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The rapid variation of charge and spin densities in atoms and molecules provides a severe test for
local-density-functional theory and for the use of gradient corrections. In the study reported in this
paper, we use the Langreth, Mehl, and Hu (LMH) functional and the generalized gradient approxi-
mation (GGA) of Perdew and Yue to calculate s-d transition energies, 4s ionization energies, and 3d
ionization energies for the 3d transition-metal atoms. These calculations are compared with results
from the local-density functional of Vosko, Wilk, and Nusair. By comparison with experimental en-
ergies, we find that the gradient functionals are only marginally more successful than the local-
density approximation in calculating energy differences between states in transition-metal atoms.
The GGA approximation is somewhat better than the LMH functional for most of the atoms stud-

ied, although there are several exceptions.

I. INTRODUCTION

In the 25 years since Hohenberg and Kohn proved that
the ground-state effects of electron exchange and correla-
tion can be expressed in a unique functional of the charge
and spin densities! that are calculable from a single-
particle equation,? there have been many efforts to ap-
proximate this functional and to use it in quantum calcu-
lations for atoms, molecules, and especially, periodic
solids. Most density. functionals have been developed
through theories of the homogeneous electron gas,> and
these are known as local-spin-density approximations
(LSDAs), because at each point in space the exchange-
correlation potential and energy density are determined
from the charge and spin densities at that specific point
only. This approach has been unexpectedly successful.
For atomic and molecular properties (ionization and exci-
tation energies, molecular geometries, binding energies,
etc.) and for the structural properties of condensed
matter (cohesive energies, lattice constants, etc.) the
LSDA is typically at least as accurate as Hartree-Fock
descriptions, and is usually better.*

Nevertheless, the LSDA is usually far from ‘“‘chemical
|

accuracy,” and the search for better functionals has taken
several directions. Density averaging,> semiempirical
exchange-correlation parametrizations,® and the self-
interaction correction methods”® are among the various
approaches that have been introduced. Series expansion
of the local density functional to include gradients of the
charge and spin densities is an obvious means of extend-
ing the LSDA,*!° but such expansions have been disap-
pointing because they usually disrupt the sum rules'!!?
that make the LSDA as successful as it is.

Wave-vector and real-space analysis of the electron gas
have recently led to two new gradient schemes which re-
tain the sum-rule properties of the LSDA. The first was
developed by Langreth and Mehl,!3 later extended to the
spin-polarized case by Hu and Langreth (LMH).!* The
second functional was formulated by Perdew and
Yue,'>'® and in this paper is called the generalized gra-
dient approximation (GGA). The details of these deriva-
tions can be found in papers!3~ !¢ describing their devel-
opment. Each gradient method expresses the exchange-
correlation energy, E,., in terms of the local charge and
spin densities and their gradients. In the LMH function-
al, E,_ takes the form (all equations are in Hartree atomic
units)
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where the following definitions are used:

d :271/2[(1+§)5/3+(1_§)5/3]1/2
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1/6
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The GGA functional for E,_ is expressed as
EGGA :EGGA+EGGA
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with an exchange contribution of
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and spin polarization is obtained by using
Elny.n 1=1E[2n, ]+ E,[2n_].

The correlation portion of the GGA functional is
ESSA[ = ELSDA[
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and @ is defined as
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The exchange-correlation potential v, needed to solve
the Kohn-Sham equations self-consistently can be ob-
tained from the above expressions by functional

differentiation:
e SE .
XC Sn +

Explicit LMH and GGA equations for v, GGA may be
found in the original papers.'3 1

These functionals have been found to offer improve-
ment over the LSDA for exchange and correlation ener-
gies in atoms and molecules.!»'>~ 17 The gradient func-
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tionals also display a property not found in the LSDA —
for atoms with partially filled subshells (but not half-
filled), the energy calculated using a nonspherical charge
density is lower than that computed using a spherically
averaged charge density.!® Local-spin-density functionals
are much less sensitive to spherical averaging.!” The
binding energies of first-row dimers are reduced by the
lowered reference atom energies, thereby correcting part
of the trend in overbinding predicted for these molecules
by LSDA calculations.

In this paper we test the gradient functionals for their
ability to predict interconfigurational energies of atoms
Ca through Zn. Gunnarsson and Jones have also report-
ed results from calculations of transition-metal
interconfigurational energies using local-density models®
and self-interaction correction (SIC) functionals,?! and
the present local-density results agree well with those re-
sults from their work.

II. METHOD OF CALCULATION

Calculations reported here were carried out using the
augmented-Gaussian-basis (AGB) method.?> Uncon-
tracted 14s-8p-6d Gaussian basis functions with screening
constants from Wachters?® were used. Electron-nuclear
matrix elements were evaluated analytically, and
electron-electron matrix elements were calculated using
Gaussian integral algorithms??> and numerical integration
over a radial mesh of 180 points distributed over 15 con-
centric shells. For atoms with axial symmetry, six angu-
lar points were used for each radial point to integrate the
unique range of the polar angle from 0 to 7 /2, and for
atoms without axial symmetry the unique octant was in-
tegrated using 36 angular points per radial point, with six
points each for the dipolar and azimuthal angles over the
range O to 7 /2.

For comparison with gradient results, the Vosko-
Wilk-Nusair (VWN) local functional was chosen to
represent the LSDA.?* The VWN functional was also
used as the local portion of the gradient functionals in
both the LMH?® and the GGA calculations.

Both spherical and nonspherical charge densities were
used with the GGA functional. In a spherical density
calculation, the d orbitals were equally occupied, produc-
ing a spherically averaged charge density. When a calcu-
lation without spherical averaging is carried out, a choice
must be made concerning the state of coupling between
the orbital and spin angular momentum for the electron
configuration of interest (Russell-Saunders states in
lighter atoms). For each electron configuration con-
sidered in this paper, we addressed only the state with
lowest energy, which is given by Hund’s rule of max-
imum multiplicity. The energy of the lowest state of a
given electron configuration can be evaluated from one or
more single determinant wave functions. For example, a
d? configuration gives rise to °F, 3P, !G, 1D, and 'S states.
The energy of the ground state, *F (L =2, S =1), can be
computed using a d orbital population in which M; =3
and M, =1, or one for which M; =2 and M, =1.

A problem arises in density functional theory due to
the dependence of present functionals on the physical
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TABLE I. Comparison of energy differences (in eV) between formally degenerate single determinants
belonging to the lowest-energy atomic state for the electron configuration listed, using nonspherical
charge and spin densities with the GGA and LMH functionals. (See text for further details.)

Species GGA LMH Species GGA LMH
One electron beyond filled Two electrons beyond filled
or half filled or half filled
Sc (s%d!) 0.016 0.019 Sc (s'd?) 0.148 0.115
Sct (s'd!) 0.017 0.020 Ti (s2d?) 0.216 0.179
Tit (s%d") 0.019 0.022 Tit (s'd?) 0.225 0.187
Cr (s°d9) 0.023 0.130 V* (s%d?) 0.276 0.235
Mn (s'd®) 0.015 0.021 Fe (s'd7) 0.257 0.133
Fe (s2d®) 0.021 0.026 Co (s%d) 0.311 0.260
Fe' (s!d*®) 0.022 0.046 Cot (s!d7) 0.320 0.233
Co* (s2d®) 0.024 0.029 Nit (s2d7) 0.367 0.311
One electron fewer than Two electrons fewer than
filled or half filled filled or half filled
V (s'd*) 0.014 0.018 Ti (s'd?) 0.210 0.183
vt (s%*) 0.021 0.045 V (s%d?) 0.283 0.248
Cr (s*d*) 0.019 0.020 v+t (sld?) 0.292 0.256
Crt (s'd*) 0.019 0.021 Crt (s%d?) 0.351 0.307
Mn* (s2d*) 0.024 0.023 Co (s'd®) 0.327 0.315
Ni (s'd®) 0.022 0.045 Ni (s2d®) 0.392 0.340
Nit (s%°) 0.023 0.046 Nit (s'd®) 0.400 0.373
Cu' (s'd°) 0.026 0.040 Cut (s2d?®) 0.505 0.397
Cu (s2d°) 0.026 0.026
Zn" (5%d°) 0.030 0.028
“shape” of the electron density.?® In these calculations, minants.

the energies from two single determinants were aver-
aged.?” Both single determinants were pure, formally de-
generate components of the same atomic angular momen-
tum state. The simplest example is the case of Sc. Occu-
pation of any of the five d orbitals gives one of the ten
components of the 2D ground state. In a density-
functional calculation, however, the energy for an atom
with the d_, orbital occupied will differ slightly from the
energy of an atom with any of the other d orbitals occu-
pied. Although it would be preferable to develop a
symmetry-dependent density-functional theory (DFT), we
have chosen to simply average the results for these deter-

Table I illustrates the magnitudes of such DFT-
induced nondegeneracies for transition-metal atoms and
ions in various configurations. There are four categories:
(a) one electron beyond an empty or half-filled shell (d!
and d°®), (b) one electron fewer than a half-filled or full
shell (d* and d°), (c) two extra electrons (d? and d7), and
(d) two missing electrons (d> and d®). The energy separa-
tion of different microstates of cases (a) and (b) are rela-
tively small ( <0.05 eV). Energy differences can be as
much as ten times larger for cases (c) and (d) than for (a)
and (b). Discrepancies are about the same for GGA and
LMH.

TABLE II. s-d transition energies (eV) calculated with nonspherical and spherical GGA (NSGGA and SGGA), Langreth-Mehl-
Hu (LMH), and Vosko-Wilk-Nusair (VWN) functionals. The number in parentheses after the experimental values is the estimated
relativistic correction to be applied to each of the calculations. The number in parentheses after the calculated values is the error

(after applying the relativistic correction).

Expt. (rel.) NSGGA SGGA LMH VWN
Ca 2.52 (0.08) 1.76 (—0.68) 1.89 (—0.55) 1.27 (—1.17) 1.73 (—0.71)
Sc 1.43 (0.12) 0.70 (—0.61) 0.91 (—0.40) 0.06 (—1.25) 0.69 (—0.62)
Ti 0.81 (0.14) 0.04 (—0.63) —0.03 (—0.70) —0.74 (—1.41) —0.27 (—0.94)
V 0.25 (0.17) —0.59 (—0.67) —0.91 (—0.99) —1.49 (—1.57) —1.17 (—1.25)
Cr —1.00 (0.21) —1.70 (—0.49) —1.74 (—0.53) —2.66 (—1.45) —2.03 (—0.82)
Mn 2.15 (0.20) 1.05 (—0.90) 1.25 (—0.70) 0.57 (—1.38) 1.05 (—0.90)
Fe 0.87 (0.26) 0.04 (—0.57) 0.39 (—0.22) —0.39 (—1.00) 0.16 (—0.45)
Co 0.42 (0.30) —0.38 (—0.50) 0.46 (—0.58) —0.85 (—0.97) —0.71 (—0.83)
Ni —0.03 (0.36) —0.84 (—0.45) —1.30 (—0.91) —1.37 (—0.98) —1.57 (—1.18)
Cu —1.49 (0.43) —2.06 (—0.14) —2.16 (—0.24) —2.60 (—0.68) —2.44 (—0.52)

Mean absolute error: —0.56 —0.58 —1.19 —0.82
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TABLE III. s ionization energies from the s-rich electron configuration (4s23d" ~2==4s'3d" ~2) which is the experimental ground
state for all except Co, Ni, and Cu. The entries of Cr*, Ni*, and Cu* are for ionizations from experimental ground states of Cr, Ni,
and Cu (4s'3d" ~1==4s5°3d" ~!). All energies are in eV and the column designations are the same as for Table II. The numbers in
parentheses after the experimental values are the relativistic corrections, and after the calculated values are the errors after making
the relativistic correction.

Expt. (rel.) NSGGA SGGA LMH VWN
Ca 6.11 (0.02) 6.38 (0.29) 6.38 (0.29) 5.98 (—0.11) 6.22 (0.13)
Sc 6.56 (0.02) 6.76 (0.22) 6.77 (0.23) 6.29 (—0.25) 6.60 (0.06)
Ti 6.83 (0.04) 7.04 (0.25) 7.05 (0.26) 6.51 (—0.28) 6.89 (0.10)
V 7.06 (0.03) 7.28 (0.25) 7.29 (0.26) 6.71 (—0.32) 7.12 (0.09)
Cr 7.28 (0.04) 7.49 (0.25) 7.49 (0.25) 6.88 (—0.36) 7.33 (0.09)
Cr* 6.76 (0.09) 7.55 (0.88) 7.55 (0.88) 7.51 (0.84) 7.48 (0.81)
Mn 7.43 (0.05) 7.67 (0.29) 7.67 (0.29) 7.03 (—0.35) 7.52 (0.14)
Fe 7.90 (0.06) 8.20 (0.36) 8.21 (0.37) 7.59 (—0.25) 8.07 (0.23)
Co 8.28 (0.08) 8.66 (0.46) 8.68 (0.48) 8.08 (—0.12) 8.54 (0.34)
Ni 8.67 (0.11) 9.08 (0.52) 9.10 (0.54) 8.56 (0.00) 8.97 (0.41)
Ni* 7.62 (0.15) 8.43 (0.96) 8.44 (0.97) 8.18 (0.71) 8.26 (0.79)
Cu 9.04 (0.13) 9.52 (0.61) 9.52 (0.61) 9.06 (0.15) 9.40 (0.49)
Cu* 7.72 (0.15) 8.50 (0.93) 8.50 (0.93) 8.22 (0.65) 8.35 (0.78)
Zn 9.39 (0.16) 9.84 (0.61) 9.84 (0.61) 9.39 (0.16) 9.71 (0.48)

Mean |error| (without

Cr*, Ni*, and Cu*) 0.37 0.38 0.21 0.23
Mean |error| (all) 0.49 0.50 0.33 0.35

III. RESULTS

The experimental values used for assessment of errors
in the functionals are (2J + 1) weighted averages of ener-
gies of the spin-orbit (J) states for the pertinent electron
configuration, taken from Moore.?® The transition and
ionization energies and their errors are given in Tables
II-1V, and the relativistic correction used to construct
Figs. 1-3 are in parentheses following the experimental
values.? 3!

A. 4s5-3d transitions

We first address the case of s-d transfer energies,

defined by
A,;,=E(core,4s'3d" ~!)— E(core,45s23d" ~?) ,

where n is the number of valence electrons in the atom (2
for Ca through 11 for Cu). The LSDA has a well-
documented tendency to overstabilize -d orbitals relative
to 4s orbitals and thereby understates the 4s-3d transition
energy.

TABLE 1V. d ionization energies from the s-rich electron configuration (4s23d" ~2=4s523d" ~3) which is the experimental ground
state for all except Co, Ni, and Cu. The entries of Cr*, Ni*, and Cu* are for ionizations from experimental ground states of Cr, Ni,
and Cu (4s'3d" ~!==4s5'3d" ~2). All energies are in eV and the column designations are the same as for Table II. The numbers in
parentheses after the experimental values are the relativistic corrections (the negative indicates that the relativistic correction makes
the transition lower in energy), and after the calculated values are the errors after making the relativistic correction.

Expt. (rel.) NSGGA SGGA LMH VWN
Sc 8.00 (—0.10) 9.02 (0.92) 8.89 (0.79) 9.08 (0.98) 9.01 (0.91)
Ti 9.92 (—0.10) 10.88 (0.86) 10.61 (0.59) 11.00 (0.98) 10.75 (0.73)
V (—0.14) 12.09 12.18 12.34 12.35
Cr 12.40 (—0.17) 13.25 (0.68) 13.65 (1.08) 13.62 (1.05) 13.84 (1.27)
Cr* 8.29 (—0.17) 9.19 (0.73) 9.23 (0.77) 9.54 (1.08) 9.36 (0.90)
Mn 14.30 (—0.15) 15.03 (0.58) 15.05 (0.60) 15.42 (0.97) 15.26 (0.81)
Fe 10.71 (—0.20) 12.23 (1.32) 12.03 (1.12) 12.08 (1.17) 12.22 (1.31)
Co 12.88 (—0.22) 14.11 (1.01) 13.71 (0.61) 14.05 (0.95) 13.94 (0.84)
Ni 15.21 15.32 15.32 15.57
Ni* 8.70 (—0.25) 9.92 (0.97) 10.40 (1.45) 9.94 (0.99) 10.54 (1.59)
Cu 15.04 (—0.30) 16.68 (1.34) 17.20 (1.86) 17.08 (1.74) 17.48 (2.14)
Cu* 10.53 (—0.30) 11.58 (0.75) 11.68 (0.85) 11.66 (0.83) 11.84 (1.01)
Zn 17.30 (—0.55) 18.26 (0.41) 18.35 (0.50) 18.59 (0.74) 18.62 (0.77)

Mean |error| (without

Cr*, Ni*, and Cu*) 0.89 0.89 1.07 1.10
Mean |error| (all) 0.87 0.93 1.04 1.12
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Figure 1 is a plot of the errors (calculated value minus
experimental value) for the VWN, LMH, and spherical
GGA calculations (SGGA), compared with the non-
spherical GGA calculations (NSGGA). Relativistic
corrections have been taken from Martin and Hay?® and
Lagowski and Vosko.’3! In all cases, the relativistic
correction increases the energy needed to promote the 4s
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FIG. 1. The error in the calculated s-d transition energies

(calculated value—experimental value) using nonspherical GGA
(NSGGA), spherical GGA (SGGA), Langreth-Mehl-Hu
(LMH), and Vosko-Wilk-Nusair (VWN) functionals. All ener-
gies are in eV. CI denotes configuration-interaction results
(Ref. 32).
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electron. The magnitude of the correction increases
steadily with atomic number from 0.08 eV in Ca to 0.43
eV in Cu. This correction accounts for nearly half of the
error in the nonrelativistic, nonspherical GGA calcula-
tions for Co, Ni, and Cu.

The error remaining after the relativistic correction is
applied is smaller for the nonspherical GGA calculations
than for the other functionals, although the improvement
is marginal in some cases. The errors in the NSGGA cal-
culation are more nearly uniform across the series than
are those from the VWN functional, where the errors
vary by about a factor of 2. The magnitude of the errors
is also relatively constant in the LMH functional calcula-
tions, although the errors are nearly twice as great as
those for the NSGGA calculations. The trend of the er-
rors across the series is similar in NSGGA and LMH,
with the exception of a slight difference around Cr and
Mn.

The comparison between results of spherical and non-
spherical GGA calculations in Fig. 1(c) shows that, ow-
ing to other errors, nonspherical calculations are not con-
sistently more accurate. The errors in the nonspherical
values are, however, slightly more uniform. The trend in
the SGGA is similar to that of the VWN calculations,
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FIG. 2. Errors (in eV) in calculated s ionization energies
from the experimental ground-state configurations (4s23d" 2
for all atoms except Cr, Ni, and Cu, for which the calculations
are for ionizations from the 4s'3d" ~! state), labeled as in Fig. 1.
Unconnected markers for Cr, Ni, and Cu are calculations from
the 4523d" ~? state.
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Fig. 1(a), although the errors are smaller for the SGGA.
This suggests that the greater uniformity of error in the
NSGGA and LMH calculations is an indirect conse-
quence of the effect nonspherical charge densities have on
the gradient corrections to the local functionals.
Raghavachari and Trucks?? have reported results of s-d
transition energies for the 3d transition-metal atoms from
quadratic-configuration-interaction (QCI) calculations, a
method which spans single and double excitations itera-
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FIG. 3. Errors (in eV) in calculated d ionization energies

from the experimental ground-state configurations (4s23d" 2

for all atoms except Cr, Ni, and Cu, for which the calculations
are for ionizations from the 4s!3d" ~! state), labeled as in Fig. 1.
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tively, and triple excitations noniteratively. The results
are included in Fig. 1(a); the mean deviation is 0.13 eV
for the series Sc—Cu. They also report that Moeller-
Plesset perturbation calculations (MP2, MP3, and MP4)
give excellent results for Sc—Fe, but give large mean devi-
ations for the rest of the series (1.77 eV for MP4). The
Moeller-Plesset calculations for Co, Ni, and Cu are also
reported to be very sensitive to the order of the perturba-
tion calculation.

B. 4sionizations

In our calculations of s-electron removal energies, we
have selected the 4s23d" 2 configuration as the initial
state, although this configuration is not the experimental
ground state for Cr, Ni, and Cu. Hence, we define the s
ionization energy as

A, ion=E(core,4s'3d" ~2)—E (core,4s23d" ~?)

for all atoms. We do not allow for a change in the num-
ber of d electrons, which does occur experimentally in the
lowest-energy ionization of an s electron in V, Co, and
Ni. The s ionizations from the 4s!3d" ~! state were also
calculated for Cr, Ni, and Cu. The resulting errors in the
density-functional calculations are shown in Fig. 2 with
the 4s'3d" ~! calculations for Cr, Ni, and Cu shown with
unconnected markers.

Relativistic corrections have been introduced into Fig.
2 from literature values.”” 3! Relativistic effects are
three to four times smaller for s ionizations than for s-d
transitions (except when the number of d electrons
changes), ranging from 0.02 eV for Ca to 0.16 eV for Zn,
all making the ionization more energetic.

The VWN functional gives good results for all the
4s23d" % ground states, with smaller errors than the
GGA functional, which overestimates 4s binding. The
GGA and LMH functionals are roughly equivalent in
magnitudes of error, the GGA overestimating and the
LMH underestimating s ionization energies for atoms
with a 45s23d" ~2 ground state.

All three functionals display the same trend in errors.
The errors across the series are nearly constant up to Mn,
and gradually rise thereafter. When calculations of the
transition 4s!3d" "'=45%3d" ! are performed for Cr,
Ni, and Cu, we find these errors to be much greater than
for ionization from the 4s23d" % configuration. These
are shown as unconnected markers in Fig. 2. It is curious
that the error in the LMH functional is negative for the
4523d" ~? ionizations, but positive for the 4s'3d" ! ion-
izations.

The question arises whether the large error that results
when a lone s electron is ionized is inherent in these func-
tionals whenever a single 4s electron is removed, or
whether the error is present only when the 4s electron is
interacting with d electrons with parallel spin. To test
this we calculated the s ionization energy for the potassi-
um atom (not shown), and found that the error for potas-
sium was much smaller (0.2 and 0.3 eV depending on the
functional) than for Cr, Ni, and Cu, indicating that the
functionals are subject to considerable error in the calcu-
lation of the interaction energy between the 4s electron
with the 3d subshell.
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Spherical and nonspherical GGA calculations give 4s
ionization energies within 0.03 eV of one another. The
lack of dependence on the sphericity is not surprising
given the symmetry of the s oribtal.

Li et al.®® have also reported s ionization energies for
several closed-shell atoms, including Ca and Zn, using a
method which computes the exchange-correlation poten-
tial from the spatial distribution of the Fermi-Coulomb
hole. The Ca and Zn ionization energies by their method
are in both cases 0.89 eV lower than our nonspherical
GGA results, and are lower than experiment by 0.62 and
0.44 eV, respectively, after relativistic corrections have
been applied.

A QCI study of ionizations by Raghavachari and
Trucks** have found a mean deviation of about 0.09 eV
for the transitions relevant to this paper. The error in the
QCI values is included in Fig. 2(a). As in the case of s-d
transitions, Moeller-Plesset perturbation theory is report-
ed to be inadequate for ionizations of the highly correlat-
ed atoms, Co through Zn.

C. 3d ionizations from the experimental ground states

The differences among the density functionals are more
prominent when the number of d electrons changes. For
this reason, we calculated the energies required to ionize
d electrons from the experimental ground states of all
atoms, and from the 4s'3d" ! configuration of Cr, Ni,
and Cu. Again, no further changes in the electron
configuration were allowed. For all atoms we calculated
the quantities

Agion=E (core,4s?3d" ~3)— E(core,45s23d" ~?) ,
and for Cr, Ni, and Cu we also calculated the values
E (core,4s'3d" ~2)— E (core,4s'3d" 1) .

As noted above, LSDA calculations predict stronger
binding of 3d electrons than experimentally observed,
and this results in overestimation of the 3d ionization en-
ergies. In Fig. 3, d-ionization results are shown for all 3d
transition-metal atoms except V—Moore®® does not ta-
bulate an energy for the 4s23d3=45%3d? jonization. .
Relativistic corrections have also been estimated for
the removal of a d electron. In all cases the relativistic
corrections lower the d ionization energy. Martin and
Hay?® report that the relativistic correction for d ioniza-
tion from the 45234 '° state of the Zn atom is —0.55 eV,
but no data is available for ionization from the 4s23d" 2
states of the other 3d transition metals. (The negative
sign indicates a decrease in transition energy compared to
nonrelativistic calculations.) The atomic energies given
by Martin and Hay?® do, however, yield relativistic
corrections for d removal from atoms in the 4s'3d" !
configuration for all 3d transition-metal atoms (except
Zn). Although we expect that relativistic corrections for
the 4s'3d" ~! ionizations are somewhat smaller than the
corrections for the 4s23d" 2 ionizations, we have applied
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the Martin and Hay 4s'3d” ~! corrections to our calcu-
lated 4s23d" ~2 d ionization energies. The results shown
in Fig. 3 include this correction.

The errors in the GGA functional [Fig. 3(a)] are about
0.2 eV smaller than those with the VWN functional for
Cr, Mn, Co, Cu, and Zn, with much improvement for Ni,
and about the same or slightly worse results for Sc, Ti,
and Fe. The errors in the LMH functional [Fig. 3(b)] are
greater than those in the NSGGA calculation for the first
half of the series, but smaller in the second half. Further-
more, the LMH errors are more nearly uniform than ei-
ther the GGA or the VWN results.

Results shown in Fig. 3(c) indicate that, with the ex-
ception of Ni, there is little improvement upon using a
nonspherical charge density, although the errors are
slightly more uniform. In three cases (Ti, Fe, and Co) er-
rors are greater with the nonspherical densities. As with
the s-d transition, the pattern of errors across the series is
much the same for the spherical GGA and VWN func-
tionals, suggesting that the improvement in error unifor-
mity is a consequence of a better description of nonspher-
ical effects within the gradient functionals.

IV. CONCLUSIONS

It is clear that much work remains to be done in deriv-
ing a functional which is universally better than the
LSDA for transition-metal interconfigurational energies.
While inclusion of gradient effects in general leads to im-
provement over the LSDA, the remaining errors are
often large and, most disturbingly, occur in an unpredict-
able pattern across the series.

Intercomparison of the various gradient functionals
shows that the GGA is slightly better in describing s-d
transition energies, but similar to LMH for both 4s and
3d ionizations. While using nonspherical charge densities
is quite beneficial in calculations for the binding energies
of first-row dimers,!® the benefit for the cases in this study
is much less pronounced.

These results indicate gradient functionals provide
some improvement over the local-density approximation,
but the limited degree of success underscores the
difficulty in improving on the remarkable accuracy avail-
able from the relatively simple local-density approxima-
tion.
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