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We study transmission
~ t~ ~

and refiection
~ r~ ~

of a plane wave (with wave number k) 0) through
a one-dimensional array of N 5-function potentials with equal strengths U located on the Fibonacci
chain sequence x„=n +u [n /~], n =1,2, , N (where u is an irrational number, v =( I+V 5)/2, and

[ . . ] denotes the integer part thereof) in the limit N~ oo. Using analytical and number-
theoretical methods, we arrive at the following results. (i) For any k, if v is large enough, the se-
quence of refiection coefficients

~ r~ ~
has a subsequence that tends to unity. (ii) If k is an integer mul-

tiple of ~/u, then there is a threshold value v„ for v such that, if v ) vo, then ~rz~ ~1 as N~ ~,
whereas if v & vi&, then

~ r~ ~~1 (and moreover, lim~r~
~

& 1 and lim~r~
~

=0). (iii) For other values of
k, we present theoretical considerations indicating (though not proving) that ~r~ ~

has a subsequence
converging to unity for any v) 0. (iv) Numerical simulations seem to hint that if a subsequence con-
verges to unity, this holds, in fact, for the whole sequence ~r~ ~. Consequently, for almost every k,
~r~~~ 1 as N~ ~.

Experimental advances in submicrometer physics,
which allow the fabrication of nearly ideal one-
dimensional wires, naturally leads to an increasing in-
terest in their physical properties, especially those related
to transport phenomena. The quantum-mechanical rela-
tion between electrical conductance at zero temperature
and the transmission probability indicates that some
measurable physical quantities can be accurately ex-
plained on the microscopic level.

One-dimensional lattices of infinite extent are, of
course, extensively studied in the literature in connection
with Bloch theory (if they are periodic), Anderson locali-
zation (if they are completely disordered), quasicrystals
(if they are not periodic but maintain long-range order),
commensurate-incommensurate structures, etc. On the
other hand, the theory of scattering from a semi-infinite
one-dimensional array of potentials is much less famil-
iar. ' A useful technique is to express the transmission
and reAection amplitudes through %+1 scatterers in
terms of the amplitudes for N scatterers (a combination
of Mobius transformation and multiplication by a phase)
and to let N~ Oo (the so-called thermodynamic limit). If
the system of scatterers is arranged in an arithmetic pro-
gression (a perfectly ordered crystal) the limit can be easi-
ly obtained and a band structure of the transmission can
be deduced, namely, the transmission as a function of the
energy is zero on some segments and greater than zero on
others. However, if the position of scatterers is complete-
ly random, a closed-form expression for the transmission
cannot be found, but an ensemble average of the
transmission over many samples can sometimes be car-
ried out and the results show that the transmission de-
cays exponentially with N (namely, with length) with

some characteristic localization length.
The intermediate case, where the scatterers are located

on an arbitrary sequence, is interesting in itself. In an
earlier publication we concentrated on scattering from
an infinite system of 5-function potentials located on the
Fibonacci numbers. Admittedly, this exercise was not re-
lated to any experimentally accessible system, but served
as a theoretical model for the use of certain mathematical
tools, basically analytical and number-theoretical tech-
niques. Here we use the same mathematical framework
and report the results of our study on scattering from a
one-dimensional quasicrystal. Specifically, we consider
one-dimensional quasicrystals which are characterized by
a system of scat terers located on the sequence
x„=n +u

[nlrb],

n =1,2, . . . , N, as N~co, where u is
an irrational number, ~=(1+&5)/2, and [ . ] denotes
the integer part thereof. The special case u = I /~
(termed a Fibonacci chain) is of particular importance.

The central question which will be addressed in this
study is whether a one-dimensional quasicrystal is a con-
ductor (~r&~1) or an insulator (~r&~~1). To be more
specific, is there a curve in the (v, k) plane that separates
the conductor and insulator "phases?" The finer details
pertaining to the behavior of ~r& ~

as a function of N will
not be discussed here. These and other questions have
been investigated by several authors, ' and the results
presented in the abstract (and proved below) seem to cor-
roborate their findings. In this respect, the present work
should be regarded as a substantiation of earlier conjec-
tures.

We believe, however, that the mathematical framework
developed here is capable of solving the scattering prob-
lems encountered in other interesting one-dimensional ar-
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rays. It has in fact been recognized that in this kind of
problem, mathematical rigor is essential. That is the
reason the presentation below is mathematically oriented.
Yet, the reader should be aware of the physical basis for
the present study. For the sake of smooth reading, we
relegate the proofs of all the statements to the Appendix.

Consider a one-dimensional array of X 6-function po-
tentials

Ã
V~(x)=U g 5(x —x„),

n =1

where v )0 and x, is given by

„x=n + u[n I ]r, n =1,2, . . . , X .

ductor. It is also of interest to know when the sequence
I r& I

has a subsequence converging to 1 (or a subsequence
converging to 0).

Now, we point out that in general (independently of
the sequence x„), the matrices by which we multiply [A
and A„, see Eq. (5)], belong to the multiplicative group of
2 X 2 matrices of the form

IPI =1. This group is SU(1, 1), a noncompact
group of real dimension 3, which preserves the form
IU, I' —lv, ', namely,

We will mainly employ the sequence of differences

y„=x„+~

—x„=1+u([(n +1)lr]—[n /r]) . (2b) T
U2

LU1

W2

TISSU(1, 1),

W1 W2 —V1 U2

A plane wave with momentum k, e ', coming from the
right will have reAection and transmission amplitudes r&
and t~, respectively. For N=1, these amplitudes are
given by

v 21kr= , t=
2ik —v

'
2ik —v

A linear transformation T of C gives rise to a Mobius
transformation T'; if the line with slope p, through the
origin is mapped by T to the line with slope p2, then
T'(p, ) =pz. From (8) it is obvious that, if TCSU(1, 1),
then the interior of the unit circle, its circumference, and
its exterior are all T invariant. It is also evident that for

which satisfy unitarity

Irl2+ ltl~= 1, tr*+t*r =0

and continuity at the point x =x0,

(4a)

every n,

2 2
p 1

n n 0 0 t

t =1+r . (4b)

The unitarity relation (4a) is valid of course for any X.
For X) 1 scattering centers, the reAection and transmis-
sion amplitudes can be determined from a recursion rela-
tion as follows. We define

a
t

'
n

b, =
t. ' r t —r2 2

with

—iky
e

0 ikyn & —n ——nD =HA
e

det( A ) =det(A„) =det(D„) =1 .

Then we have

an+1 +A na
b ——nn+1 n

The conductance (at zero temperature) of this system is
given by the limit of It&I

= I/Ia&l as X~ co.
Equivalently, we may inspect the limit of
Ir&I =lb&la&I and use unitarity. If It&I —+0
(equivalently lr& I

~1) we say that the system is an insula-
tor. If ltz does not tend to 0 the system may conduct.
Our aim is to find out for what values of the momentum
k and the strength v the system is an insulator or a con-

Therefore, if lim~ „la~I= ~, then lim~ „Ibz = ~,
and therefore lim~ „I r~ I

= 1. Conversely, if
I a~ ~~,

then b& I
~~, and therefore

I r& I
-/+ I as N ~ ~ .

We denote by M„ the sequence of finite products of the
matrices D„=A A„[Eq. (5)]. Thus

M —AA AA AA—n ——n ——n —1 ——1 (10a)

1
0 r t —r2 2

1

0
a0
b0

It is then evident that if [M„] has a bounded subse-
quence M, then the corresponding sequence of

k

n

transformed vectors (& ") is bounded and hence rz I~1.
On the other hand, if the sequence of matrices M„does
not have a bounded subsequence then this holds also for
the sequence [M„A ] which is a sequence in SU(1,1).
Consequently, the sequence of vectors obtained by taking
the first column in each matrix M„A does not have a
bounded subsequence. This sequence of vectors is exactly

~nthe sequence (t,
" ), therefore we arrive at the following.
n

Proposition I: lim& lrzl =1 if and only if the se-
quence of matrices [M&] does not have a bounded subse-
quence.

For further discussion it will be more convenient .to
start with the initial vector (o) instead of (t ). It is easily

0
verified that
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through the origin. In fact, denoting by s, and s2 the ei-
genvalues of D one easily shows that

Therefore we can assume now that we start from the vec-

tor (0) and not (b'), but multiply first with A and then
0

with A„. Regarding the sequence tM„], these manipula-
tions imply its replacement by t A 'M„A ], but clearly,
the existence of a bounded subsequence in either one of
IM„J or I A M„A I implies its existence in the other
one. From now on we therefore redefine M„as

(., /s, )~—I
vN — lqp [(1+iq)p*—sz](s, /s2) +[s, —(1+iq)p" ]

(14)

In the case where v& does not converge, s& and s2 lie on
the unit circle and are complex conjugates. The sequence
r& lies on the image of the unit circle under the Mobius
transformation

(10b)M =A AA . . . AAA—n —n ——n —1 ——1—
Our task is thus to find out under what conditions (on

the strength of the interaction v and the momentum k)
the sequence of matrices IM„ I defined in Eq. (10b) does
not have a bounded subsequence. Define a norm on the
ring of matrices of the form (, ~, ) by

z —1z~ —iqp
[( I +iq)p* —s2]z+ [s, —( I +iq)p, *] (15)

This image is itself a circle passing through z =0. Denote
this circle by e. If (s, /sz) is a root of unity (which hap-
pens if and only if both si and sz are such), then rz is a
periodic sequence. If (s, /s2) is not a root of unity, then
the sequence r~ is dense in e. We can now use known re-
sults in complex-function theory" and check that

= a+f13

(16)
sink —

q cosk

Hence, for u & uo we have

(17)
~sink —

q cosk

where this is actually an equality unless s, /s2 is a root of
unity of odd order. On the other hand,

liminf r~~ =0
g~ oo

(18)

holds whether or not (s, /s2 ) is a root of unity.
The case ofgeneral k. Now we turn to the case of gen-

eral k & 0. The results will be true for any k, but some of
the considerations will apply only to k's which are not
multiples of ~/u. The basic ideas on which the following
discussion are based are related to the trace map formal-
ism suggested in the work of Sutherland and Kohmoto. '

Beside some technical difFerences (such as working with
complex transfer matrices in the present work), there are
some more profound differences. First, the stress here is
not on the growth of the resistance with length, but rath-
er, the behavior of the resistance in the (v, k) plane as the
length of the system tends to infinity. Second, the
mathematical apparatuses here are different, and rely
strongly on concepts from ergodic theory. This allows us
to treat all orbits [see discussion following Eq. (32) below]
and not only the periodic ones.

Lemma 1. (See also Ref. 10, third equation in Sec. III.)
Denote A„=M+, where [F„]™i is the Fibonacci se-

n

quence with F
&

= 1 and F2 =2. Then

p*(1 i+q)

—ipq
lp q

p(1 iq)— (12)

One shows easily (cf. Ref. 9) that ~r~ ~1 if and only if
tr(D ) ~ 2. Notice, however, that tr(D ) =p*+p+iq(p",—p)=2(cosk+q sink). Hence we obtain

q ~qo( ~0),
1 —cosk

sink )0
sink

(13a)qo= 1+cosk
sink & 0

sink

Equivalently,

(r~(~1 v ~ vo( ~0),
2k tan(k /2), sink )0
—2k cot(k/2), sink (0 . (19)(13b) +&= A„A„+& for n 1 .

If we regard this ring as an algebra over R, then the
definition (11) is indeed a (submultiplicative) norm. A se-
quence of matrices is then bounded if and only if the cor-
responding sequence of norms is bounded.

We now return to our original problem for which x„ is
the Fibonacci chain. First, there is a trivial case which
can be easily handled as we demonstrate below.

The special case k =m7r/u, m is a positive integer In.
this case ky„ is either mm/u or mm/u+mvr These . two
cases are in fact identical since as a quotient, the result
will not be affected if the matrix 2 is multiplied by a sca-
lar matrix ( I in this p—articular case). Denote q = v/2k
(note a sign change in the definition with respect to Ref.
9), p=e'", and using r=t —1 the matrix D = AA„can
be replaced by the constant matrix

p 0 1+iq iqD=
0 p —iq 1 —iq

It is worth mentioning here that if ~r~ ~

~1 then the se-
quence r~ itself converges, while if the sequence

~ r~ ~
does

not tend to unity then the set of accumulation points of
the sequence r~ is located on a circle which passes

Lemma 2. (See also Ref. 10, fourth equation in Sec.
III.) Let [ A„ I„ i be a sequence of matrices in SU(1, 1)
satisfying (19) and let y„=tr( A„) denote the trace of A„.
Then
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+n +3 +n + 1+n +2 +n (20)

From the 1emma it is clear that we should study the
solutions of the recurrence equation (20). One family of
solutions is obtained by starting with two commuting
2 X 2 matrices A, and A z of determinant l, defining a se-
quence [A„]„"=& by (19), and taking the sequence
[tr(&„)]„"=&.We then easily get that, for any nonzero
complex numbers a and b, the sequence jy„]„",given by

+lb n + a n+lg n for n ) 1 (21)

forms a solution of (20). This sequence consists of real
numbers in two cases: (i) Both a and b are real and (ii) a
and b lie on the unit circle. In general, to study solutions
of (20) it is natural to consider the mapping H: R ~R
defined by

H(x, y, z) =(y, z, yz —x), (x,y, z) H IR (22)

The following lemma will be very useful for the study of
the transformation H.

Lemma 3. The function f: IR ~IR defined by

function f forms an H-invariant set.
Lemma 4. The solutions of (20) given in (21) lie on

L 4, the ( —4)-level surface of f. Solving for z in terms
of x and y we find that

L 4= t(x,y, z): z= —,'xy+ —,'[(4—x )(4—y )]' ] . (24)

4=SUPi i UPi ] UP i i UP (25)

where S is the portion of L 4 lying above the square

[—2, 2], P» is the portion lying above [2, oo ],P, , is
the portion lying above [2, ~ ] X [ —oo, —2], etc.

Lemma 5. (i) The portion of L & lying above the
square [ —2, 2] is given by

It is thus clear that the projection of L 4 on the (x,y)
plane is [ —2, 2] U(IR& ( —2, 2)) . All points of this pro-
jection have two points of L 4 lying above them, except
for the points on the boundary, namely, those on either of
the four lines x =+2, y =+2, having only one point of
L 4 above each. We may then write

f (x,y, z) =xyz —x —y —z

is H invariant. In other words, every level surface of the

S=[(2cosa, 2cosP, 2cos(a+P)): a,PER] .

(ii) The domains P (cr,p =+1) are given by

(26)

P =[(2o c soh a, p2c soh/3, 2crpc so(ha +P )): a, /3&IR] . (27)

From the foregoing description it is clear that S is topologically homeomorphic to a two-dimensional sphere. The im-
portance of this set for our purposes stems from the following.

Lemma 6. S is both H and H ' invariant. The complement of S in IR consists of two connected components, a com-
pact one and a noncompact one. The former, along with its boundary S, forms a three-dimensional body

B = t(x,y, z): —2(x,y(2, 2xy —
—,'[(4—x )(4—y )]'i (z~ —,'xy+ —,'[(4—x )(4—y )]' ] (28)

R (a,P) =(2 cosa, 2 cosP, 2 cos(a+P) ) . (29)

This mapping is onto, and is two-to-one except for four
points on S having a single inverse image each. Now
consider the fo11owing map cr: T ~T:

cr( Pa) =(P, +Pa), (a,P) HT (30)

This map forms a continuous algebraic automorphism
and, since the matrix (0») corresponding to it has no

which is topologically a ball. From Lemma 6 we immedi-
ately obtain Lemma 7.

Lemma 7. The set B is H invariant.
Remark. It seems interesting, from an ergodic-

theoretical point of view, to analyze the action of H on B.
(The notions and results which we mention subsequently
can be found in any standard book on ergodic theory. )

Evidently, by Lemma 3, the intersection with B of each
level surface of f is H invariant. What does the action of
H on any level look like? On S=L 4AB, this question
is easy to answer: Denote by T= IR/2~X the circle group.
T is the two-dimensional torus, and Lemma 5(i) provides
a mapping R: T —+S given by

roots of unity among its eigenvalues, it is strongly mixing.
Now, the diagram

T2 0'~ T2

R R

S H S

(31)

J=
t (cosha, cosh( —ra ),cosh(a —~a) ): a & IR] . (32)

commutes, so that the fiow (S,H) is a factor of the fiow
(T~, T ), whence it is also strongly mixing and has a dense
set of H-periodic points. It seems interesting, though not
for the purposes of the current paper, to investigate the
flow determined by the restriction of H to other level
curves of f in B.

It may seem at first sight that the points in B are the

only ones having bounded H orbits in IR . This is, howev-

er, not the case. In fact, there are at least several one-
dimensional curves the points on which share the same

property. First, on P» consider the set
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It is readily verified that, since F„+&—~F„~O as n ~~
the H orbit of each point of J converges to the fixed point
(2,2,2). Analogous curves are straightforwardly con-
structed on the other points P . Also, all points on the
coordinate axis are periodic with period 6, except for the
origin, which is a fixed point. (Note that the curve J as
well as the similar curves on the other P 's are con-
tained in L 4, but the points on the coordinate axis
represent level curves of any nonpositive level of f.)

We now introduce some notations

lk ik (1+u)
1+iq iq
—iq 1 —iq

r

p

0 p —' — 0 vC, D= C.

Then it is easy to see that

A& =M& =D A2=M2= AD

A3=D A D, A4=A DD A D, . . . .

(33)

(34)

The recursion relation (19) for the matrices A„will not
be affected if we define

—0 —~ ——1
=A A

—ikQ p
iku (35)

Then with the definition I =k(1+u) we computed the
traces

g=(tr( A, ), tr( 20), tr( A, ))em' . (37)

Lemma 8. If k is not an integer multiple of m/u, then
the point g=g(q) does not belong to B for any q )0.

Remark It is easily v. erified that g also cannot lie on J
or any of the other curves consisting of points with
bounded H orbits described after Eq. (32).

The above results suggest that, if k is not a multiple of
vr/u, then the H orbit of g escapes to infinity (in each
coordinate) for any potential strength U. We have only
been able to verify this statement for sufficiently large u.

Lemma 9. For every large enough v we have
lim„„~tr( A„) ~

= ~, and in particular

lim
//

A „[/ = cn . (3g)

tr( A, ) =2 cos(ku), tr( Ao) =2(cosk+q sink ),
(36)

tr(A, )=2(cosl+q sinl) .

Consider now the point

We wish to thank H. Furstenberg, D. Levine, J. M.
Luck, J. Peyriere, and R. Redheffer for very helpful dis-
cussion and valuable comments. This work was partially
supported by a grant from the United States —Israel Bina-
tional Science Foundation.

APPENDIX

Proof of Lemma l. As is well known, the continued-
fraction expansion of I/r is [0;1,1, . . .]. Therefore the
sequence of convergents to I/~ is (F„,/F„)„„where
(F„)„0 is the Fibonacci sequence with Fo =F i

= l.
Denote by [x } the fractional part of a real number x and
by ~~x ~~

its distance from the nearest integer. We now
claim that if 1 ~j ~ F„ then

F„+)+j+1 F„+)+j j+1

and free from round-off errors even after 10 steps. All
our numerical simulations indicate that the convergence
property of the subsequence

~ r~ ~
is shared also by the

n

whole sequence ~r~~. In some cases when U is small, the
convergence is extremely slow, and does not show up
after many terms (although we know that

~ r~ ~
should

n

converge to unity). Nevertheless, for any finite value of N
up to 10, the subsequence ~r~ ~

behaves exactly as the
n

whole sequence ~rz ~. The physical implication of our re-
sults is simply this: For any value of the interaction
strength v, and for almost every k, the one-dimensional
Fibonacci chain is an insulator in the sense that

~ r~ ~

~ 1

as X—+ ~. Only for the discrete sequence k =m ~/u is
there a transition from a conductor to an insulator (in the
sense explained above) at finite value of U.

While the relation between this work and some earlier
works (notably that of Sutherland and Kohmoto' ) has
already been explained, we should remind the reader that
in this paper we have restricted the discussion to a set of
5-function potentials. Many aspects of the spectral and
transmission properties of this type of one-dimensional
quasiperiodic structures are independent on the nature of
the scatterers and depend on the way the scatterers are
sequenced. In principle, this holds also in the present
case, but since the main theorems are stated in terms of
q =U/2k which is special for the 5-function case, an ap-
propriate quantity (apparently

~
r /t ) should be suggested

in the general case. Notice, however, that the statement
about the tendency of r~ ~

to 1 for almost every k
remains valid also in the general case.

As a consequence we now arrive at our main result.
Theorem 1. For every large enough u the sequence

~r~ ~
tends to unity as n~ao. In other words, the se-

quence ~r~ ~
has at least one subsequence which, for large

enough u, tends to unity.
The obvious question that now arises is, of course,

what happens to the whole sequence and not only to
~r~ ~? Here we could not arrive at rigorous results, and

n

had to rely on numerical simulations. Fortunately, the
iteration procedure implied by Eq. (7) is simple enough

(A1)

or, equivalently

F.+i+j+1 F.+i+j j+1

(A2)

The sequence ( [F„ i /r })„=i tends to zero (mod 1).
Therefore, if the equality (A2) does not hold, then one of
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Sn
n+1

(A3)

and for n ~ m let s„be the finite sequence s„,
s, +&, . . . ,s . Then

the two numbers ~~(j + I )/~~~, ~~j lr~~ is very close to zero
(mod 1). More precisely, its distance from zero (mod 1) is
smaller than ~~F„+&/w~~. But the sequence of convergents
to I /r is (F„&/F„)„&,and hence each ~~F„ /w~~ is small-
er than all the numbers ((j/~)(with j (F„,which brings
about a contradiction. Now let

s)F =s)~ siF for n 1, (A4)

where on the right-hand side of Eq. (A4) we have a con-
catenation of sequences. If (M„)„,is the pertinent se-
quence of matrices then from (A4) we get immediately

M =M MF +2 F F +1
for n ~1 (A5)

[note that the order on the right-hand side of Eq. (A5) is
diFerent from that in Eq. (A4) since the additional ma-
trices to the product at any stage are multiplied from the
left]. This proves the lemma.

Proof ofLemma 2. We write

+3 tr( A„+3)=tr( A„+,A„+2)=tr( A„+,A„A„+,)
—tr( A„A„+, )

= tr[ A„(y„+,A„+, I)=y„+—, tr( A„A„+,) —tr( A„)=y„+,tr( A„+2)—g„=g„+&g„+2—g„, (A6)

which proves the lemma.
Proof of Lemma 3. We write

(f H )(x,y, z) =f(y, z,yz —x) =yz(yz —x) —y —z —(yz —x)2

=y z —xyz —y —z —y z +2xyz —x =xyz —x —y —=f(x,y, z), (A7)

which proves the lemma.
Proof of Lemma 4. The three initial terms in any sequence given by (16) are z, + I/z„z2+ I/zz, and z,z2+ I/z, zz.

Now

f (z(+1/z), zp+ I/z2, z(zp+ I/z)z, )

=(z, +1/z, )(z~+ I/z2)(z, z2+ I/z, z~) —(z, +1/z, ) —(z2+ 1/z2) —(z,z~+1/z, z2)

=z )z2+ 1+z ) + I /z~+z2+ 1/z ) + 1+1/z (z2 —z )
—2 —1/z f —z2 —2 —1/z2 —z )zq —2 —1/z )z2 = —4, (A8)

which proves the lemma.
Proof of Lemma 5. Let us prove, say, (i). Denote the set on the left-hand side of Eq. (26) by S'. Employing

trigonometric identities we get

f(2 cosa, 2 cos/3, 2 cos(a+/3) ) =2 cosa2 cos/32 cos(a+/3) —(2 cosa) —(2 cos/3) —[2 cos(a+/3) ] = —4, (A9)

whence (2 cosa, 2 cosP, 2 cos(a+/3)) EL 4 for any
a, /3E R. Hence S &S'. Now suppose (x,y, z) ES. Since
~x~, ~y~

~ 2 we may write x =2 cosa, and y =2 cos/3
for suitable a, /3. Suppose, say, that z =

—,'xy
+ —,

' [(4—x )(4—y ) ]'~ . Replacing a by —a if necessary
we may assume that sino. )0, and similarly we may as-
sume that sin/3(0. Then

z =
—,'2 cosa 2 cosP+ —,

' [(4—4cos a)(4 —4cos P)]'

H(2 cosa, 2 cos/3, 2 cos(a+/3) )

=(2 cos/3, 2 cos(a+/3), 2 cos(a+2P) ),
H '(2 cosa, 2 cos/3, 2 cos(a+/3) )

(A 1 1)

Proof of Lemma 6. For any a, /3EIR we readily com-
pute

=2 cos(a+P), (A 10) =(2 cos(P —a), 2 cosa, 2 cosP),
which yields the first part. The other part is similarly
proved.

which proves the lemma.
Proof of Lemma 8. Assume, to the contrary, that
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gHB. Then

~2(cosl —
q sinl ) ——,'2 cos(ku) 2(cosk —

q sink )
~

~
—,
'

I [4—4 cos'(ku)][4 —4(cosk —
q sink )']] '

Lemma 9. From Lemma 9(a) we have

IX~ —max I Idol IxiI ]

IX31 —IS~i Xol + IX2I

(A17)

(A18)

(A12)

and therefore

~sin(ku) sink+q sin(ku) cosk
~

~ ~sin(ku)
~ [1—(cosk —

q sink ) ]'~ . (A13)

Dividing by ~sin(ku)~, which may be done since k is not
an integer multiple of ~/u, and squaring we obtain

(sink +q cosk ) ~ 1 —(cosk —
q sink ) (A14)

Further multiplication yields 1+q ~ 1, which is a con-
tradiction. This proves the lemma.

Proof of Lemma 9. Set y„=trA„, n = —1,0, 1, . . . .

By Lemmas 1 and 2, g„+3=y, + &y„+2
—y„. Assume

first that sink&0 and sin/&0. Then, clearly, if v is large
enough, namely, the parameter q=v/2k is large, then

~yo, ~y, ~
)2, while ~g, ~

~2. Now we need the follow-

ing.
Lemma 9(a). Let a, b, and c be three real numbers

satisfying ~c~
~ ~a

~

and ~b~
~ 2. Then

+X=+X'+x, (A19)

with possible solutions 0 and +2. However, evidently

~g )2, a contradiction.
Let us turn to the other cases. If sink =sinl=0, then

sin(ku) =sin(l —k) =0, which is impossible. Next, we
consider the case sink=0 but sinl&0. Then using Eq.
(31) for the first few traces, and the trace recursion rela-
tion (20) we find

yz=+4(cosl —
q sinl )

—2 cos(ku), (A20)

and using arguments similar to those employed in the
first case we get again lim„„~y„~= co for sufficiently
large q. Finally, we consider the case sink&0, sinl=O.
Then

By induction we conclude that the sequence ( ~g„~ )„—i is

increasing. Assume this sequence has a finite limit
Passing to the limit in the recursion relation

+n +3 +n + i+n +2 +n

Proof.

(A15) y2 =+4(cosk —
q sink) —2 cos( ku ),

F3=+8(cosk —
q sink) —4cos(ku)

—2(cosk —
q sink),

(A21)

(A16)

This proves the lemma. Now we return to the proof of
which again lead to lim„~y„~ = ~ for sufficiently large

q. Hence Lemma 9 is proved.
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