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Resonances and oscillations in tunneling in a time-dependent potential
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A quantum particle, tunneling in a stationary potential, passes through a region with a weak
slowly changing potential. Its probability density has resonances and oscillations in energy and in

time, both in the barrier and beyond it. This is true in any dimensionality, for any type of waves
(for example, de Broglie, electromagnetic, acoustic, and hydrodynamic waves).

One of the main manifestations of quantum mechanics
is tunneling. Tunneling is involved in the decay of heavy
nuclei, field emission from an atom or a solid surface,
chemical reactions, paraelectric defects in a solid, metal-
insulator-metal, and Josephson junctions, p-n diodes, su-
perconducting quantum interference device (SQUID)
rings, transport in superlattices, quantum diffusion, ab-
sorption, and desorption. Quantum transport (e.g. ,
variable-range-hopping conductivity), as well as wave
propagation beyond the geometrical-optics region, is relat-
ed to tunneling. In all these cases, nonstationary and re-
laxation phenomena reduce to the problem of solving for
the tunneling wave function in a weak time-dependent po-
tential. Its study may also be useful in stationary many-
body tunneling, if the latter is reduced to an approximate-
ly single-particle problem. Then some of the degrees of
freedom adjust to the progress in tunneling and yield an
effective time-dependent potential.

Tunneling in a time-dependent potential W was exten-
sively studied. ' However, in this paper W is neither
harmonic, nor is a linear approximation used for W. The
results prove to be much richer and more interesting than
previously anticipated. Consider a particle tunneling in a
stationary barrier V which passes through a weak, adia-
batic potential W(t). Suppose W(t) monotonically in-
creases from W( —~) =0 to W(0) and then monotonical-
ly decreases back to W=O. It will be shown that the par-
ticle probability density in the barrier and beyond it oscil-
lates with time and energy. It has maxima long before W
has. At certain times and energies it has resonances. This
is also true for any waves in a region which is forbidden in
geometrical optics. The easiest experimental verification
of the oscillations and resonances might be waves in a

I

variable-depth liquid. Suppose an external source gen-
erates stationary waves, whose wavelengths do not allow
them, according to geometrical optics, to penetrate into a
shallow region. Then a very slow and weak loca1 pertur-
bation will lead to oscillations in, and huge amplification
of their amplitude at certain times and places.

In this paper I accurately solve the Schrodinger equa-
tion for the potential W(t) =V(x)+b(x)F(t) [those not
interested in mathematics may proceed directly from Eqs.
(1)-(3) to Eqs. (8) and (9)], and study its approxima-
tions, generalizations, and implications.

Consider a particle tunneling in a potential V(x), which
is perturbed by the potential b(x)F(t) The Schr.odinger
equation reads

iy = —y" + Vy+F(t)b(x) y. (1)

(The particle mass equals 0.5, and l't =1.) It is convenient
to study the initial conditions at t = —~ which allows an
exact solution. Suppose

lim [y(t, x) exp(int)] =y„+(x) (2)

and

y„+"+(0 —V) yn =0; F( —~) =F(—~) = . =0.
(3)

A superscript "+"refers to a stationary wave incoming
from x= —~ (with no reIIected waves at x=+~).
Similarly, later on, the superscript "—"refers to a wave
incoming from x=+~. I assume that V(x) ( 0 when
x ~ —xo (xo & 0), but the solution is readily generalized
to an arbitrary V(x) (explained later in paper).

The exact solution to Eq. (1) together with the initial
conditions Eqs. (2) and (3) is

y(t, x) =y„+(x)exp( —i Qt) — q„'H (x) exp( —icot)dco F„„a„dco', -
H„(x) =y„'(x)/y'(0); q„=[ln(y„ /y„+)]„'=o., s =sign(x), (5)

where F„ is the Fourier component of F(t) and a two-
variables dependent y(t, x) reduces to a one-variable
dependent a, which satisfies the equation

a„+q„'„F„„adco'=yn (0)&(c-o —&) .

[Note that, by Eqs. (4)-(6), a(t) =y(t, O)] Indeed, .
y(t, x) satisfies Eq. (1) at x&0, since y —(x)exp( icot)—

I

does. By Eq. (5), H„(0) =1, bH„'(0) = —
q . So,

by(t, 0) = y(t, +0) —y(t, O) =0 an—d [in virtue of Eq. (6)]
by'(t, O) =F(t)y(t, O) take care of the conditions at x =0,
imposed by Eq. (1). Finally, Eq. (3) is satisfied, since
fp(co+ co')F„exp( icot)dco =P(co'+id—/dt)F(t), P(co)
=H /q„, and, by Eq. (2) F( —~) =F(—~) =
Consider an adiabatic F(t), when the energy change is
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small and q„=qn in Eqs. (4) and (6). Then the Fourier transformation solves Eq. (6), and Eq. (4) yields an explicit
analytical formula for y,

y(t, x) =exp( —iQt) y& (x) —yn (0) Hv+„(x) exp( —itot) [F/(qv, +F)] de (7)

y(t, x) =exp( —i Ot ) y„+ (x) [1 —iF(t —t )/vo] (9)

Here t =fo dx/v(x) is the classical retardation time.
Consider the physical implications of Eqs. (8) and (9)

when F( —t) =F(t), for the case when F(t) monotonical-
ly changes from F( —~) =0 to F(0) =Fo. By Eq. (9),
the relative change d, (t,x ) in the probability density above
the barrier equals

A =
l y(t, x)/y( —,x)

l

' —
1

= —[1+v,'/F '(t —t„)]
In this case h, is related to the classical retardation t in
the instantaneous value of F. It is always negative. It
monotonically decreases from A( —~,x) =0 to the
minimal h(t„,x) = —(I+vo/Fo) ' and then monotoni-
cally increases back to A(~, x) =0. The tunneling case,
by Eq. (8), is the analytical continuation of the real-
velocity case (9), with t, being replaced by the imaginary
retardation time ( —itaL):

1+A =
l y(t, x)/y( —,x) l

'
=

I 1+F(t+it BL)/vol

The potential barrier enters only via the absolute local
value of the velocity vo and via the variable t HL, which de-
pends on x (and 0 ). When

F(t+ttaL) vo, (12)

the relative change manifests giant resonances as then
For every t1, Eq. (12) provides quantized values

of a complex (t+itaL), i.e. , of real t and taL. So, at every
x, quantized energies yield local resonances at quantized
times. In the stationary case Eq. (12) corresponds to a
true eigenstate when F =const & 0. For a slowly changing
F(t), resonances occur for any value and sign of F(t) By.
Eq. (11), b, ( —t) =A(t), i.e., A is even in t rather than in
any retarded time. Assume F(t) =Foexp( —t /T ).
Then

I+A=[1+A +24 cso(2t atL/T)]

A =go exp [(taL —t ')/T'],
(13)

Equation (7) satisfies Eq. (1) for x&0, Eq. (2), and
b' y(t, O) =0. It also satisfies By'(t, O) =F(t)y(t, O) to or-
der O(l/0 T), where T is the characteristic time of F(t).

In an opaque barrier, the WKB approximation for a
small energy change yields Hn+„(x)/H„(x)=exp(sto
x taL), and thus, by Eq. (7), at x & 0

y(t, x ) = exp ( —i 0 t ) y n (x) [I +F(t + it aL)/v 0], (8)

where taL=0. 5 fo (V t1) dx is the Biittiker-Lan-
dauer traversal time, q &

=vo= v (0), v (x) —=2l 0
—V(x)

l

't . Above the barrier (0 & V) the WKB calcu-
lation leads at x & 0 to H„+„/H„=exp( —irot„), and

I

where go=Fp/vo. Consider the response A for a fixed
taL/T as a function of time t/T. Suppose 0&go«1.
Start with x =0, i.e., t8L=O. Then d monotonically de-
creases from 6( —~,0) =0 to A;„=A(0,0) = —2go and
then monotonically increases to A(~, 0) =0. As one
would expect for x =0, h, =h. ;„simultaneously with
F=F,„, i.e., with the maximum of the potential energy
at x=0. Now consider a nonresonant taL/TAO. Then
b, ( t ) =h(t)—oscillates with t/T In pa. rticular, it always
has a minimum at t =0, at the same time as lF(t) l

is at a
maximum. Giant resonances occur whenever

t/T= ~ [0.5[(i +Q„) 't +i]]'

taL/T = [0.5[(i'+Q') '"—i]] '"
(14)

where l =lnl1/gol, Q„=(2n+1)z, and n is an integer.
(Note that taL ~ T, and thus x must be sufficiently large.
When go & 0, then Q„=2ntt) The .half-width of the reso-
nances exponentially decreases with n. They may occur at
very early time t/T ——(nest) 't, n&) 1, when the original
impulse is still exponentially small: F—Foexp( —nz)
Similar considerations demonstrate resonances beyond the
barrier. Since the value of taL/T depends on the position
x and the energy 0, one may observe resonance responses
at any x (at certain times) at specific resonance values of
the energy. Direct verification proves that the accuracy of
Eqs. (8) and (9), and thus of Eqs. (10) and (11), is relat-
ed to (1+ ldl)/0 T and to 1/Av, where A and T are the
characteristic length scales of V(x) and F(t) correspond-
ingly. When T ~, the resonance divergence in Eq.
(11) is exact. To determine the resonant A for finite T,
one must solve Eq. (7) exactly. However, one may specu-
late that the static case (F—:0) formula

l y& (x)/
yo ( —~)l —Il[P +(0 —t1, ) /Q, p ] remains valid in
an adiabatic case 0„=Q„(t). Here 0, is the resonance
energy, and p-exp[ —f„,(V —0) 't dx] and V(xo) =O.

The obtained results are not restricted to a one-
dimensional (1D) b'-function. For an arbitrary adiabatic
potential W(t, x) [which replaces V+FB(x) in Eq. (1)]
one verifies

f'x
y~exp —i0t — dx'[W(t+itaL, x') —0]'t, (15)

(where taL=0. 5fodx'/[W(t, x') —0] ' and W( —~,0)
= 0 ) is the WKB tunneling wave function. When

l fodx'[W(t+itaL, x') —Ql '
l
&1, the WKB approxima-

tion becomes invalid. This is the immediate vicinity of the
local eigenvalue of the potential 8'. There the response
blows up for any 8'.

Stationary WKB tunneling in any dimensionality
reduces to tunneling along a 1D line [whose length 1

should be substituted for x in Eq. (15)l and is determined
by S(l )—=fo[W(l') —0] 't dl' =mini f p drl, p is a classi-
cal momentum. Again, one verifies that an adiabatic 8'
yields ya:exp[ —i Ot —S[t+itHL(l), l]], with the imagi-
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nary retardation time and 1 aL(l) =0.5fodl'/(W(t, l')
—11] ' . In the general case t t+itaL —t„, where taL
is the total Biittiker-Landauer time in the barrier (where
V & 0) and t„ is the total classical retardation time in the
well (where V( 0).

Similar reasoning is applicable to the WKB tunneling
of any waves (electromagnetic, acoustic, hydrodynamic).
So the presented picture is very general.

In this section I consider time response in more detail.
By Eq. (10), above the barrier, the WKB approximation
reduces to the classical retardation. One may formally re-
late response time t, and velocity v, to maximal response
at a given place:

max, ~A(t, x) )
= ~A(t„,x) ), U„=dr/dt„.

Now consider the tunneling response time. While the tun-
neling rate is well known, the controversy about the tun-
neling traversal time has not subsided after almost six de-
cades. ' Wigner suggested following the peak of a wave
packet. However, the description of any change in the
wave-packet shape in a stationary potential t') (including
the decay of a metastable state ) reduces to the problem
of solving for the time evolution of independent eigen-
states. The characteristic period of a harmonic time-
dependent potential " determines the Biittiker-Landauer
traversal time, but does not prove its universality or
uniqueness. The persistence of the problem calls for
more accurate study. Above the barrier all activated en-
ergies participate in the probability-density transfer —see
Eq. (4). Activation maybe approximately neglected only
in the WKB case of an opaque barrier. The probability of
activation above the barrier is related to Fy &. The prob-
ability of tunneling is related to exp[ —(V —A)tsL]. If
F(t) has a discontinuity, then F„decreases as a power of
co, and activation exponentially wins over tunneling. Tun-
neling wins when F(t) is an entire function, which
changes slowly compared to 1/(V —0). Then Eq. (11)
relates tunneling response to the imaginary retardation
time. The real response time and velocity are introduced
in accordance with Eq. (16). Then, by Eq. (13), a single
imaginary time yields the whole ensemble of positive (re-
tarded), negative (advanced), and zero (instantaneous)
response times —see, e.g. , Eq. (14). They scale with the
Buttiker-Landauer traversal time, but change from
( — ) to (+~).

Here I discuss the possibility of direct experimental ob-
servation of resonances and oscillation s in tunneling
response. According to the previous section, the necessary
condition of tunneling domination is (V —0 )T» 1. The
lower is co =2rr/T, the larger, and thus experimentally
more available, is the characteristic distance A- v T
-XQ/ro, where X is the de Broglie wavelength. However,
the tunneling probability exponentially decays with 0/ro.

That is why realistically ro/0 should not be too small.
Electrons on helium]0 have Q —10i2 sec

—
& Variable-

range hopping usually also yields 0 —1012 sec-1. This
means co —10' -10"sec ', and A —0.1-1 pm.

Electromagnetic waves maybe perturbed by time-
dependent dielectric constants or magnetic susceptibility.
Again, reasonable wavelengths lead to high characteristic
N.

The best experiment may be on waves in a shallow
variable-depth liquid. Then v —Jgh (where g —10
cm/sec is the gravitational acceleration and h is the
depth) implies reasonable frequencies and lengths.

Once resonances and/or oscillations in tunneling
responses are observed, one may determine, by Eq. (16),
tunneling response times. (On other experimental ap-
proaches to the measurement of tunneling traversal time
see Refs. 1-3 and especially Ref. 4).

To summarize, WKB tunneling in an adiabatic poten-
tial W(t, x) is reduced to the stationary solution. The
method: consider t in 8' as a parameter, find the wave
function, shift t in 8 by the imaginary classical retarda-
tion time. The latter is equivalent to the ensemble of real
response times.

Tunneling oscillates with energy, space, and time.
When F(t) is symmetric in time, resonant maxima and
antiresonant minima maybe advanced, retarded, and in-
stantaneous. The corresponding times scale with the
Biittiker-Landauer time, but are quantized, depend on in-
teraction, and may change from —~ to +~. Specific
quantized energies yield local giant resonances. The ad-
vanced resonances with a large relative increase in proba-
bility density may occur when the original impulse is still
exponentially weak. Resonances amplify extremely the
relative response at certain times and places. Thus, by us-

ing the proper time-dependent potential one may tune the
interaction in a barrier. All these features maybe impor-
tant, in particular, when the potential is time dependent,
in virtue of the many-body interactions of tunneling parti-
cle.

The theory is applicable to any time-dependent poten-
tials, higher dimensionalities, types of waves (de Broglie,
electromagnetic, acoustic, hydrodynamic, and in particu-
lar, surface), and systems (in particular, random systems
giving rise to Anderson localization).
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