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Absorbing boundary conditions for the finite-difference time-domain calculation
of the one-dimensional Schrodinger equation
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The absorbing boundary conditions for the finite-difference calculation of the time-dependent
one-dimensional Schrodinger equation are presented. These are the local boundary conditions that
approximate the one-way wave equation of a wave function. The conditions minimize undesirable
reflections at the artificial boundaries of the area of computation, thus enabling us to limit the com-
putation area efficiently. The calculations of the transmission coefficient of multibarrier tunneling
show the validity of the method.

INTRODUCTION

The solutions of a time-dependent Schrodinger equa-
tion have been studied in order to provide insight into the
dynamics of quantum-mechanical systems. ' These time-
domain calculations also seem to be useful in estimating
the responses of various quantum-effect devices now
becoming possible by the recent progress in fine process
technologies. In a one-dimensional case, the following
equation is set to the starting point of the discussion:

ih 'P(x, t) = — + U(x) I'(x, t),2m* Bx

where U(x) is the potential given as a function of x, m*
is effective mass of the particle, and fi=h /2ir in which h
is Planck's constant. Temporal evolution of the wave
function 0'(x, t) can be integrated from the initial values
%(x,O) step by step in time by using the finite difference
expression of Eq. (1) given as

4(x, t + At) 0'(x, t b t)——
iA

2ht

fi 0'(x +b x, t )
—2'll x, t) +%(x bx, t)—

2fn Ax

+ U(x)%(x, t) .

The above approximation of e ' ' preserves the uni-
tarity of the operator, so that Eq. (2) ensures the constan-
cy of normalization of the wave function as time goes on.
Also noticed is that Eq. (2) has an explicit form that
differs from that presented in Ref. 1. For more details
concerning this problem, the reader is referred to Ref. 1.
The other problem is the subject of this Brief Report. In
practical calculations, because of the finite capacity of
memories, the area of computation must be limited to ap-
propriate size. In many cases, one hopes to set the ab-
sorbing boundary conditions at the end of the computa-
tion area so that the undesirable spurious reAections at
the boundaries affect the solution in the long time period.
Here, we concentrate on the details of the absorbing
boundary conditions and the scattering (refiection-
transmission) problem is considered.

ABSORBING BOUNDARY CONDITIONS

%(x +hx, t) 2%'(x, t)+ %(x— bx,t)—
2f71 Ax

Let us consider the computation area of x = [O,Nhx],
where N is a positive integer. Then, using Eq. (2), the
values 4"„, n =1,2, . . . , N —1, can be calculated from

' and 4'„. (Different expressions that allow calcu-
lating %'„only from 4„' are presented in Ref. 1.) Here,
we denoted the wave-function values %(nb,x, lAt) as '0'„.
If one takes a boundary condition such as VO=%'& =0 for
all l, perfect reflections occur as if the infinite potential
walls exist at the boundaries. In order to obtain the for-
mulas for the absorbing boundary conditions, we first
consider the special solutions of Eq. (1):

+ U(x)%(x, t),

'P(x, t+b, t)=e ' ' ~"%(x,t 5t)—

where hx and At are discretization length in space and
time, respectively. In such a calculation, the problem of
the numerical stability and the preservation of normaliza-
tion of the wave function are often raised. It may be
helpful to notice that expression (2) is derived from the
equation of the time-increment operator:

by substituting

1 —t AtII /A

1+i b.tH/A

qg (x t ) e
—i ( cut —kx )

These are the states of the definite energy E and satisfy
the dispersion relation

and

p(x, t +b, t)+%(x, t —6t)
2

=4 x, t
fi k =2m *(fico—U), (4)

which is obtained by substituting E =fico and p =fik into
p =2m *(E—U), where p is the momentum of the parti-
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cle. Solving (4) in terms of haik, we get

flak =+[2m *(Ace —U) ]'i (5)

In this equation, plus and minus signs means the right-
going and left-going waves, respectively. Thus, the ab-
sorbing boundary conditions should be designed to satisfy
the dispersion relation given by the plus-signed Eq. (5) at
the boundary x =Nb, t and the minus-signed Eq. (5) at
the boundary x =0. These are the one-way wave equa-
tions for the wave function. This dispersion relationship
is illustrated in Fig. 1 in the case of the right-going wave.
Unfortunately, function (5) is not rational and cannot be
converted into a partial differential equation. Therefore
we approximate this relation to

(2m*a )' —(2m*a )'
Ak =+ (fico U)—

Q2 CX)

FIG. 1. The dispersion relation and its first-order approxima-
tion for the right-going wave.

a2(2m*a )' —a, (2m*a )'
(6) where

CX2 CX )

Equation (6) is a straight line in Fig. 1, crosses Eq. (5) at
A'co —U =a, and a2. The plus and minus signs in (5) cor-
respond to the right-going and left-going waves, respec-
tively. The correspondence of 8/Bt —i ~ and
8/Bx ik leads us to rewrite Eq. (6) into a partial
differential equation of

if& 4'(x, t) = i' —+ U — %(x,t),1 0 gz
Bi g, Bx

(2m *a ) —(2m *a )
~

g) =+
(X2 CX )

and

a~(2m *a, )' —a, (2m *a~)'
g2=+

CX2 CX )

Then, the finite-difference expression of Eq. (7) is

(8)

W(x +Ax, t+bt)+%(x, t+&t) —+(x+« t) —+(x t)
2ht

@(x +«, t + b, t)+ +(x + b,x, t) 0'(x, t +«) ——+(x, t)
l

2hx

g2 qi(x +«, t +At)+'I'(x +«, t)+q(x, t+&t)+q (x t)
4.

Thus, we obtain the calculation formula at x =0 as

—C, (eI —eI-' —e,'-')+ C,(+I+eI-' —e,'- ')+ C,(e'+ e'-'+ e'-')
C) +C2 —C3

and at x =Noix as

(10)

Cl( %N 1 VN %N 1)+C2(VN %N 1 %N 1)+C3(+N + %N 1++N 1)

C —C —C1 2 3

where C& =i fi/2b t, C2 = i'/2«g &, and —C3 = ( U
—gz/g& )/4, taking minus signs in Eqs. (8) for g, and gz
of (10) and plus signs for (11).

(x —xo)
%(x,O) =exp — +ikox

20
(12)

NUMERICAL RESULTS

Figure 2 shows the calculated temporal evolution of
wave packet propagating toward the boundary of the
computation area. In this calculation, U(x)=0, « =5
A, and Et=0.01 fs. A gaussian wave packet given by
Eq. (12) is supposed for the initial wave function %(x,O):

0
In this case, o. =20hx = 100 A and ko is taken as
ko=(2m*ED)' /fi, where ED=0.5 eV. It is clearly
demonstrated that the wave packet is absorbed at the end
of the computation area x =200« in which Eq. (11) is
applied. No reflection is recognized from the figure. Fig-
ure 3 presents a typical energy dependence of the
reflection coefficient at the absorbing boundary. The
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FIG. 4. The calculated multibarrier structure and analysis
conditions. e coThe computation area is [0,400hx

'
n is ado tedand At = 10 ' s. The absorbing boundary condition is a op e

d 400hx. The initial wave function %(x,0)
Ax =10 A,is described by Eq. (12) in which o. is equal to 206x =

0 50hx 100Ax 150Ax 200Ax

x

de end u on not only the pa-reAection characteristics epen p
rameters n& and o.z but also the discretizing lengt x
an . , n —40 dB (1% error) is easilyand At. However, less than — o

ac ieveh d over a wide range of energy.
a lie ations, theTo test the validity in practical app

' ', h

FIG. 2. The temporal evolution of the Gaussian wave packet.
The absorbing boundary condition &o.'& =
applied at the boundary x =200hx. The wave packet has a

0 S V and a dispersion of about 0.1 eV inmean energy of about . e an a
energy space.

oefficients of multibarrier tunneling are cal-transmission coe cien
culated in the following way. Figure 4 shows e po

fil f the calculated multibarrier structure. Thetial pro e o e
x 0) is alsofil d f r the initial wave function x,

hich theillustrated. %(x,0) is defined by Eq. (12), in whic
and k ( )0) are determined so as to have a

area of energyb dened spectrum in the interested area o energyroa ene
s ace. The temporal evolution of the waveve function in

finite-di6'erence time-domain sc erne. t e rig

and the left-going wave reAected by the mu i arr'
b d t the boundary x =0, the transmis-

sion coefficient T(iiico) T*(iiico) is calculated by
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f the absorbing boundary conditions. a& is tak-
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x =~ooax(&co) ~ kx =~oozed
T(fico) T*(fico)=

~P;„;„,i(irico)
~ k;„;„„

(l3)

where ~$„=4ooc,„(irico)
~

is an amPlitude of the transmitted
wave component in the energy space obtained by the
Fourier transform of %(400bx, t). P;„;„.,&(A'co)~ is that of
the component k ~0 involved in the initial wave func-
tion %(x,0). erik, „;„„=(2m*fico)'~ and haik 4ooc„
=I2m*(A'co+eV, )]' . The calculation was performed
with the discretization length of Ax =0.5 A and
At =10 ' s. The results are plotted in Fig. 5. For com-
parison, the transfer-matrix calculation of the same
structure is carried out. Excellent agreement is obtained
between both results as shown in Fig. 5.

SUMMARY

The absorbing boundary conditions are derived for the
finite-difFerence time-domain calculation of a one-
dimensional Schrodinger equation. Using these condi-
tions, the undesirable reAection of the impinging wave
packet can be strongly reduced at the boundary of the
computation area. This makes it possible to solve the
scattering problem by time-domain calculations as
demonstrated. Extensions to the two-dimensional prob-
lem are now being planned.
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