
PHYSICAL REVIEW B VOLUME 43, NUMBER 9 15 MARCH 1991-II
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The fine structure of the Ca 2p soft-x-ray-absorption edge is studied for a variety of bulk com-

pounds (Ca metal, CaSi2, CaO, and CaF2), for surfaces and interfaces [CaFz(111), BaFz on

CaFz(111), Ca and CaF2 on Si(111)],and for defects (F centers in CaF2). The observed multiplet

structure is explained by atomic calculations in a crystal field [cubic Oi, for the bulk and threefold

C„ for the (111)surfaces and interfaces]. While the bulk spectra are isotropic, the surface and in-

terface spectra exhibit a pronounced polarization dependence, which is borne out by the calcula-

tions. This effect can be used to become surface and/or interface selective via polarization-
modulation experiments, even for buried interfaces. A change in valence from Ca'+ to Ca'+ causes

a downwards energy shift and extra multiplet lines according to the calculation. The energy shift is

observed for F centers at the CaF2 surface and for the CaF2/Si(111) interface.

I. INTRODUCTION

The fine structure of x-ray-absorption edges is a useful
probe for the structural environment of atoms and their
chemical state. ' For example, there is a relationship
between the fine structure of the absorption edge and the
oxidation state, or valence, of the absorbing atom. A
program correlating the multiplet structure of an absorp-
tion edge with the valence has been successfully carried
out for the rare earths. ' Similar attempts are beginning
to take hold for transition metals. ' The task is more
difficult for the latter, since the atomic multiplet split-
tings are smaller. Consequently, they are affected by the
crystal field and broadened by band formation. Despite
these difficulties, it has been possible in some cases to
identify the valence and even the spin alignment" from
the multiplet structure. The knowledge of the valence is
important for materials as diverse as high-temperature
superconductors' ' and metalorganic compounds'
(phthalocyanines, hemoglobin, chlorophpyll).

A second avenue is just opening up, i.e., the spectros-
copy of buried interfaces. The main difficulty is to
penetrate the overlayer, and still be sensitive to a mono-
layer at the interface. It has been pointed out that the
core level and Auger shifts at the interface can be used to
become interface selective. In addition, the lower sym-
metry of the interface causes anisotropy, which distin-
guishes interface transitions from bulk transitions by
their polarization dependence. The same arguments ap-
ply to surfaces. Polarization-modulation spectroscopy at
core-level absorption edges could become a viable tool

when using the high briHiance of undulator-based syn-
chrotron radiation sources. This method would pick out
the interface (surface) contribution in a clean way, even
for buried interfaces, where very few techniques are avail-
able.

The Ca 2p edge is a prime candidate for testing the
feasibility of these concepts. The fine structure is very
sharp, since it is mainly due to localized Ca 2p-to-3d tran-
sitions. ' Therefore an atomic picture is a good starting
point. Ca has been the subject of widespread interest,
ranging from biology to semiconductor physics. For ex-
ample, microscopy of Ca-containing bone tissue has been
performed with x rays at the Ca 2p absorption edge.
The CaF2/Si(11) interface has been studied extensive-

ly ' because of its high structural quality, and
interface-related structures have been observed at the Ca
2p absorption edge. ' ' Here we aim at an in-depth un-
derstanding of the fine structure for various model com-
pounds, surfaces, interfaces, and defects. For this pur-
pose we correlate the experimental spectra with calcula-
tions of the atomic multiplet structure that include the
effect of the crystal field, valence changes, and the lower-
ing of the symmetry at surfaces and interfaces.

II. EXPERIMENT

The experiments were carried out with a 10-m toroidal
grating monochromator ' (TGM), combined with a
display spectrometer at the National Synchrotron Light
Source at Brookhaven. Core-level absorption was mea-
sured by detecting Auger electrons, which are propor-
tional to the number of core holes created in the absorp-
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tion process. In some instances we also collected secon-
dary electrons and photodesorbed positive ions. The
latter were used to obtain a signal from the immediate
surface region. Auger and secondary electrons gave simi-
lar results, as long as the energy detection window for
Auger electrons was kept sufficiently wide (9 eV in our
case) to cover the main part of the Auger multiplet struc-
ture. ' ' By selecting portions of the Auger spec-
trum it was possible to enhance certain members of the
absorption edge multiplet (see Fig. 4). Similarly, the en-
ergy shift between bulk and interface Auger peaks
could be used to selectively enhance bulk or interface
features, depending on the placement of the energy win-
dow. It should be noted that the cross section in the
main Ca 2p absorption lines of CaF2 is so large that satu-
ration effects are encountered, particularly when the in-
cident light is close to grazing. In this case the escape
depth of the Auger (secondary) electrons becomes larger
than the absorption depth of the light, and all core holes
contribute to the electron yield, independent of the ab-
sorption coefficient. As noted early on, this violates the
principal premise of absorption spectroscopy in the
partial-yield mode, which requires that the electron es-
cape depth is small compared to the photon absorption
depth. The polarization was varied from s polarization,
with light incident normal to the sample surface, to p po-
larization with light incident about 60 from normal.

The samples were prepared as follows: CaF2 was
grown epitaxially ' on a clean Si(111)7X 7 surface at
about 700 C, with postanneals in the 800 C—850 C
range, depending on thickness. Cleaved single crystals
were also used, but they gave broader structures, since
heating was required to avoid charging. CaO single crys-
tals were cleaved and heated. Ca was evaporated.
CaSi2 was prepared by evaporating Ca onto Si and an-

nealing. ' For thin epitaxial CaF2 films on Si(111) the
thickness could be monitored by observing the Ca 2p and
Ca 3d core level intensities of the shifted interface
peak. It should be noted that the ionic Ca com-
pounds are very sensitive to radiation damage (see
also Sec. VI). However, the dose to collect an absorption
spectrum with the eScient display spectrometer was
about 10 times less than that required for radiation dam-
age to occur.

III. CALCULATION METHOD

The Ca 2p electron has dipole-allowed transitions into
s- and d-like final states, the lowest being Ca 4s and Ca
3d. The 3d channel is by far stronger than the other
channels since the 3d wave functions collapse in the pres-
ence of the Ca 2p core hole, and thus dramatically in-
crease their overlap with the Ca 2p. ' This makes the
problem of calculating the Ca 2p absorption edge amen-
able to an atomic multiplet approach, i.e., the calculation
of the Ca + 2p 3d -to-2p 3d' dipole transition. Thereby
one starts from the premise that the interaction of the
core hole with the excited electron dominates over the in-
teractions with neighboring atoms. The local environ-
ment in the solid is then taken into account as the adap-
tation of the spherically symmetric, atomic field to the
crystal symmetry. The first step is the inclusion of a cu-

bic (octahedral) crystal field, representing the Oh symme-
try in the bulk Ca compounds studied here. It is
represented by a single parameter X . Then the sym-
metry is reduced to C3„representing the threefold
CaF2(111) surface or interface. In this case one has two
extra parameters, i.e., X ' and X ' . The total crystal-
field Hamiltonian in C3, symmetry is

—X400 U 400+X410U 410+X210U210
CF

The U's are unitary transformations, which relate to
scaling factors of 0.304, 0.530, and 0.358, respectively.
The X U term, also denoted by 10Dq, splits the d or-
bitals into a triply degenerate t2 (I z~) and a double de-
generate e (I ~2) manifold, excluding spin degeneracy.
The X ' and X ' terms split the t2 manifold into a dou-
blet (A3) and a singlet (A&). The e manifold turns into a
A3 doublet in the C3, symmetry, and mixes with the A3
doublet derived from the t2g manifold. The crystal-field
parameters are fitted to the experimental multiplet struc-
ture. Since the X4' and X ' terms do not modify the
average cubic crystal-field splitting, one can use the bulk
X term as a starting point for calculating a surface
multiplet. Details concerning the group theory and the
calculation methods can be found in the book by Butler
and in Ref. 44.

IV. BULK COMPOUNDS

X-ray absorption spectra of Ca are shown on the
bottom of Fig. 1 for octahedral, sixfold coordination in
CaO and for cubic, eightfold coordination in CaF2. They
are reproduced by our multiplet calculations using
crystal-field parameters 10Dq of +1.2 and —0.75 eV, re-
spectively (Fig. 1, top). The theoretical CaO spectrum
consists of seven allowed transitions, which are
broadened by a combination of a Gaussian and a
Lorentzian to simulate broadening mechanisms originat-
ing from band dispersion, vibrations, and (autoionization)
decay. These broadening mechanisms are found to result
in different values for every of the four main peaks. ' As
the main interactions are the core-hole spin-orbit split-
ting and the crystal field, the four main peaks can be
loosely assigned as 2p3&2-t2g, 2p3/2 eg 2p, &2-t2~, 2p»2-eg,
in order of increasing energy. The small leading peaks
originate from the mixing of states due to the multipole
interaction of the core hole with the valence electron,
combined with the 3d spin-orbit splitting. The absolute
energy scale is off by about 2 eV. This originates mainly
from the neglect of screening. The interpretation of the
CaF2 spectrum is similar, but due to the eightfold sur-
rounding one has a negative 10Dq, and the order of the
t2g and eg orbitals is reversed. The intensity of the e
peaks is low, which prohibits a simple assignment of the
2p3/3 (L3) part.

The Ca 2p absorption spectra of Ca in metallic envi-
ronments, such as Ca metal and CaSi2, show two broad
peaks with a weak, sharper structure at the onset (Fig. 2,
bottom). Note that the core-level binding energies rela-
tive to the Fermi level (vertical bars in Fig. 2) coincide
with the onset of the absorption. This triplet structure is
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V. SURFACES AND INTERFACES

First, we will discuss surface effects, since they can be
detected rather well. Interface features always show up
together with surface features on thin film samples. To
isolate them requires a good understanding of the surface
contribution. The clean CaFz(111) surface exhibits
several characteristic surface contributions to the Ca 2p
edge, as indicated by arrows in Fig. 3 and in the experi-
mental part of Fig. 4. Similar surface excitons have been
observed for ionic and rare gas ' ' solids. The sur-
face features on CaF2(111) are revealed by suppressing
them with a few layers of adsorbed BaF2 (overlapping
dotted and solid curves in Figs. 3 and 4). BaFz exhibits
the same ionic lattice as CaFz and thus provides a bulk-
like environment for Ca surface atoms. The spectra in

Fig. 3 are taken in the Auger detection mode with a prob-
ing depth of typically 20 A, according to universal escape
depth curves. By moving the Auger detection window
off the bulk Auger peak we have suppressed the two large
bulk peaks in Fig. 3. The surface sensitivity can be fur-
ther enhanced by detecting ions, emitted from the surface
as decay product of the Ca 2p core holes. Low-energy
ions do not penetrate more than one or two atomic lay-
ers. ' Such spectra are shown in the experimental part
of Fig. 4. As expected, the surface peaks are even
stronger.

It is important to observe that the surface features de-
pend on the polarization of the incident light (Fig. 4).
Most of them are excited by the component of the
electric-field vector perpendicular to the surface, which is
present in p polarization only. In s polarization, on the
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other hand, the solid and dotted lines for the clean and
BaF2-covered surface nearly completely overlap each oth-
er, except for a region around 348 eV (bottom of the ex-
perimental part of Fig. 4). This strong polarization
dependence of the surface features is in contrast to isotro-
pic behavior of the bulk spectra, as represented by the
BaF2-covered surface. No polarization dependence is
expected from an isotropic bulk lattice, such as the cubic
CaF2 structure. The (111)surface, on the other hand, has
a lower symmetry, giving rise to an anisotropy of the op-
tical absorption. The F atom above the outermost Ca
atom is missing, thereby lowering the symmetry to three-
fold C3, . Consequently, the orbitals oriented perpendicu-
lar to the surface are not equivalent to orbitals oriented
parallel to the surface. By using optical selection rules
for the perpendicular component of the angular momen-
tum m one can select orbitals of various orientations by
using the orientation of the electric field vector. This
prototype case shows that anisotropy could be useful for
future, polarization-modulation experiments that
separate surface and interface contributions from the
bulk.

The extra peaks in the surface absorption spectrum
and their polarization dependence can be calculated by
taking into account the lowering of the symmetry from
0& for bulk Ca atoms to C3, for surface Ca atoms, as
shown in the theoretical part of Fig. 4. The parameters
for the calculation are 10Dq=X U = —0.75 eV, as
in bulk CaF2, X ' = —1.0 eV, and X ' =+ 1.0 eV. The
extra surface features essentially originate from transi-
tions that were symmetry forbidden in the bulk, but be-
come allowed in the lower symmetry of the surface. The
main surface feature at 351.5 eV is clearly accounted for,
including its polarization dependence. Note that the ex-
perimental, p-polarized spectra include components of
the electric-field vector parallel and perpendicular to the
surface, since they are taken at angle of incidence of 60'
from normal. The other pair of extra surface features
at lower energy (see arrows in the theoretical part of Fig.
4) has a counterpart in the difference spectra of Fig. 3
too, although less pronounced. Additional peaks in the
difference spectra on the low-energy tail of the two big
bulk lines are due to a narrowing of those lines upon
BaFz adsorption. This may indicate an energy shift of
the two principal lines from the bulk to the surface, as ex-
pected from the calculations. The pair of low-energy
features is calculated to appear in s polarization as well as
in p polarization. Comparing the clean and BaF2-covered
spectra for s polarization in Fig. 4 a slight, though incon-
clusive difference is seen near the calculated energy in s
polarization (see fine arrow). Minor differences between
calculation and experiment, e.g. , a weak extra surface
feature above 354 eV, could be due to the choice of the
parameters for the surface crystal field, or due to the
neglect of 4s final states.

An interface contribution to the Ca 2p absorption spec-
trum can be found at the CaFz/Si(ill) interface.
Figure 5 shows data for epitaxially grown CaFz films,
normalized to the incident photon Aux. Interface contri-
butions can be identified by observing their attenuation

when the film thickness is increased beyond a monolayer.
Surface contributions, on the other hand, remain in-
dependent of thickness, while bulk contributions increase
with thickness. Looking in Fig. 5 for spectral regions
where the intensity (per incident photon) decreases with
thickness, one finds two peaks at energies 0.6 eV below
the two main bulk features. They are best seen in spec-
trum for two layers (solid line). For the five-layer film the
interface peaks are attenuated, and a pair of surface
features starts to dominate at an energy 0.3 eV below the
interface structures (compare Figs. 3 and 4). En order to
obtain the proper line shape for the interface layer we
have tried to subtract the contribution of the outer layer
from the two-layer spectrum by using the surface spectra
from Fig. 4. This turned out to be difficult since small
modifications of the sharp bulk lines have a large effect
on the difference spectra. We have found that the best es-
timate of the interface spectrum is the monolayer spec-
trum, shown on a larger scale in Fig. 6. It is known from
previous work " that both the Ca core-level shifts and
the energy of the Ca-related interface state near the top
of the valence band do not change when the first layer is
covered by further layers. We can expect that the Ca 2p
absorption spectra of the monolayer and the interface
layer are similar, too. The monolayer spectrum in Fig. 6
depends on the polarization, reAecting a lowering of the
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