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Effect of plasma waves on the optical properties of a multilayered metallic Fibonacci superlattice
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Within the hydrodynamic model of electron dynamics, the optical properties of a metallic Fi-

bonacci superlattice have been studied for the region of p-polarized soft x rays and the extreme ul-

traviolet. By using the 4X4 transfer-matrix formalism and taking into account retardation effects

and the coupling between transverse and longitudinal waves at the metal boundaries, we have dis-

cussed the electromagnetic normal modes for the quasiperiodic superlattice in the rational approxi-

mation. We found that the dispersion curves are mainly of two types, and, similar to the

reAectivities, both the real and imaginary parts of the dispersion-relation pattern have a rich struc-

ture of self-similarity. With increasing generation number, the electromagnetic modes all become

critical.

I. INTRODUCTION

In the past few years, many scientists have become
very interested in the optical properties of periodic and
quasiperiodic superlattices. ' ' Based on the hydro-
dynamic model and the transfer-matrix method, by tak-
ing into account plasma-wave spatial dispersion and re-
tardation, and using the additional boundary condition
(ABC), ' Mochan and Castillo-Mussot studied the
dispersion relation of the electromagnetic normal modes
and the reflectivities of infinite conductor-insulator and
conductor-conductor periodic superlattices, and obtained
a variety of modes made up of interacting surface and
bulk plasmons, which yield a rich structure in the
reflectance spectra. Kohmoto, Sutherland, and Iguchi
proposed an experiment to probe the (quasi) localization
of the phonon, in which the optical layers are constructed
following the Fibonacci sequence. The consequent nu-
merical results reveal that the transmission coefticient has
also a rich structure and is multifractal. Recently, we
calculated the reflection of s-polarized soft x rays and the
extreme ultraviolet from a metallic Fibonacci superlattice
(MFSL). ' ' We found that the calculated reAection
spectra are of the interesting self-similarity pattern, some
strong reflection peaks move to a higher-frequency region
compared with the usual periodic superlattice, which
stimulates the interest in the study and making of soft x
rays and extreme ultraviolet reflectors. Later we made a
further study of the dispersion behavior of the elec-
tromagnetic normal modes for the s-polarized waves in

the rational approximation. ' ' We revealed that both
the real and imaginary parts of the dispersion curves are
of self-similarity, the scaling of which is the same as that
in the situation of the reflection spectra. In this paper we

will discuss the case of p-polarized electromagnetic waves

by taking into account the coupling between transverse
and longitudinal waves at the metal boundaries, and
present a general formalism for the calculation of the
dispersion relation of the electromagnetic normal modes
in the rational approximation for the nth generation
MFSL.

II. GENERAL FORMALISM OF THE DISPERSION
RELATION FOR THE p-POLARIZED

ELECTROMAGNETIC WAVE

The Fibonacci superlattice structure, which was first
presented by Merlin et al. , can be constructed by stack-
ing recursively along the z direction with two generators,
blocks L and S, mapping the mathematical rule in the Fi-
bonacci sequence, i.e.,

S, =tLI, S2=ILSI, S3= ILSLI, . . . ,

S„=S„)S„
In the case of MFSL, each block contains the same two
kinds of metallic layers A and B. The thickness of the
layer 3, which is denoted as dz, in block L is the same as
in block S, but the thicknesses for layer B in the two
blocks are of different values, which are denoted as diaz
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and diaz for the two blocks, respectively. As adopted in
Ref. 14, the ratio of the thickness of the two elementary
blocks is just the inverse of the golden mean,

d4+d2ts V5 —1A=
dg +de 2

(2)

The total thickness of the nth MFSL can be expressed as

D„=(F„,+AF„2)(d „+d2tL ) . (4)

As the s-polarized electromagnetic waves do not couple
to plasmons, we will only discuss the situation of the p-
polarized waves. Let us now consider a general case of a
metal layer of thickness d„ in the MFSL, in which there
exist two kinds of p-polarized electromagnetic waves, the
reflectance (left moving) and transmission (right moving)
waves, the wave vectors of which lie on the x-z plane and
take the values as

KT„=(q,O, +kT ), p=A, B,
where q and kr„are the x and z component of the wave
vectors, which satisfy the following equation:

For an nth generation MFSL, we have X =2F„metal
layers, where F„ is the nth order of the Fibonacci se-
quence, which is defined as

Fo= 1) F) =
1& F2=2& ~ . . ) Fn =F~ &+F~

(3)

function, which is given by
2

Capp
eLp(&) —1

2
co + t co/7 PpKLp

(12)

where P =3uF /5 with uz the Fermi velocity of the metal.
We assume that anywhere inside the metal layer of

thickness d„ the field is given by a superposition of these
four waves. Hence the field is determined by any four in-
dependent components at one point. As in Ref. 6, the
corresponding four z-dependent components can be
chosen as BT and p—L, respectively; here p is the scalar
potential in the Coulomb gauge. For the two interfaces
of the metal layer in MFSL, they are related through

B+

BT BT
—p y+ p = A, BL,BS, (13)

right

—ikT d ikT d —ikL d ikl d
T„=diag(e "",e P ",e "",e ""). (14)

For convenience, one can also substitute the related four
independent electromagnetic 6e1d quantities E, B, E„
and p for BT and pL a,t any point in the metal layer
through

kT2p=(m/c)2eTp(~) q2, p= A,—B,
here q is given by

q =(co/c)sin8,

(6)

(7) z

BT
p= A, BL,BS, (15)

where 0 is the incident angle, and c is the speed of light in
vacuum. The function eT„ in Eq. (6) is the transverse
dielectric function for the metal layer. In order to take
account of the retardation effect on the system, we still
adopt the model dielectric function in the form of the
Drude local dielectric function for the metal layers in the
MFSL,

where

z lq l

1 1 0 0
—ikL„sk~„

0

(16)

eT„(co)= 1—
2

Q)pp p=A, B,
CO +ECOITp

copp=(4vrnpe /m, )'~, p= A, B, (9)

where n„and m, are the electron density and electron
mass of the metal layers, respectively.

In the metaHic layer, there are also two longitudinal
waves with the wave vectors

where ~„ is the electric relaxation time in the metallic lay-
ers, and ~p„ is the plasma frequency for the two sorts of
metal layers,

with

kT cP
P 6'TACO

P
&TACO

(17)

The combination of Eqs. (13) and (15) leads to a 4 X 4
transfer-matrix M „for the electromagnetic waves propa-
gating through a metal 1ayer of thickness d„along the z
direction in the MFSL,

M =G T G—v —v—v—v

which satisfies

KL =(q, O, +kL„), p=A, B,
obeying

eLp(KL„, co) =0,

(1O) B
E =M„

left

B

right

p= A, BL,BS .

where eL is a spatially dispersive longitudinal dielectric By using the above equation to the positions of all inter-



43 EFFECT OF PLASMA WAVES ON THE OPTICAL PROPERTIES. . . 6895

Zp N

where C „ is the nth-order transfer matrix, which is gen-
erated in agreement with the Fibonacci sequence,

C, =C„)C„ (2 l)

with the two initial generating seeds for the two elemen-
tary blocks of the MFSL,

C0=M qM ~~, C )=M qM ~I (22)

If we let the nth finite MFSL act as a unit cell, and
stack it repeatedly in the z direction infinitely, i.e., in the
rational approximation, ' we can obtain the electromag-
netic normal modes of the system in the form of Bloch
waves, which means

E
B

E,
Zp

E
B—ipD„=e

N

(23)

where p is the Bloch wave vector. Comparing Eq. (20)
with Eq. (23), we finally obtain the dispersion relation
p =p (co) as follows:

det(C „—e "I) =0, (24)

where I is a unit matrix. From Ref. 6 one can rewrite the
dispersion relation in the following simple form:

4 cos (pD„)+2a „cos(pD„)+a'„—2 =0,

faces and the two surfaces zo and z& for the system, we
can obtain the relation for the electromagnetic waves
through an nth generation MFSL asE„E

B B
E —n E=C

Z Z

layers be d~ =100 A, and d~L =200 A, respectively. For
metal Mg, we take electron density nz as 8.63X10
cm, and for metal Al, we take electron density n~ as
18.1X10 cm . As used in Refs. 6 and 15, we choose
the electronic relaxation times as ~„=100/cuz„. The
stiAness constants for the two elementary metal layers are
chosen to be P„=0.04c and 13~ =0.05c, respectively.
For convenience, we set frequencies in units of co~~, and q
in units of plasma wave vector kzz.

For the special case of q =0.5k„~, we plotted two pairs
of calculated curves of the dispersion relation co versus p
of metallic superlattice with a periodic unit cell of a fifth
generation MFSL in Figs. 1 and 2. Figure 1 displays the
solution with smaller imaginary part, while Fig. 2 is for
the solution with bigger imaginary part. In the two
figures, the real parts of p are shown in the left-hand side
panel and its imaginary parts in the right-hand side
panel. The real and imaginary parts of p are in units of
m/D„and F, /D„, respectively. One should note that we
have used logarithmic scales for imaginary parts of the
figures.

Comparing with our recent work for the s-polarized
electromagnetic modes, ' we found that Fig. 1 mainly
gives information about the propagating transverse wave
modes, which demonstrate the pattern of the reAectivity
(see Fig. l) if one maps the forbidden frequency bands of
the real part p (see the left-hand side panel) to the
reAection maxima, ' and Fig. 2 corresponds to the longi-
tudinal modes with much smaller frequency gaps and
bands compared with Fig. 1. We denote these two modes
as PTM (propagating transverse wave mode) and PLM
(propagating longitudinal wave mode), respectively.

From our numerical calculations, we found the first
very interesting result that similar to the pattern of
reflectance spectra, both the real and imaginary parts of
the PTM pattern in the region of p-polarized soft x rays

where the two coefficients are 24 I I I I IIII' 2.4

and

a„=—Tr(C „) (26)
2.2

q=o, 5kpp

~=1OO/~,

a'„= [Tr( C „) —Tr( C „)] /2, (27) 2.0 —2.0

respectively. As the transfer matrices are all complex
matrices due to the dielectric functions we used, the
Bloch wave vector is now also a complex vector.

III. NUMERICAL RESULTS AND DISCUSSIONS

~/~PII ~,S

1.6

—1.8

In Sec. II we have presented formal equations for cal-
culating the dispersion relation of electromagnetic nor-
mal modes of a metallic Fibonacci superlattice. But one
need note that Eq. (25) is quadratic in cos(pD„), i.e.,
there are two solutions for each frequency. In the real
case of the numerical calculation, these can be sorted out
according to the imaginary part of Bloch's wave vector p.

In order to compare the present results with our previ-
ous works, we still consider the layer 3 as metal Mg, and
layer B as metal Al, and let the thicknesses of the metal

—1.4

1.2
0.0 0.2 0.4 0.6 0.8 1.0 1o

n, Re(p)/~

III I I I I I III

10 10 '
1

D& Ixn(p)/F,

FIG. 1. Dispersion relation ~ vs complex vector p of small
imaginary part modes for a superlattice with a periodic unit cell
of a fifth generation MFSL. The relevant parameters are
dg = 100 A dgL =200 A 7 = 100/cop g =0.5k' and ~p& is the
plasma frequency for metal Al.
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unit cell of MFSL are 8 and 5, respectively. The frequen-
cy scaling change, which is the same as that in the spec-
tra pattern of the reQectivity, ' ' shows that the PTM is
strongly dependent on the Fibonacci geometrical struc-
ture. But when q/k(, z decreases (see Fig. 4), which
means enhancing the retardation e6'ect, the self-similarity
of the dispersion spectra will be restrained strongly in the
low-frequency range with increasing generation number,
which coincides with the behavior of the reAectivity spec-
tra. "

Next we found that in the region of m) cop& the imagi-
nary part of vector p for PLM is approximately of the fol-
lowing form:

&m(p„) =&(~)(F„/D„),
1.2

0-0 0.2 0.4 0.6 0.8 1.0 &o '

0, Re(p)/vr

FIG. 2. Dispersion relation co vs complex vector p of large
imaginary part modes according to the same parameters as in
Fig. 1. Note the different logarithm scale for the imaginary part
of the figure.

and ultraviolet has a rich structure of self-similarity.
When n approaches infinity, all the normal modes be-
come clearly critical (neither extended nor localized), and
the allowed frequency bands for the real part of p form a
Cantor-like set. One can clearly see the situation of self-
similarity from Fig. 3, where we show the two-generation
curves of the dispersion relation cu against the imaginary
part p for PTM. The two-generation numbers n for the

where P(co) is an n-independent function, which suggests
that one can call D„/E„a quasiperiodic modulation
length. One can draw the conclusion from Fig. 5.
Another property we revealed is that both the real and
imaginary parts of p of PLM are approximately q in-
dependent for the frequency region above co((( (see the
dashed curves in Fig. 4), which confirms the longitudinal
resonance for PLM in the metallic layers.

Finally, we found that in the region from copy to copy
the electromagnetic normal modes become much more
complicated compared with that in the region ~) cop~.
For the frequency region near the plasma frequency of
metal B, there will be overlaps between PTM and PLM,
which reveal the behavior of strong coupling between
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FIG. 3. Dispersion relation of small imaginary part Im(p„)
vs co for the superlattice with two-generation MFSL unit cells
(a) n =8, (b) n =5. The relevant parameters are the same as Fig.
1.

FIG. 4. Dispersion relation of the imaginary part Im{p„) vs
~ for the superlattice with two different x-component wave vec-
tors (a) q/k»=0. 5, (b) q/k»=0. 01. The dashed line is for
PLM and the solid line for PTM. The other parameters are the
same as Fig. 1 ~
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(c)n=5 FIG. 6. Dispersion relation cu vs complex vector p for a su-
perlattice with a periodic unit cell of a fifth generation iIFFSL.
The relevant parameters are the same as Fig. 1 but with the
different frequency range.

IV. CONCLUSION

gp-1» I I » I I ) I I I I » I » I I

1.2 1.4 1.6 1.8 2.0 2.2 2.4
67 Cdpg

FIG. 5. The same as in Fig. 3 but for the large imaginary part
of dispersion relation with three-generation MFSL unit cells (a)
n=7, (b) n=6, (c) n=5.

transverse waves and longitudinal waves. For the case of
low-generation MFSL, for example, n =3, and when
ct)pg & co & copg the interface plasma modes, as identified
in Ref. 6 for the situation of periodic conductor superlat-
tice, will appear in the dispersion relation. The irnagi-
nary parts of p versus co for PLM will exist as a series of
minima. At the corresponding positions of the minima,
there are sharp peaks for the real parts of p versus co,'

those modes are made up of guided plasmons in the metal
2 layers. Due to the quasiperiodic d'esign of our model,
the analytical expression for the resonant position, not
like the usual standard periodic superlattice, cannot be
simply given out. The very interesting property we found
is that when n increases, both the real and imaginary part
of PLM will be modulated by a series of sharp fluctua-
tion. Figure 6 shows the modes with sharp fluctuation in
an enlarged scale. The pair of the cloudlike points in Fig.
6 corresponds to PTM. We believe that this peculiar op-
tical phenomenon is also caused by the quasiperiodic
structure of a Fibonacci superlattice.

In conclusion, the optical properties of a metallic Fi-
bonacci superlattice have been studied for the region of
p-polarized soft x rays and the extreme ultraviolet by us-
ing the 4X4 transfer-matrix method. The retardation
effect to the system and the coupling between the trans-
verse waves and longitudinal waves is considered and we
have presented in detailed formalism the dispersion rela-
tion. It is shown that within the rational approximation,
the electromagnetic normal modes become critical, i.e.,
the dispersion spectra are self-similar as the generation
number and q increase greatly. But for small q, the self-
similarity of the dispersion spectra will be restrained due
to the retardation effect on the system and the strong
coupling between the transverse and longitudinal waves.
The interface plasmon modes we found are much more
complicated compared with that in the usual periodic
system.
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