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Following previous work on Rb intercalated in graphite, a molecular-dynamics study of potassi-
um intercalated in graphite has been performed using an experimentally determined host-

intercalant modulation potential. The circularly averaged static structure factor S(q), the trans-
form of the number density (p~ ), the anisotropic liquid S(q) at 300 and 200 K, and the angular

modulation of the difFuse scattering are calculated. Excellent quantitative agreement with the ex-

perimental data is obtained.

The alkali metals are donor-type intercalants in graph-
ite and at room temperature form an ordered stack of
two-dimensional (2D) liquids uncorrelated from layer to
layer that are incommensurate with the in-plane spacing
of the graphite host lattice. ' The structure of potassium
intercalated in graphite (-C2~K) is similar to rubidium
intercalated in graphite ( —C2~Rb), with some notable
differences. The potassium atom is smaller than rubidi-
um and the spacing between the intercalated carbon lay-
ers is therefore shorter for K (5.4 A) than for Rb (5.7 A).
As a consequence the potassium atoms are more strongly
influenced by the host potential. In addition, the modula-
tion potential for potassium shows enhanced local mini-
ma over the carbon atoms; these minima are not present
for rubidium where the modulation potential could be
well represented by a set of six simple sinusoidal terms
(along the six equivalent directions of the hexagon).

The present molecular-dynamics (MD) simulation was
performed following the procedure of Fan et al. The
critical input in the MD is the graphite-K modulation
potential noted above, which was furnished by Kan
et al. though a careful x-ray scattering measurement of
the K contribution to the HK. L graphite Bragg peaks.
This potential will, in general, take the form
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where y (r) is the screening contribution; ez is the
effective dielectric constant that may be retained as the
single adjustable parameter in our calculation aside from
the in-plane density. (The familiar core-core repulsive
term is not experienced by these partially screened ions. )

The MD simulation and all the structure calculations
(Fourier transforms) were carried out on a Sun 4 comput-
er using a periodic rhombic box of 36X 36 graphite cells.
The time step in the simulation was ht =0.04 ps. The to-
tal number of configurations used to calculate the statisti-
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where qHK is reciprocal-lattice vector of the graphite.
The contribution to the potential due to the K-K repul-
sive interaction is the Vischer-Falicov repulsive screened
potential adapted by Plishke for 2D liquids,
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FIG. 1. Comparison of the circularly averaged liquid struc-
ture factor S (q) obtained by MD simulation with the experi-
mental data obtained for stage-2 K in HOPG (Ref. 8). The posi-

0
tion of the first sharp peak is at q =1.22 A '. The experimen-
tal graphite Bragg peak (10.0) peak at 2.94 A ' has been re-
moved along with the (11.0) peak at —5.0 A '; in the calcula-
tion these peaks were removed analytically.
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TABLE I. Comparison of experimental and MD determina-
tions of the Fourier transform of the potassium number density

(p,
' ) at two in-plane densities.
~8K

10
11
20
21
30
22

Experimental
(Ref. 2)

0.52+0.03
0.31+0.03
0.25+0.03
0.08+0.03
0.11+0.03
0.02+0.03

MD
(KC».»)

0.48
0.31
0.21
0.07
0.09
0.03

MD
(KC11.02)

0.46
0.31
0.20
0.06
0.09
0.03

cal average for both the circularly averaged static liquid
structure factor S(q) and the anisotropic liquid structure
factor S(q) is X =280. The time separation between two
successive configurations was 1006t. As noted above, the
adjustable parameters were the dielectric constant eo and
the alkali in-plane density po. Both of these parameters
were chosen to fit the first sharp diffraction peak (FSDP)

in the experimental S (q) at q = 1.22 A
Figure 1 shows the comparison between the calculated

S(q) and the experimental x-ray scattering data obtained
from a sample of highly oriented pyrolytic graphite
(HOPG) intercalated to -Cz4K. As in Ref. 4 the Bragg
contributions have been analytically removed. The
FSDP is fit very well, but for larger q, while the calcula-
tion appears to go through the data, the experimental ac-
curacy is not good enough to make any real comparison.
At this time, unfortunately, these are the only experimen-
tal data for S(q) that are available. The value of the
dielectric constant was fixed at so=1.8 and the in-plane
density was set, through several trials, at C» oz K corre-
sponding to 235 atoms of K in the rhombic graphite box.

In Table I we present the calculated values of the
Fourier transform of the number density (p'qHz ), where

for two different in-plane densities C» oz K and C» 52 K
and compare them with the experimental values obtained
by Kan et al. While the MD values of (pHz ) for C», 2

K are in slightly better agreement with the experiment,
we have chosen the C» O2 K concentration because it fits
the data better for S(q). (The experimental value for
this in-plane density was also C» sz K.)

The anisotropic structure factor S(q) is calculated for
liquid K in graphite at 300 K [Fig. 2(a)] and at 200 K
[Fig. 2(b)] in which, as in Ref. 4, the Bragg contributions
are now left in place. Certain features emerge from these
contour plots. At 300 K, the characteristic diffuse
scattering from the alkali liquid around the origin (00)
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FIG. 2. (a) Anisotropic structure factor S(q) via MD simula-
tion at room temperature (300 K). The characteristic features
of the liquid pattern are (i) contribution of K at the [10] graph-
ite Bragg peaks, (ii} anisotropic modulated liquid scattering, and
(iii) modulation halos about the [10] positions indicated by cir-
cles; there is also a weaker halo about [11]. (b) S(q) by MD
simulation at 200 K. On cooling, the diffuse scattering in the
first ring concentrates into a pair of diffuse spots rotated by an
angle of -7.5' with respect to the graphite ( 10.0) directions.
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FIG. 3. Comparison of the MD-calculated angular rnodula-
tion of the 300 K diffuse scattering in the first sharp peak at

q =1.22 A ' with the experimental data (Ref. 11); the rotation
angle 0 is from the ( 10.0) direction in graphite.
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and the anisotropy in this diffuse scattering are clear.
Figure 2(a) shows a 90 segment of the (averaged) recipro-
cal lattice in which two of the six peaks in the modulation
intensity, roughly in the j 10.0] direction, are noticeable.
Also present are (anisotropic) halos of diffuse scattering
about the (10) and (01) graphite positions, roughly repro-
ducing the liquid scattering about the origin as predicted
and observed in a C24Rb crystal. That this halo also ap-
pears weakly about (11) is a consequence of the magni-
tude of the Fourier coefficient V» (compared to V,o). In
the Rb compound the ratio V,o/V» =7.5; in the present
K compound it is Vio/V» =2.2. Inasmuch as the halo
intensity is roughly proportional to VHx. (Ref. 5), we
would expect a significant enhancement of the (11) halo
in Cz4K over C24Rb. While for C24Rb there is no observ-
able halo about (11), in the present calculation it is clearly
discernible.

In Fig. 2(b) at 200 K, the diffuse scattering on the prin-
cipal ring forms two separate maxima about each I 10.0]
direction and the angle between them is —15', corre-
sponding to -7.5 rotation angle of the alkali structure
with respect to the graphite lattice, in agreement with the
experimental value of Mori et aI. and Rousseaux
et al. ' for the solid phase. We have also calculated the
angular modulation of the diffuse scattering around the
first diffraction ring at 300 K and Fig. 3 shows a compar-
ison of the computed profile with the experimental data
of Rousseaux and co-workers. " We may see that the in-

tensity maxima are centered about the (10.0) graphite
direction for K as already pointed out by Rousseaux
et al. , instead of the ( 11.0) graphite direction as in

10

12Rb, and the agreement between the two curves is quite
satisfactory. In other words, for K the intensity is a max-
imum along ( 10.0) while for Rb it is a minimum in that
direction.

In summary, we have presented a MD calculation for
-C24K to compare with the experimental determination
of (pq ), S(q) for HOPG and S(q) for single crystals.

qal(.

The agreement is quite good in most of the details, al-
though the in-plane K density required for this agree-
ment is slightly greater than experimentally observed
(C» O2 K versus C» s2 K). This comparison for 2D liquid
potassium in graphite is important because the graphite-
potassium modulation potential as determined by Kan
et al. differed substantially from the graphite-rubidium
potential in Moss et al. We should, however, note here
that on further cooling the 2D potassium layer appears to
freeze into a distorted hexagonal structure, which does
not agree in detail with the experimental findings.
This inclination is already revealed at 200 K in Fig. 2(b),
where all of the diffuse peaks do not fall exactly on the
modulation circle or halo.
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