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We present a microscopic mechanism of optical nonlinearity in conjugated polymers. It is
shown that the bulk of the nonlinearity is determined by only two well-defined channels, even
though an infinite number of channels are possible in principle. We are able to explain the com-
plete frequency dependence of the third-harmonic generation in both trans-polyacetylene and po-
lydiacetylene within the same model without invoking weak Coulomb interactions between elec-

trons or interchain interactions.

The nonlinear optical response of m-conjugated poly-
mers is currently a subject of considerable experimental
and theoretical interest because of their potential use in
all optical devices. Experimentally, polydiacetylenes are
known to have very large third-order nonlinear suscepti-
bilities 1(3). The mechanism of the optical nonlinearity in
these systems, however, remains unclear. Controversial,
and sometimes contradictory, viewpoints regarding the
importance of electron-phonon’? versus electron-elec-
tron®* interactions exist. Numerical calculations of ¥
for finite systems> ~¢ are difficult to generalize to infinite
systems. Moreover, identification of any possible dom-
inant pathways contributing to ¥ is a formidable task
from numerical calculations.

In this paper, we identify the dominant mechanism of
optical nonlinearity in z-conjugated polymers. We show
that in spite of the large (practically infinite) number of
excitation paths that determine the overall magnitude of
x(” in an infinite chain, only two excitation paths involv-

ing essential one- and two-photon states at the opticalI

band edge of the infinite chain account for the bulk of the
x(”. Most importantly, the nature of the essential two-
photon state depends on the relative contributions of
Coulomb interaction between electrons or bond alterna-
tion to the optical gap, but its location with respect to the
optical band edge is completely parameter independent.
We are able to give a microscopic explanation of the rapid
saturation of ¥ ) with chain length in polyenes. Finally,
the full frequency dependence of 1(3) in both trans-
polyacetylene’ and the polydiacetylenes® is explained
within the same unified model. In contradiction to a ear-
lier claim,? it is not necessary to adopt a weak Coulomb
interaction model to explain the y©’ spectrum of the
former, and our results are consistent with the observation
of subgap two-photon states in finite polyenes.® Similarly,
we show that a single-strand model is enough and invok-
ing interchain interactions* is unnecessary.

The third-order susceptibility 1(3)( —3w;0,0,0) which
leads to third-harmonic generation (THG) is written as

1P (=30;0,0,0) =21‘,§Z<G|u|13><13|u|kA><kA|u|n3>(n3|u|G>[Dl(w)+D,(—w)+Dz(w)+Dz(—w)] , 1)

where G is the ground state, the B and A states are an-
tisymmetric and symmetric with respect to the mirror
plane passing through the center of the chain, and /, k, n
are quantum numbers defining the relevant states. The
dipole moment couples 4 states to B states only (the
ground state is 14). D; and D, are given by

D Y (w)=(w;+30) (@ni+20) 0p+w), (a)

Dy Y (0)=(w;3+ o) 0ms+20) (s — ), (2b)
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with all virtual-state energies being relative to that of the

ground state.

Our objective here is to argue that a very small number
of states dominate the triple sum, and to identify these
states in the infinite chain limit. These states are de-
scribed within the Peierls—extended Hubbard model, '%!!

H=UZnitn;1+VZnini+l
1 l

+1 X (A £8)(clotiv1,0+He) 3
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where c,-Tc, creates an electron of spin o at site i, n; ¢
=¢'oCicy Mi=2sni s, U and V are the on-site and near-
est-neighbor Coulomb repulsions, ¢ the one-electron hop-
ping integral, and & the bond alternation parameter. We
have chosen ¢ =1 in our calculations. We do not specify
the magnitudes of U and V yet. As we demonstrate below,
the dominant excitation paths that determine optical non-
linearity are virtually independent of U and V.

In order to arrive at a proper mechanism of optical non-
linearity we have numerically evaluated very individual
dipole moment as well as the individual terms that enter
into Eq. (1) for linear chains with V=4, 6, and 8 atoms.
It is instructive initially to examine the results of these
calculations for the simple Peierls (Hiickel) model with
U=V =0. This allows us to understand precisely the role
played by finite-size effects. This is important, since at
the chain lengths to which we are limited (or even twice
these lengths) interlevel gaps are strongly dominated by
finite-size contributions. At large XV, the optical gap con-
verges to a finite value, while the low-lying interlevel gaps
vanish. A practical way to eliminate most of the finite-
size contribution is to do simulations with artificially large
8 (6~0.4-0.5),'2 such that all interlevel separations are
close to their asymptotic magnitudes. At the Hiickel lim-
it, calculations may be done for very long chains, but the
present approach allows comparisons of Hiickel and Hub-
bard chains of the same lengths while minimizing finite-
size effects.

Our results for the Peierls- Huckel model are as follows.
For § =0.4, where finite-size effects are minimal, '? the os-
cillator strength of the allowed linear absorption from the
ground state is concentrated in the 1B state. This concen-
tration is strong enough that retaining a single term
(I=n=1) in each of the two sums over B states in Eq. (1)
is enough to yield the bulk of the ¥’ at all nonresonant
frequencies. This is a consequence of one dimensionali-
ty,'? and is true for arbitrary N as long as the single B
state is interpreted as a small collection of states at the
conduction-band edge. The relevant excitations out of the
1B state are of two kinds, involving interband and intra-
band excitations, respectively. The large dipole moment
between the 14 and the 1B states implies that there are
only two interband channels, one destroying the particle
hole created in the first step, the other creating a second
particle-hole pair that also involves the band-edge single-
particle states. The oscillator strength of the intraband
process is found to be overwhelmingly concentrated in the
2 A state, which lies immediately above the 1B state and is
degenerate with the latter for V— oo. Thus there are
only three dominant channels contributing to 7((3) for
U=V =0. These results predict a two-photon resonance
at E,/2, where E, is the band gap, in agreement with pre-
vious work.?2

For nonzero Coulomb interactions, it is not simple to in-
terpret the many-electron wave functions or the excitation
paths. It is shown below how dominating excitation paths
between total-energy states can still be identified within a
valence-bond description.'® We use exact numerical re-
sults for finite chains over a wide range of parameters
(0<U<50,0<V<20,0<8<0.4) to arrive at general
conclusions about dominant pathways in x @ for N— oo.

Details of our results, which remain valid even for the
Pariser-Parr-Pople (PPP) Hamiltonian®* with long-range
Coulomb interactions, will be published elsewhere. Here
we summarize our most important conclusions.

At the appropriate limits where finite-size contributions
have been eliminated, the transition from 14 is again very
strongly concentrated in the 1B state. For different pa-
rameters giving the same optical gap (e.g., §=0.4,
U=V=0vs §=0.3, U=1.0 and § =0, U =2.0) the dipole
moment between the 14 and 1B states are nearly the
same. Once again the /=n=1 terms dominate
overwhelmingly [Eq. (2)]. For nonzero U, virtual two-
photon states are both above and below the 1B state.
However, calculations indicate that for given U, V, §, the
dipole moment between the 1B state and those A4 states
that lie below the 1B state decrease rapidly with N, while
for a given N these dipole moments decrease with U. Both
these features imply that the contribution of subgap A
states to nonlinear optical properties of the infinite chain
is negligible.

Independent of U, V, 8, and N, we find that a single
two-photon state that lies immediately above the 1B state
dominates . We shall refer to this specific A4 state as
the mA state. The dipole moment of this state with 1B is
1-2 orders-of-magnitude larger than the average dipole
moment between an arbitrary A state and the 1B state, so
that the corresponding term that goes in the triple sum in
Eq. (1) is 2-3 orders-of-magnitude larger. While large
dipole moments between 1B and certain higher A4 states
have been found before,>* the result is that there is only
one such A state, and that its location in independent of U,
V, 8. Even though the actual magnitude of m is a strong
function of U, V, 8, and N, in all cases its energy is bound-
ed by the energies of the 1B and 2B states. This is shown
in Fig. 1 for N =6 and three representative sets of U, V, &.

Since the mA state is always bounded by 1B and 2B this
state lies very close to the 1B state for N— oo, and is
presumably degenerate. The variation of m as a function
of U and NV is shown in Fig. 2. It is seen that m saturates
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FIG. 1. The 1B, 2B (solid lines) and neighboring 4 (dashed
lines) states for N =6 and several different U, V, and 8. In all
cases the ground state is at zero energy. The numbers against
the dashed lines are the dipole moments between the corre-
sponding A states and the 1B state. In all cases this dipole mo-
ment is very large for an A state located between 1B and 2B
states.
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FIG. 2. The quantum number m of the A state which has
very large dipole moment with the optical 1B state as a function
of U for various chain lengths.

to final values of m =3, 5, and 11 for N =4, 6, and 8, re-
spectively. These numbers are significant. The number of
covalent valence-bond diagrams for V=4, 6, and 8 are 2,
5, and 14, and these combine to give 2, 4, and 10 A4 states
that are coupled to the B states in Eq. (1). Thus in all
cases the saturation values necessarily correspond to the
lowest ionic A4 state. This identifies the 18— mA transi-
tion as an “intraband” process in the language of mean-
field theory (i.e., the transition is within the upper or
lower Hubbard subbands). Taken together with the U =0
result discussed above, we conclude that the dominating
excitation path is of the intraband-type both at U =0 and
at large U, for arbitrary é and V.

In the above discussion we have focused on the low-
lving covalent A4 states and the mA state nearly degen-
erate with the 1B state. In analogy with U =0, one would
have anticipated a higher A state with large dipole mo-
ment with the 1B state. Transition to such a state would
correspond to an “interband” two-particle two-hole chan-
nel. For moderate U, we find that the contribution of this
channel remains larger than all other processes, but is
much smaller than that of the intraband channel discussed
above. This is true for all parameters except for relatively
small U and large &, where the system behaves somewhat
similar to the Hiickel limit, and two different two-photon
channels can dominate. Even in these cases, however, the
energy of the high-energy two-photon state is considerably
lower that what would be expected in a typical interband
process. For realistic parameters and large JV, this state is
expected to contribute little to optical nonlinearity.

Summarizing the above results, we conclude that only
the ver3)/ lowest ionic A and B states contribute strongly to
the y'?) of the infinite chain. A states that are far from
the optical “band edge” on either side make only small
quantitative contributions. This is a consequence of one
dimensionality alone, and the infinite chain can be con-
sidered as a broadened three-level system

The above explains the observed? saturation of 2P asa
function of N. At small N both interband and intraband
gaps are dominated by finite-size effects. Allowed dipole
moments are known to increase with the decrease in the
gaps. These gaps decrease very rapidly with increasing N
in the small-/V region, leading to a rapid increase in the
numerator and a decrease in the denominator in Eq. (1).
The important point, however, is that the number of chan-
nels for 3} processes remain virtually two, so that once
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the gaps between the 1B and the 1A states, and that be-
tween the 1B and the mA, are close to their asymptotic
values, little additional increase in x>’ occurs in spite of
the increase in the total number of terms in Eq. (1).

Most importantly, we show that the essential states
mechamsm explains the complete frequency dependence
of x® within an isolated strand model for realistic
Coulomb correlations.>*!%!! Since the dominating two-
photon state is shown to lie immediately above the 1B
state in the infinite chain, a two-photon resonance in THG
is expected at E,/2 for arbitrary U, V, and 6. This is
shown in Fig. 3, where we have plotted y ®(—3w;0,0, )
for four representative values of U and V with the same
lifetime parameters. It is seen that nearly identical spec-
tra are obtained in all cases. The nonzero U, V results are
the same as that for U =0 for arbitrary N. For the small-
est nonzero lifetimes, all other two-photon resonances, be
they above or below the optical gap, disappear, indicating
that the nonresonant contributions from the essential
states to ¥ outweigh the resonant contributions. This,
therefore, explains not only the location of the two-photon
resonance but also why only one such resonance is observ-
able. As seen in Fig. 3, neither the U =0 approximation
nor interchain interactions need be invoked to explain the
THG data.

The applicability of a “finite-U”” model then would de-
pend on whether or not the model is able to explain seem-
ingly incompatible data and materials. Elsewhere!'? it has
been argued that the optical gap is dominated by
Coulomb correlations, and that such a model can in-
tegrate'? the observations in both polyacetylene and po-
lydiacetylene. Present work would predict that the THG
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FIG. 3. Frequency-dependent third-order susceptibility for
four different sets of parameter values for V=8. The strong
two-photon resonance moves to Eg/2 for N— o. Notice that
the subgap two-photon states for finite U are not visible.
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of these materials should be similar. Existing THG as
well as dc induced second-harmonic generation in a po-
lydiacetylene?® strongly support our model, in both experi-
ments a two-photon resonance was observed at an energy
that was nearly half the optical frequency. While it is not
possible for us to predict whether the mA state is exactly
degenerate with the 1B, we would predict that it is bound-
ed by the excitonic state at 2.0 eV and the conduction
“band” at 2.5 eV in the ordered polydiacetylenes. Shorter
effective conjugation lengths in disordered materials and
in solutions would push the mA state to considerably
higher energy. We are aware of the recent two-photon
absorption (TPA) experiment of Etemad,'* who find a
broad two-photon state at an energy considerably higher
than the 1B threshold in poly-4BCMU polydiacetylene
(poly-(5,7-dodecadiyne-1,12diol  bis(n-butoxycarbonyl-
methylurethane))). We believe that this is in agreement
with our theory. The location and the width of the TPA
here is strongly influenced by thermochromism induced
disorder. As this original version of the paper was being
written we received a copy of the unpublished work of
Soos, McWilliams, and Hayden, 15 who also stress the role
of a high-energy two-photon state in order to explain the
above experiment. However, Soos, McWilliams, and
Hayden, !> work with PPP parameters and predict the mA
state to occur at an energy that is considerably higher
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than the 1B state (at ~1.6E;). Interchain interaction is
invoked to explain the THG of trans-polyacetylene. As
shown here, both the TPA experiment and the calcula-
tions reflect finite-size behavior. Independent of parame-
ters, the mA state remains bounded by the 1B and the 2B,
and m corresponds to the lowest ionic state.

To summarize, we have shown that the mechanism of
optical nonlinearity in rigid-band linear chains is parame-
ter independent. We are able to explain the THG spectra
of both polyacetylene and polydiacetylenes without invok-
ing either weak Coulomb interactions or interchain in-
teraction. The similarity in the THG spectra is a clear
signature of Coulomb correlations. The generality of our
results makes them applicable to a wide variety of systems
describable by the Peierls-extended Hubbard Hamiltoni-
an.
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