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Spin splitting and anoma&ous Hall resistivity in three-dimensionai disordered systems
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We comment on recently observed oscillations of the Hall resistivity around the classical value

with particular emphasis on the coexistence of localized and extended states in the case of a spin-

split lowest Landau level. We prove the existence of localization at the bottom of the 0t level,

thus explaining the observed plateaulike feature of the Hall resistivity.

Although the Shubnikov-de Haas (SdH) oscillations of
the magnetoresistance are by now well understood, no
convincing theoretical explanation for the oscillatory devi-
ations of the Hall resistivity from the classical behavior
has been presented so far. In recent experiments' the
Hall resistivity p„~ was investigated in narrow-gap, bulk
semiconductors such as InAs, InSb, and Hg~ —„Cd,Te
with particular emphasis on the magnetic-field region
where the last SdH minimum of the longitudinal resistivi-
ty p„ is observed. The interesting feature was a distinct
decrease of the slope of the p„~ versus 8 graph in the same
region. Murzin' was the first to suggest a relation to the
quantum Hall eA'ect (QHE) in two-dimensional (2D) sys-
tems and conjectured that electron-electron interac-
tion might account for an additional phase —a Hao
insulator —in three dimensions. Mani tried to reproduce
the essential experimental features in a simple model by
assuming the existence of localized states at the bottom of
each 3D Landau level (LL). His model suggested real
plateaus at T=O coinciding with the SdH minima. In
Refs. 1 and 2, however, only one plateaulike structure was
observed together with the last SdH minimum. From the
theoretical point of view three questions arise. (i) Does

p, , exhibit plateaus at T=O or is only the slope decreas-
ing? (ii) Can the existence of localized states be proven?
How can the problem of coexistence of localized and ex-
tended states —which was put forward in Ref. 3—be
solved in the presence of disorder? (iii) Does the
magnetic-field range in which the last SdH minimum
occurs play a distinguished role concerning the plateaulike
feature of p„,, ? Finally, we have also to comment on the
observation of a Hall resistivity being smaller than the
classical value for magnetic fields below the last SdH os-
cillation as well as before approaching the freezing-out
Mott-insulator (MI) transition at high fields.

In the following we want to illustrate that the decreas-
ing slope of p,-,, can be understood within a model of 3D
disordered systems studied previously, provided spin-
splitting is taken into account. Let us first recall that the
g factor of InSb decreases from about 50 to 35 for a dop-
ing concentration varying from n =10' to 10' cm
(cf., e.g. , Ref. 5). With the eA'ective mass m=0. 014m,
this yields a spin splitting of one third of the LL separa-
tion so that at least for the lowest Landau level (LLL) the
spin splitting is well resolved. Consequently, in the vicini-
ty of the last observed SdH minimum the Fermi energy
crosses the bottom of' the 0) level. Since in the absence of

magnetic impurities the one-particle states of the lowest
spin-up and spin-down LL cannot mix, all results obtained
previously for the LLL can now be applied to the 0) and
the Ot level separately. We have demonstrated in Ref. 4
that in the lower exponential tails of the LLL where the
one-instanton approximation applies all states are local-
ized. The density of states (DOS) in this regime reads

p(s) =—9 1 2m
2~l' r

1/2 ' ' 5/2

r

where r denotes the disorder induced level broadening
and s =E —A. co, /2 is the energy distance from the Landau
energies. In the present case the DOS of the spin-up and
spin-down bands pt, p~ are described by the same expres-
sion in the lower tails (see the shaded regions in Fig. 1).
In particular, the DOS for the spin-down level in the tail
region is given by

pl(E) =p(e gttB/2), — (2)

with p according to Eq. (1). Due to the independence of
the two spin-split bands, localized states from the spin-
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FIG. 1. Total density of states p (solid line) and DOS of the
spin-down band (broken line) in the LLL; e+ = (A. co, ~ geB)/2.
Impurity bands are omitted; shaded areas signify localization.
Arrows 1,2,3 indicate spectral regions referred to in the text. In
region 2 localized states belonging to the 01 level and extended
states from the 01 level coexist causing a decrease of the slope of
p, , (see Fig. 2).
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FIG. 2. Hall resistivity (solid line) oscillating around the
classical straight line p„",. (broken line) in the LLL as observed
in Ref. 3. Arrows 1,2,3 correspond to those of Fig. 1. In region
3, p„approaches p",. from below.
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In analogy to the DOS [cf. Eq. (2)] the number of parti-
cles per unit volume in the spin-up and spin-down level is
denoted by nt and nl, respectively. The Hall resistivity
exceeds the classical value and the slope is sublinear be-
cause n~ increases with the magnetic field but no plateau
is to be expected. Note that in the case of the quantized
Hall effect (QHE) the number of extended states below
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FIG. 3. Normalized Hall resistivity (cf. Ref. 8). For low

doping region 1 is characterized by the Hall dip which is ob-
served before reaching the freezing-out point BMl.

down band and extended states belonging to the spin-up
band coexist at the bottom of the 0) level (region 2 of
Figs. 1-3). The localized states of the spin-down band do
not contribute to the Hall conductivity. Assuming for
simplicity that the contribution to the Hall resistivity
coming from the spin-up band is described by the classical
formula p„'~ =8/en, we obtain in region 2

en 1 lccop

(1 —x.ro, ) '+ z'ro,'

where z denotes the scattering time and K the memory os-
cillation time From E. q. (4) we obtain the corresponding
Hall resistivity

r

py= 1—8
en
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For x =0 Eqs. (4) and (5) yield the Drude-Zener formu-
la. However, this value of K is incompatible with the
QHE in 2D and there is no reason why it should hold in
3D in the quantum limit. Note that the Drude-Zener for-
mula is the only approximation of Eq. (4) in disordered
systems in which the classical result p„y can be obtained in

Eq. (5). A general discussion of the properties of the
memory oscillation time ~ in 2D has been given in Ref. 7.
In order to gain insight into the 3D behavior we suggest to
the reader the following very illustrative toy model. Con-
sider a system with random disorder depending on the
(x,y) coordinates only. Integrating the 2D DOS at the
Fermi energy over all allowed p, values yie1ds the 3D
DOS as well as the particle density n. Let the 2D Hall
conductivity be any function with particle-hole symmetry
having quantized plateaus of finite width. The Hall con-
ductivity in 3D can be obtained analogously from the 2D
result. Within the above toy model we obtain the interest-
ing result that for eF» I the Hall conductivity in 3D ap-
proaches its classical value from above. A comparison
with Eq. (4) yields that this is only possible if the square-
root tails of the 3D LL's are characterized by zoo, »1 and
xylo, =1. Thus, the Hall resistivity of Eq. (5) tends to be
smaller than p'„~, in the absence of localization. However,
if the Fermi energy is situated in region 2 where the spin-
down states are localized, the Hall resistivity reads

8 1

As soon as the dependence on the particle concentration

the Fermi energy remains unchanged in the plateau re-
gion. This is not the case here.

We want to emphasize that in contrast to the discussion
given in Ref. 3 localization is not to be assumed but can be
proven. Spin splitting plays an essential role in that
phenomenon. At the bottom of higher LL's the same ar-
gumentation does not apply any longer because mixing
with extended states from the square-root tail of lower
LL's cannot be excluded. This explains the pecu1iar role
of the vicinity of the last SdH oscillation observed in ex-
periment.

Let us now turn to a more quantitative analysis of the
Hall resistivity. In view of the analogy which has been
suggested between the present localization phenomenon
and the QHE (Refs. 1-3) deviations of p„~ from the clas-
sical value are most natural even within a single band. It
has been shown in Ref. 7 that the most general parametri-
zation of the dc Kubo conductivities is given by
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dominates, the Hall resistivity exceeds p ~ as stated previ-
ously. The plateaulike feature of p ~ has already been ob-
tained in Eq. (3) with simplified assumptions. However,
the correction in Eq. (6) also explains that the Hall resis-
tivity indeed crosses p'~ at the bottom of the 0) level.
Note that the SdH minimum of the longitudinal resistivity
corresponding to Eq. (6), i.e., p„=m(e nlzt) ', occurs
when the decrease of n t with decreasing magnetic field be-
comes stronger than the increase of zt. This happens al-
ready below the mobility edge of the 0( level. Thus, even
in the presence of localization the minima of p,„ indicate
approximately the position of the lower band edges of the
LL's.

In region 3 of Figs. 1-3 the Fermi energy is situated in
the metallic region of both spin-up and spin-down LLL
and there are two additive conductivity contributions ac-
cording to Eq. (4) with the corresponding spin-up and
spin-down quantities, respectively. From vt co, = K

~ m, = 1

we obtain for the Hall resistivity

8 1
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i.e., the graph of p„~ approaches the classical straight line
from below as the magnetic field decreases. This eff'ect
has been observed in Ref. 3 but not in Ref. 2.

To avoid confusion let ~* denote the scattering time
corresponding to the zero-field mobility, i.e., p =ez*/m
However, we may safely assume in the following r* ~ z
and thus zco, tz: pB. In the region of validity of Eq. (6) the
experimental parameters of Ref. 3 have been p=3x10
cm /Vs, 850.7 T whereas in Ref. 2 p =8 && 10 cm /Vs,
B ~7 T. Obviously, z m, differs by 1 order of magnitude
in the two cases giving rise to an observable effect in Ref.
3 but not in Ref. 2.

In region 1 of our figures we predicted in Ref. 4 a loga-
rithmic decrease of p„~,/p„'~ with the magnetic field. How-
ever, this prediction referred to a situation in which freez-
ing out is at most a competitive effect at the MI transition.
In narrow-gap semiconductors at low doping concentra-
tions this is not the case, and in Refs. 3 and 8 a different
type of decrease has been observed. Shayegan, Goldman,
and Drew refer to it as the anomalous Hall dip in the
graph of the normalized Hall coefficient and explain it by
a picture of donor clusters (see Fig. 3 which contains the
same information as Fig. 2 but stresses the Hall dip rather
than the plateaulike feature of p y). When approaching
the freezing-out transition electrons tend to be localized
on isolated donor levels and the total area of the percolat-

ing cluster decreases. In Ref. 8 it has been shown that this
decrease is faster than the decrease of the number of elec-
trons moving within the cluster. Thus, the effective elec-
tron concentration increases with the magnetic field giving
rise to the observed Hall dip. As mentioned above, this
explanation applies at low doping concentrations where
the magnetic-field induced MI transition takes place in
the impurity band (freezing-out). On the other hand, for
an effective donor binding energy being small compared to
the disorder broadening localization becomes essential (cf.
Ref. 4). This might be the reason why in Refs. 1 and 2—
-i.e., for high impurity concentrations (natt =16)—no
Hall dip has been reported.

Our aim was to explain that the decreasing slope of the
Hall resistivity at the bottom of the 0) level can be under-
stood within the already existing framework of localiza-
tion without invoking the existence of an additional phase
(Hall insulator). The larger the impurity broadening of
the LL's the better our model describes the experiment.
At very low doping the role of the localized states is taken
over by bound hydrogenic donor levels. Nevertheless, the
possibility of coexistence with extended states is again due
to the fact that levels with opposite spin cannot mix in the
absence of magnetic interaction.

Finally, we want to comment shortly on the possibility
of the phase conjectured by Murzin due to the inhuence of
electron-electron interaction. In analogy to the magne-
toexcitons in 2D studied in Ref. 9 there might also exist
excitonic coupling between the spin-up and spin-down lev-
el in the present case. Since the energy dispersion in the
absence of disorder depends on the momentum p, only,
there exists another analogy to 1D systems known as exci-
tonic insulators (cf. Ref. 10). Let us suppose that a
ground state (spin wave in z direction) and a spectral gap
4, indeed exist. For a disorder broadening that is small
compared to the spectral gap I ((6, a purely localized re-
gime would appear giving rise to a real Hall plateau at
T=O. In this sense a decreasing slope of the Hall resis-
tivity and a real plateau are not quantitatively but qualita-
tively different phenomena. Screening eff'ects being small-
er at lower doping where also the disorder broadening de-
creases could favor the appearance of the above described
eITect.

In conclusion, the main features of oscillatory devia-
tions of the Hall resistivity from its classical behavior have
been explained. Particular emphasis has been placed on
the coexistence of localized and extended states in the case
of a spin-split LLL.
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