) and
10(b)], a (111)surface with [112]edge [10(c)],a (100) sur-
face with [011]edge [10(d)], and a (100) surface with [001]
edge [10(e)]. Note that Figs. 10(a) and 10(b) exhibit a gap
between the edge-projected surface and bulk bands, albeit
a narrow one. This allows for the possibility of step pho-
nons residing within this gap, reminiscent of gap modes
on Aat surfaces.

The characteristics of phonons near an isolated step
are studied by performing calculations for high MI sur-
faces with such steps. The separation between steps (i.e.,
the inverse of the angle between the stepped surface and
the fiat surface) is increased by integral numbers of atom-
ic rows, until the spectral density con verges to its
infinite-terrace-width limit. Figure 9(c) demonstrates
how swiftly this limit is reached. This process resembles
slab calculations (see next paragraph), in which the crys-
tal thickness is increased until no substantial change is
seen in the surface phonon eigenv-ectors and frequencies.

The method of calculation was the Green's-function
technique, an exact, semianalytic method which allows
the crystal to be infinitely thick. This previously used
approach has been incorporated into a very general com-
puter program which allows for any force-constant model
or surface Miller index. This contrasts with the more
commonly used slab technique, which involves brute-
force diagonalization of a matrix whose size is propor-
tional to the crystal thickness. For stepped surfaces the
slab technique is even more cumbersome, as the size of
the matrix becomes proportional to the product of the
slab thickness and of the distance between step edges.
The sizes of the matrices manipulated by the Green's-
function method are proportional only to the distance be-
tween step edges. Another distinguishing feature of the
Green's-function method is that it directly calculates the
spectral-density function p(co), instead of first determin-
ing the normal-mode eigenvectors and eigenvalues. De-
tails of this implementation of the Green's-function tech-
nique will appear elsewhere. ' Manipulations (e.g. , diago-
nalization or inversion) of an N XN matrix require
O(N ) operations, so the computational work increases
algebraically with terrace width. As will be seen later in
this section, the resulting accuracy increases geometrical-
ly with terrace width.

As the terrace width increases, so does the number of
surface phonons for each Q. Most of these are tightly
spaced in frequency, generating continuous surface bands
(in addition to the more familiar bulk bands). A few pho-
nons are nondegenerate with these bands, having peeled
away from either the bulk or surface modes. This
identifies them as step phonons (Fig. 11). Before proceed-
ing, I will clarify the relationship between the phonon
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FIG. 10. Schematic diagrams of bulk, surface, and step phonons for systems A —F are presented in (a)—(e), respectively. The bulk
and surface bands are bordered by long- and short-dashed lines, respectively. Step phonons (and resonances) are represented by solid
lines. The wave vector Q is taken to equal unity at the end of the BZ. Note the absence of any step modes for a type Dsystem. -

eigenvector [e(l„Q )] for a surface with periodically
spaced steps and that for a surface with an isolated step
[e(l, l„'Q)]. This will also clarify the relationship be-
tween the corresponding spectral densities. The eigen-
vectors should resemble each other in the limit of wide
terraces, but only if the proper mapping is made between
the "layer" index l, and the row indices (l~, I, ). This sim-
ple procedure is illustrated in Fig. 12, by comparing the
notation for fcc(755) with that for an isolated 2-type
step. For instance, l, =6 is mapped to (I,l, )=(—1, 1).

All mode characteristics are calculated from
p &(I„l,';Q, co} using Eq. (4}. For instance, the squared
amplitude in the eth direction is given by

co„(Q)+e
le'"'(I„Q)l'= hm f d~ p (I„I„-Q,ro}, (9)

0 ~„(Q)—e

keeping in mind that for a surface with periodically (but
widely) spaced steps [such as fcc(755)], the single index I,
must be used to indicate the position of the (widely
spaced sequence ot) atomic rows, rather than the ordered
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TABLE III. Convergence of type-3 step-phonon characteristics as terrace width increases.

MI

(211)
(533)
(322)
(755)

co(E, )

1.1031
1.1028
1.1028
1.1028

fE /'

0.582
0.581
0.581
0.581

1.2844
1.2854
1.2850
1.2850

(E ['

0.805
0.778
0.773
0.771

2.3847
2.387
2.387
2.383

5co(ME3)

0.0000
0.026
0.015
0.018

IME, I'

0.462
0.435
0.423
0.445

=ae +be ~ cos(Q R —5, )

+ce cos2(Q R —52), (10)

where R is the spacing between steps, A, is the lateral ex-
tent of the step phonon, and a, b, and c are on the order
of &P"/M . Similar equations hold for other step-
phonon characteristics, like the amplitude and polariza-
tion. The specific symmetry of the surface BZ might
place certain constraints upon these parameters. For in-
stance, for surfaces with p- or c-rectangular BZ's (i.e.,
those with mirror symmetry), the phases (5„52) vanish.
At the "end" of the surface BZ (i.e., along the dotted
lines in Fig. 7), a pair of identities follows simply from the
way that the BZ's fit together to fill momentum space and
from the smoothness of co(Q). For c-rectangular BZ's, b
vanishes. For p-oblique BZ's, the phases (5„52)are equal
to each other and specified by the symmetry of the right
side of Eq. (8) with respect to refiection through the point
midway between A and B. The second term in Eq. (10)
decays more slowly with R than the others so the fastest
convergence occurs by setting either Q R —5, =+sr/2 or
b =0, if possible. Accordingly, calculations were made to
obtain easily the infinite-terrace-width limit of the step-
phonon characteristics.

Before presenting results, it is worth justifying the
omission of surfaces with nonuniform terrace widths, as
specified towards the end of Sec. II. I use fcc(337) as an
example of such an 3-type surface. Adjacent steps on
fcc(337) have slightly dissimilar environments, of two
difFerent types. This leads to two modes of slightly
difFering frequencies, corresponding to diferent linear
combinations of vibrational amplitude at either edge.
The step modes of fcc(2N —1,2N —1,2N+3) will con-
verge to the correct results as N —+ ~, but require a fac-
tor of 2 = 8 increase in computations, thereby indicating
their undesirability for the main task of this paper, which
is the determination of step-phonon characteristics for a
completely isolated step.

band structure, the limiting behavior of the step-
phonon frequency is found to be

co(Q„,Q, R) —co(Q, R = ac )

step-phonon characteristics converge rapidly as the ter-
race width increases from 2 to 5 atomic rows. The polar-
ization of the step modes varies from row to row, but at
the step edge (where the amplitude peaks) E, and E2 are
transverse (to the direction of propagation) and ME3 is

longitudinal. Although neither transverse mode is either
shear horizontal (i.e. , perpendicular to step and parallel
to surface) or shear vertical, E, and E2 are, respectively,
polarized parallel and perpendicular to the step face
(Table V). In this and all subsequent tables, the quantity
E

~
indicates the squared amplitude of the jth step pho-

non, evaluated at the step edge. The square amplitude is
normalized to unity over the entire crystal; hence it
would equal unity for a step mode completely localized at
the row of edge atoms, but vanish instead for a bulk or
surface mode. The localization properties for typical
step, surface, and bulk modes are presented graphically in
Fig. 13.

As Q moves more than 10% away from the end of the
BZ [Fig. 10(a)j, ME3 loses its enhanced step (and surface)
localization, and Ez becomes degenerate with bulk
modes, transforming into a step resonance (ME&). E& re-
tains its localization properties over a longer portion of
the BZ, but no mode is even resonantly step-localized
near Q =0. For all of the step modes seen (on this and
other types of step), the polarizations depend only weakly
upon both Q and the terrace width.

V. RESULTS

A. (111)terrace with (001) step face

Near the end of the BZ, three step modes exist, includ-
ing one gap step phonon (E2 ) and one resonance (ME3).
The mode nomenclature is analogous to that introduced
in Ref. 5 for surface phonons. E and ME stands for edge
and mixed edge, respectively. Table III indicates that the

FIG. 13. Spatial dependence of the squared vibrational am-

plitude near an 2-type step, as manifested by the edge spectral
density pi l~ =i', I, =I,';Q, co). The wave vector Q is taken at the
end of the step BZ. This behavior di8'ers markedly for (a) E&

step phonon (co=1.10), (b) S& surface phonon (m=1.23), and
(c) bulk phonon ( co = 1.50).
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TABLE IV. Convergence of type-8 step-phonon characteristics as terrace width increases.

MI

(110)
(331)
(221)
(553)
(332)
(775)

co(E, )

1.1996
1.2080
1.2074
1.2081
1.2081
1.2081

/E 2

0.795
0.743
0.730
0.739
0.739
0.739

1.3164
1.2876
1.2881
1.2871
1.2871
1.2871

/E /'

0.848
0.803
0.790
0.774
0.771
0.770

2.4016
2.3515
2.3606
2.3483
2.353
2.349

0.000
0.000
0.000
0.002
0.027
0.004

0.679
0.606
0.587
0.600
0.753
0.569

B. (111)terrace with ( 111)step face C. &ther steps

The results for this step resemble those of the previous
system. Three step phonons exist, including one gap
mode and one resonance. At the edge, their polarizations
virtually duplicate those of 3, but because the step-face
orientations differ for 2 and B, the modes E, and Ez are
no longer polarized in directions parallel or perpendicu-
lar to either the step face or the terrace. The polarization
vector of E] lies in the plane bisecting those of the ter-
race and step face. The step-phonon frequencies are
quite similar to those of the type-A system. The main
difference is that E, lies much closer to the surface band.
As a result, E, is a true step mode only within (10% of
the end of the BZ [Fig. 10(b)]. One surprising limit to
note is the swift convergence of the step-phonon charac-
teristics with increasing MI (Table IV).

The similarity between the converged results and those
for fcc(110) is quite surprising, considering that the latter
is not usually considered to be a vicinal surface. The
numbers in the first row of Table IV refer to the three
surface modes commonly known as Si, Sz, and S7, which
have been studied both theoretically and experimentally.
More will be said about this in Sec. VI.

Similar behavior is seen for two of the other three
classes of stepped surface. For a type-C step, only one
step mode (E& ) exists, and it is not very strongly local-
ized to the edge. As a result, its characteristics do not
converge as rapidly as those for other step modes. The
polarization of E& is elliptical for small terrace widths
but becomes essentially linear (like the other step modes)
as the MI increases. Its polarization is neither longitudi-
nal nor transverse. Owing to the proximity of both the
bulk and the surface bands, E& does not survive very far
away from the end of the BZ [Fig. 10(c)]. In addition,
one broad step resonance (ME&) appears, polarized in a
direction not quite perpendicular to that of E, .

No true step phonons exist for a D-type system [Fig.
10(d)], at least not without modification of the present
very simple force-constant model. I examined surfaces
having MI's of the form (1 1 N), with N =5, 7, 9, 11, and
13.

Two step phonons exist for a type-E system. At the
zone boundary, E

&
and E2 are almost degenerate. E

&
is

polarized longitudinally and E2 shear horizontally. Ad-
ditionally, a shear vertically polarized step resonance
(ME3) is evident, although fairly broad. All three modes
exhibit step-localization properties only near the end of
the BZ [Fig. 10(e)].

TABLE V. Converged characteristics of zone-boundary step
phonons.

D. Summary of results

Stepped
surface Mode Frequency

Approximate
polarization

E
ME3

E)

ME3

1.103
1.285
2.38

1.208
1.287
2.35

[110] transverse
[001] transverse

[ 1 10] longitudinal

[110] transverse
[001] transverse

[1TO] longitudinal

E [ 0.842
ME2 1.00+0.05

[320] mixture
[011] mixture

no step modes

E, 0.925 [001] longitudinal
E2 0.938 [010] shear horizontal

ME3 l. 12+0.04 [100] vertical

(step
localization)

0.58
0.77
0.44

0.74
0.77
0.6

0.25
0.4

0.41
0.44
0.4

For systems 3 and B, two true step phonons are evi-
dent for each, as reported in Ref. 11. Two such modes
are also seen for step E, but only one exists for step C,
and none are seen for D. An additional resonance ap-
pears for each step except D. Hence three mutually or-
thogonal step modes (or resonances) appear for 3, B, and
E. This is consistent with what would occur if the atoms
not along the edge were infinitely massive (i.e., frozen in
place). In that situation, there would be exactly three
step modes, all mutually orthogonal and completely lo-
calized to the step edge. The substrate flexibility alters
this picture quantitatively for 2, B, and E. It is unclear
why this simplistic interpretation also fails qualitatively
for C and D. Table V summarizes the step-phonon
characteristics for all five systems.

To summarize these results, it is worth making several
comparisons and contrasts between step modes on vicinal
surfaces and surface modes on flat surfaces. As for sur-
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face phonons on Oat surfaces, when the step-phonon
dispersion pierces a bulk band, a step resonance appears
as a continuation. When a step phonon penetrates a sur-
face band (but remains nondegenerate with a bulk band),
the step resonance manifests itself as one (or more) sur-
face phonon(s) with very large amplitude at the edge, a
behavior analogous to that of a pseudosurface mode out-
put by a slab calculation. Hence, in certain cir-
cumstances, a step resonance represents the decay of a
step mode to a surface mode, but not to a bulk mode. On
the (100) and (110) surfaces of certain fcc crystals, certain
vibrational modes are seen (numerically) to localize in
layers near, but not restricted to, the topmost one. This
phenomenon is a direct result of the ability of such
single-layer modes to persist deep in the bulk. No analo-
gous single-row modes exist for fcc crystals; hence no
step phonons are expected to localize in a row near, but
not restricted to, the edge. Accordingly, none are seen.
On Hat surfaces, one surface phonon exists over the entire
surface BZ, all of the way to Q = I . The long-wavelength
characteristics of this mode, the Rayleigh wave, are de-
rived from elastic theory. In particular, its z-attenuation
length is inversely proportional to ~Q~. Similar argu-
ments can be used to discuss the possibility of a long-
wave, low-frequency step mode, expected to exhibit z-
and y-attenuation lengths inversely proportional to Q.
However, when these attenuation lengths significantly
exceed one atomic spacing (the size of the step), this di-
luted mode is not expected to view the monatomic step as
a defect which is strong enough to localize vibrations.
This prevents the occurrence of such acoustic step waves;
none are seen. Finally, no step mode is degenerate with a
bulk or surface band but decoupled from it by symmetry.
This is because such decoupling could only occur at
Q =0 (see end of Sec. III), a portion of the BZ where, it
has just been shown, no step modes exist.

E. Dependence upon the force-constant model

1.3

1.2

CD

1.1

.9

—0.04

surface stress

O. 04 0.08

FIG. 14. Surface-phonon frequencies for fcc(755) at Q =5, as
functions of surface stress P'. The units of P' are taken propor-
tional to roP". These were calculated in the partial harmonic
approximation of Ref. 5. The upper dotted line depicts the
lower boundary of the bulk band. The lower two dotted lines,
enclosing the tightly spaced sequence of four regular surface
modes, represent the surface band boundaries [as calculated
from Eq. (8)].

step modes (Fig. 16).
Nickel forms an fcc lattice whose bulk-phonon spectra

are fit well (better than any other element) by the simple
single force-constant model. Surface-phonon measure-
ments for the low-MI surfaces (100),' ' (110), and (111)
(Ref. 25) indicate varying amounts of surface intralayer
force-constant softening (P,'„'„r(Pb„,„) and tensile stress

Both step and surface phonons are sensitive to changes
in the near-surface force constants. One such possible
variation is a nonzero value of surface stress, meaning
that P'WO [see Eq. (2)] between atoms on the surface.
The phonon frequencies vary monotonically with surface
stress, whether it be positive (attractive or tensile) or neg-
ative (expansive) (Fig. 14). However, step phonons and
surface phonons differ in their sensitivity to changes in
the near-edge force-constant model, for obvious reasons.
For instance, if P'WO between atoms along the step edge
(akin to tension in a string), a substantial monotonic
dependence occurs in the frequencies of transversely po-
larized step phonons, though not for surface phonons or
longitudinally polarized step phonons (Fig. 15). In fact, a
step phonon appears on step D by peeling away from the
bottom of the surface band, if even an infinitesimally
small amount of negative edge tension is applied. Anoth-
er possible variation is in the near-surface spring constant
P". If this quantity is allowed to vary only along the step
edge, a substantial monotonic dependence occurs in the
frequency of /ongi tudi nally polarized step phonons,
though not for surface modes or transversely polarized

L%x%%
MEg

1.4

1.3

CD

1.2
CD

—P. 05 0

edge tension

P. 05 0.1

FI(jr. 15. Same as Fig. 14, but for stress confined to the step
edge. In this case, the partial and full harmonic approximations
coincide.
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with terrace width, most of which coalesce to form con-
tinuous bands. However, a small number of these might
localize to the step, which should itself be viewed as a de-
fect. In four of the five systems considered, the defect is
strong enough to generate such modes, but only near the
end of the step BZ. A simplistic "frozen substrate" ex-
planation predicts the existence of a total of three mutu-
ally orthogonal step modes (and resonances). This inter-
pretation qualitatively succeeds for steps 3, 8, and E, but
not for C or D. Step phonons are sensitive to changes in
the near-step interatomic potential. Accordingly, two
previous step mode measurements have yielded informa-
tion about that important region of the crystal surface. I
propose a third such experiment, with Ni(755), a possibly
simpler system than those previously studied.

Note added in proof Are.cent HAS experiment on
Al(221) by Lock, Toennies, and Witte seems to detect
step phonons for this 8-type surface.
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APPENDIX: KINK MODES

Near an isolated kink in a step on an otherwise Oat sur-
face there are no translational periodicities which
separate the Hami. ltonian into components corresponding
to difFerent phonon momenta. For a monatomic crystal,
the bulk-phonon band ranges continuously from 0 (acous-
tic modes) to co,„(=2&2M/" /M for the present mod-
el). A phonon can truly localize to the kink only if non-
degenerate with the bulk band, i.e., if its frequency
exceeds co „.However, Rayleigh's theory predicts that
the kink mode frequency must fall below bulk, surface,
and step bands, in the absence of sizable stiA'ening of
force constants near the kink. Thus only two cir-
cumstances allow for the possibility of one (or more) kink
modes. One requires substantial stiA'ening of near-kink
force constants, a quite plausible situation. The other re-
quires the crystal to be polyatomic, so that gaps might
appear in the bulk density of states, separating acoustic
from optical bands. For discussion purposes, I will as-
sume that this latter circumstance holds. Roughly speak-
ing, if the polyatomic mass ratio is large, so is the gap.
The upper band(s) consists of motion restricted almost
entirely to the light atoms, and the lower band involves
motion of both (all) types of atoms. Take LiI as an exam-
ple. This rocksalt structure has a mass ratio of 18:1. If a
kink in a step on a LiI surface consists of a lithium atom,
a kink mode probably results. The mode involves motion
of predominantly the single light atom, and the frequency
falls belo~ the bands of bulk, surface, and step vibrations
of lithium.
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