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The hopping magnetoresistance R of a two-dimensional insulator with metallic impurities is con-
sidered. In suKciently weak magnetic fields it increases or decreases depending on the impurity
density n: It decreases if n is low and increases if n is high. In high magnetic fields B, it always ex-
ponentially increases with &B. Such fields yield a one-dimensional temperature dependence:
lnR ~ 1/&T. The calculation provides an accurate leading approximation for small impurities with
one eigenstate in their potential well. In the limit of infinitesimally small impurities, an impurity
potential is described by a generalized function. This function, similar to a 6 function, is localized
at a point, but, contrary to a 5 function in the dimensionality above 1, it has finite eigenenergies.
Such functions may be helpful in the study of scattering and localization of any waves.

I. INTRODUCTION

Magnetoresistance (MR) is an intensively studied prop-
erty of a conductor. In metals' it always increases with
magnetic field B ("positive MR"). In semiconductors
it may increase or decrease ("negative MR") with B.
Theory does allow for both positive and negative'
MR R. However, e.g. , in high magnetic fields different
authors suggest the saturation of a two dimensional (2D)
R (Ref. 12); lnR ~(B/T) '~ (Ref. 7; this dependence
agrees with experiment ); lnR ~ T '~ (Ref. 8); and
lnR ~ T ' with a not quite certain dependence on 8
(Ref. 9).

In this paper, I introduce a model that in strong fields
allows for an accurate 2D solution and always (even in
metals) yields' lnR ~ (B/T)'~ . In lower fields, MR be-
havior is more specific. I predict that at high metal im-
purity concentration e;, negative MR has a minimum in
very strong B, and then becomes positive, yielding the
Ono law. At low c;, MR is always positive, switching
from the Li-Thouless-type law in strong B to the Ono
law in very strong B.

The presented model considers metallic impurities,
whose size p is small compared to their Bohr radius ro,
and determines the leading approximation in p/ro —+0.

In 1D the potential, which has an eigenstate with finite
ro when p —+0, is a 5 function. However, this is acciden-
tal. A 6 function is adjusted to solving an inhomogene-
ous equation via the Careen function. It meets this goal in
any dimensionality, whereas it yields no eigenstates and
no scattering in any dimensionality above 1. The approx-
imation p/ra~0 yields a generalized function ("Impurity
D function" —IDF), which, similar to a 5 function, is lo-
calized at a point (r ~0), but, different from a 5 function,
has an eigenstate (with finite ro) in 2D.

The definition p~O, ro is finite, allows one to introduce
an IDF in any eigenstate problem (in electrodynamics,
elasticity, etc.). Then for an arbitrary set of N IDF's the
problem reduces to eigenstates of an XXXmatrix.

In the next section I introduce an impurity D function.

In Sec. III I compare 5 and D functions and their proper-
ties. Both sections have a mathematical fiavor and those
not interested in it may proceed directly from Eqs.
(2.1)—(2.4) to Eqs. (2.10)—(2.14) and then to Sec. IV
which accurately reduces the Schrodinger equation in
magnetic field with X arbitrarily situated IDF's to N
linear algebraic equations with explicitly presented
coefficients. Section V considers physical implications of
these equations. I conclude with the summary.

II. IMPURITY D FUNCTION

In this section I introduce the central idea of this
paper —an impurity D function (IDF) D(r). Consider a
single impurity with the negative (i.e., attractive) poten-
tial

U(r) = —(itt /2M)D(r),

D (r)—:Wv (r/p),

(2.1)

(2.2)

where M is the electron mass and v (x) decays at x —1,
e.g.,

v (x) =exp( —x ) . (2.3)

Then the Schrodinger equation in magnetic field B=Bz
reads:

(V —bXr) %+I(2ME/A )+D(r)]%'=0,
b=z/2lH =zeB/2cA .

(2.4)

(2.5)

Here, IH is the magnetic length, and the vector potential
A is in the symmetric gauge: A=BXr/2. I find such
W'(p), that even when p~0 the potential well (2.1)—(2.3)
has an eigenstate, while D (r)V(r) in Eq. (2.4) may be re-
placed by D (r)%(0). Suppose such a W exists. Then the s
state %(r), by Eq. (2.4), yields' "
4"'+ql'/r+[(2ME/A )

—b r ]4= D(r)%'( )0. (2.6)—
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The solution to Eq. (2.6) is straightforward:

0'(r) =exp( g—/2)@(0)fD (r')exp( g—'/2)r'dr'M(g, g'),
(2.7)

M((, g') = —,
' g L„(g)L„(g')l(n +a),
n=0

the preceding section, and yields

D (x ) = W'u (x /p ),
where

W=w/p .

(3.1)

(3.2)

where

g=r /2lH, a =0.5 ME—c/2eBA . (2.8)

When p —+0, this 1D IDF is proportional to a 1D 6 func-
tion:

Equation (2.7) with r =0 determines E. When p~O, bor-
ing calculations yield

T

iH 1 a"
p JV ln +

p 2a 2„,n(a+n2)

Thus, if (p W) ' =ln(d /p), i.e., by Eqs. (2.1)—(2.3),

(2.9)

U = fi exp( r—lp —)/Mp ln(d/p), p~O, (2.10)

then the eigenvalue a satisfies the equation

in(d/lh)=(1/2a) —(a/2) g 1/n (n +a) .
n=1

(2.11)

If magnetic field B—+0, and thus lH~ ~, a~ ~, then,
by Eqs. (2.8) and (2.11),

E~—A' /2Md (2.12)

M($, 0)= I (a)f(a, 1,g)/2—= G (a, g) (2.13)

When B increases, a decreases. When a & —,', then, by Eq.
(2.8), E )0 and the level is above the vacuum. When
B—+ ~, then a —+0, and E~ to the ground-state energy
in a vacuum. When p —+0 and r ))p, then in Eq. (2.7)
M(g, g')=M(g, o), where' "' ' '

D ( x)~w f v (x, )dx&5(x) . (3.3)

Note that the strength m enters as a factor, and that only
the leading approximation in p~0 matters. Since

8'p ~p~0, (3.2')

a 5-function potential (which is ~ 1/p and ~~ ) is
infinitely shallow '"' ' compared to the characteristic en-
ergy A /2Mp . That is why its eigenfunction changes
infinitely slowly compared to its width" '"'

p, and

f 5(x)%'(x)dx =%'(0) . (3.4)

U ~5(x) (3.5)

and the shorthand 5(x)%(x)=5(x)%(0), in the sense of
Eq. (3.4). According to Eq. (2.10), in 2D,

Wp ~ 1/ 1np
~
~0, (3.6)

i.e., the well is still infinitely shallow, ' ' ' although only
logarithmically. Again, by Eq. (2.14), the wave function
changes infinitely slowly compared to p.

Until now I considered a circularly symmetric IDF.
However, one may study the extreme anisotropy, choos-
ing

In virtue of &~w in Eq. (3.2), one may introduce a
potential

V(r) ~ exp( —g/2)G(a, g) . (2.14) D ( r ) = W'5(x )u (y lp ), u (
—y) = v (y) . (3.7)

Here, I is the I function and g is the degenerate hyper-
geometrical function.

When lH ~, then ' "
G (a, g) +TO(r/d)/2, — (2.15)

where Ko is the Bessel function. In a general case' ' '

V(r) cc exp[ —(rid) —(r /41H )]ln [r(d '+IH ')] .

(2.16)

(Note that when r~ oo, then lnG o- —r rather than
~ —r as in conventional localization. ) When B—+0, then
4 decays at r =d, which, in agreement with Eq. (2.12),
plays the role of an impurity Bohr radius az. Thus, al-
though d vanishes in the leading approximation of Eq.
(2.10) w en p~O, it is crucial for the eigenstate.

Then it is convenient to use the Landau gauge for the
vector potential: 3 = Ay Bx The Schrodinger equa-
tion for, e.g. , E = —A K /2M & 0, reads

$2+ + +2ibx 0"—IC'0 = —W'v (y/p)5(x)'P(O, y) .
Bx

(3.8)

The further reasoning is similar to the case of a sym-
metric IDF. In higher dimensionalities a shallow well
has no eigenstates, ' ' ', D ~ 1/p, and even in the leading
approximation D(r), %(r) may be replaced by D(r)%(0)
only qualitatively —cf. the Lifshitz model. ' Then the
IDF approach becomes a convenient model.

IV. EIGENSTATES OF AN IDF SET

III. 5 AND D FUNCTIONS

The difference between a 2D IDF D (r) and a 2D 5
function 5(r) is clear from Eqs. (2.10) and (2.11):
fD(r)r dr d0=7r/~lnp~~O, while f5(r)r dr do= 1. A
1D D function may be derived similar to the derivation in

U, = —(A' /2M)D, (ir —r, i),
D, (r) =2 exp( —r Ip ) Ip ln(d, Ip).

(4.1)

(4.1a)

Consider a 2D insulator (with zero potential energy)
with X metallic impurities. Suppose the sth impurity has
a potential U, [cf. Eq. (2.10)]:
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(4.2)

%, =%(r, ) .

The transformation

4 =+exp[i (b X r, ) r]%', N, ( ~
r —r, ~ )

(4.3)

(4.4)

yields, ' similar to Eq. (2.7),

@,(r)=exp( —g/2) JD, (r')r'dr'M(g, g')e xp(
—g'I/2) .

(4.5)

When r =r, Eq. (4.4) yields, by Eq. (4.3),

4' =+exp[i(r Xr, ) b]@,(~r —r, ~)~II, . (4.6)

Boring transformations, similar to those in Sec. II, lead to
the equations independent of p~0:

Here,

A(r —r„r )4, .
SW0.

(4.7)

A (r, r, )=exp[i(r Xr)b —(r /21H)]G(a, r /2lH),

(4.8)

E =ln(d /IH) —(I/2a)+ g a/2v(v+a) .
v=1

(4.9)

a is presented by Eq. (2.8); G(a, g) is related to Eq. (2.13).
Equations (4.7)—(4.9) are the main ones in this paper.

They are accurate for any IDF configuration. The diago-
nal terms depend on the IDF strength d only; the non-
diagonal terms depend on the IDF positions only. They
include the magnetic Aux phase and the decrease of the
coupling constants. The order of the Hermitian A is the
total number of N of IDF. The knowledge of +, provides
(for p —+0 and r ))p), by Eq. (4.4),

%(r)=g A (r —r„r, )4„ (4.10)

where the summation includes all IDF's.

V. PHYSICAL IMPLICATIONS

Now let us consider the physical implications of Eq.
(4.7) for a & 0.

(i) A Bloch electron in zero field: r—:xmd„+ynd, m
and n are integers; c, =c, is independent of 0., when
B~O; then g'~0, a~ ~, and Eq. (2.15) is valid. The
Fourier transformation of Eq. (4.7) yields the analytical
formula for the whole Bloch band E =E(q) &0 (q is a
quasi-wave-vector)

E= y 0 51' [d
—'(mid2+nid2)i~2]

mn&0

Xcos(mq d„)cos(nq»d») . (5.1)

Then, according to Sec. II, for p~O the Schrodinger
equation may be presented as [cf. Eqs. (2.4) and (2.6)]

(P' —ibXr) 4+(2ME/fi )qI= —QD, (~r —r, ~)%, ,

(ii) A Bloch electron in magnetic field. Then the main
difference in Eq. (4.7} from the conventional Harper
equation is exp( —r, /41H ), r, =

~
r —r, ~

. Since
21H=2(cubi/eB)' -5008T' A (BT is the magnetic field
in teslas), in a common crystal lattice d, d «2lH, and
with high accuracy, Eq. (4.7) reduces to the Harper equa-
tion. This may be di6'erent in superlattices, certainly in
fabricated ones. The study of r, (l~ may be useful for
the understanding of variable range hopping (VRH) with
the Mott hopping length &2l~. Consider the Wentzel-
Kramers-8rillouin (WKB) approximation. Then
4 ~ exp(iS) yields, by Eq. (4.7), the dispersion relation for
a kinematic wave vector q:

p, v&0
cos(pq )cos( vq )G (a, g, )exp( —g, /2) . (5.2)

Consider the eigenstate at s =0, i.e.,
y= ~%', /%0~ = ~%2/%0 & l. If difFerent eigenstates over-
lap very little ( y ~

))1), then g- I/~ y ~
and the eigenstate

tail y ~ exp( —P} decreases with magnetic field. If
different eigenstates significantly overlap ( y ~

&& 1; when
A « 1, this may happen only if E, is very close to Eo), the
tail increases with 8. For instance, when /3 « ~y~, then
y=0. 5+2713 w /4A . Thus, the magnetic field
enhances the existing "insulatory" ( ~ y ~

) ) 1) or "metal-
lic" (

~ y ~
&& 1) state.

(iv) The nearest-neighbor approximation of Eq. (4.7) on
a square lattice d„=d =d reads

cos i ' nP +c—os(i 'Bn+mP) 4 „=E „Q,
Bm

Q =exp(P/2)/G(a, g);P=d /2lHi

(5.4)

(5.5)

cf. Eq. (5.2). It reduces to the Anderson model with the
Lorentz magnetic Aux phase and the eA'ective diagonal
disorder c, „~E „Q. In the Bloch case, E „=E is in-
dependent of m, n Then, Eq. .(5.4) is the Harper equation
with the efFective energy sQ—:E*(P). Since the Harper

Here, q„=BSIBm Pn, q
—=BS/Bn +Pm, P=d„d /2lH,

g,—:(p d„+v d )/2lH. When (&&1, then'
G~KD(d 'r); when /&&1, then G~g 'I (a)/2. The
effective mass' is m' =(i' /2nd„d»)(BSF/BE), where S~
is the Fermi area of E =E(q) &0 from Eq. (5.2). It in-
creases with B. The cyclotron frequency 0 ~ B/m * sub-
linearly increases with B in weak fields, and exponentially
decreases in strong fields (d„,d» )21H). Thus, according
to conventional formulas' for MR in metals, in inter-
mediate fields (d„,d -21H) MR may have a minimum; in
strong fields it increases exponentially with B.

(iii) The simplest non-Bloch situation is demonstrated
by three IDF's (s =0, 1,2) with the strengths do and

d1 =d2 at the sites of an equilateral triangle with the side
d. Then, by Eq. (4.8), Ao, = A» = A» —=A;
A,2= Az, = A exp( p ip—v 3—/2), where f3=d /4lJ.
Introducing il=EO/A, y=(Ei —so)/A, one obtains the
dispersion relation

(g+ I )[(g+y )(il —1)—2]= —4 sin (pv 3/8) . (5.3)
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e*(P) was determined in Ref. 19, this equation determines
the Bloch energy E as a function of P.

(v) Suppose there is any number of randomly scattered
IDF's. First consider [ICd; + (d; /4lH ) ]))1, where

d,. =n ', n is the impurity density. If a state is local-
ized at cr =r, then the leading approximation in Eq. (4.7)
yields c.,=0,4 =5 . The next approximations are
(o Wr)

,/e, s,= i A, i /s, , (5.6)

where ~A, ~=max A, . By Eqs. (5.6) and (4.8), low
concentration of random IDF always leads to the tunnel-
ing, which decreases with B.

Now suppose Kd,. « 1 and lH is the largest characteris-
tic length. Then many terms contribute to the Eq. (4.7)
sum. If the sum in Eq. (4 7) converges when

g, =r~, /2lH &&1, then exp( —g, /2)=1. So, Eq. (4.7)
leads to the Nguyen-Spivak-Shklovskii model' (NSS) and
to the tunneling increase in magnetic field.

Some speculations on physics. Suppose the Fermi c is
between mine „and max' „. In the nearest-neighbor
approximation on a square lattice, similar to (ii), the
effective energy is s*„=e „exp[(P/2)/G(a, g)]. The ex-
ponent exp(P/2) makes "metallic" sites (s „)0) more
metallic (increasing the eff'ective energy distance to the
barrier) and makes "insulating" sites (e „&0) more
"insulatotory" —cf. point (iii). For a given energy and
disorder, one may imagine a sample, consisting of "metal-
lic" and "insulatory" regions. The magnetic field yields
negative magnetoresistance of the former and positive
magnetoresistance of the latter.

Furthermore, one may refine the Miller-Abrahams ran-
dom resistor network model. Introduce metallic wires
with the zero potential energy inside and infinity outside
them. The wires have varying shape and width (of order
of localization length), and may not percolate through
the whole sample. The varying width leads to localiza-
tion in the vicinity of a local width maxima, ' while
magnetic-field-induced edge states yield delocalization in
magnetic field. The less the curvature is, the quicker it
develops. Its competition with magnetic-field-enhanced
localization in the insulator regions [cf. Eq. (5.6)) may
lead to oscillations with B—cf. the experiments in Ref.
22.

(vi) Finally, consider variable range hopping MR R:

1/R —(e /h )g ~ %,(E ) [ exp( —~E' E~ /T) . —
$, 0

(5.7)

lnR ~B, T '~ if Qrtiaii &lH &r~,

lnR ~ (B/T)' if lH & Qr~a~,

(5.7a)

(5.7b)

Here, E is the eigenvalue of Eq. (4.7), where
max ~%', (E )~ =~%' (E )~; T is the temperature; the
summation is over all paths between electrodes. If
naz «1 and/or nlH «1, then, by Eqs. (5.7) and (4.8),
the conventional Mott reasoning yields positive MR:
R ~m eaxp(rx/az+r /4lH+rr A /2Matir nT), where
az is the characteristic IDF Bohr radius and n is an IDF
density. In strong magnetic field, MR is exponential:

where r~ —(rr fi /2MaiinT)' is the Mott hopping dis-
tance in B =0 [cf. Eq. (5.7a) and Ref. 8]. By Eq. (5.7b),
very strong magnetic field "restores" the 1D temperature
dependence and yields ln %,(e )~ 0- r—,B rather than
conventional 0- —r, .

If na~ ))1 and lH ))r~, then, by (v), NSS (Ref. 10) is
valid and, by Refs. 10—12, MR is negative. Since, by Eq.
(5.7), nlH «1 yields exponentially increasing R, there
must be a minimum in R (B) if impurity concentration is
high.

(vii) Further progress may be achieved in numerical ex-
periments according to Eqs. (4.7)—(4.9). Start with the
study of eigenstates. Suppose for a fixed B one finds the
eigenvalues of Eqs. (4.7)—(4.9):

E =E (B), o.=1,2, . . . , N (5.8)

and the eigenfunctions

4', =qr, (E,B), s =1,2, . . . , N,
where

max~'4r, (E,B)~ = ~% (E,B) .

(5.9)

(5.10)

The number of branches o, by Eq. (5.8), equals the num-
ber of impurities X. Eigenenergies E are finite, the dis-
tance between them is -EIN. So, when N~~, then
cr IN and E are continuous, and Eq. (5.8) provides
o. =cr(E,B). By Eq. (5.10), E is localized at r =r(E,B).
Thus, one may express an eigenfunction (5.9) as

4, =%(E,B;r, r(E,B)}. — (5.11)

Obviously, when N is finite, Eq. (5.11) is valid for discrete
values E . The function f,

in~+,
~

= f(E,B;rF),—rF = ~r, r(E,B)— (5.12)

strongly fiuctuates. However, its average f,„(over N*
states, where 1 «N' «N) is a smooth function. Note
thatby , Eqs. (5.6), (4.8), and (2.16), in strong magnetic
field one does not expect f,„~ rF, as in a co—nventional
localization in a weak magnetic field. Rather, in a strong
magnetic field f,„~ rF. —

In principle, the knowledge of eigenstates allows one to
calculate the Mott variable-range-hopping magnetoresis-
tance R by Eq. (5.7). However, the total number of terms
in Eq. (5.7) is the number of all possible paths between
IDF's. It is exponential with XlnX. Therefore, to per-
form a numerical calculation, one must consider only the
major contributions into Eq. (5.7). One may do it accord-
ing to the following qualitative reasoning (cf. Ref. 23).

Interpolate f,„as

f&&=(rg/Lp) Lp=Lp(E B) (5.13)

Consider, e.g., the hopping between the states i (for "ini-
tial") and f (for "finite"), which are on the opposite sides
of the Fermi energy EF. Then,

R '~+exp[ —(hrILp) (bE/T)], —
i,f

(5.14)

where b, r is the space and b,E = ~E/ E, ~

=b,EI+b,E, , —
b E/= ~EI EF ~, b,E, = ~E, EF—~

is the energy . d—istance
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between such states. Estimate the exponent in Eq. (5.14)
as

(br/Lo) +(bE/T)
= I ( b.x /L o ) + ( b.y /L o )

E = —A' /2Md

its eigenfunction is

4 cc Eo ( r /d ),

(6.2)

(6.3)

+[(bE, /T)'~s+(bE /T)'~s] ]s~

(5.15)

The right-hand side of Eq. (5.15) is the distance between
the points in the space (x /Lo), y /Lo, and
(~tE E~~/—T)' sgn(E EF),—where sgnx =x/~x~. It is
natural to assume that the minimum of the left-hand side
of Eq. (5.15) is reached on the points, which are close (al-
though not necessarily nearest neighbors) in the above
space, and the distance between which, according to the
Mott reasoning, is —1. The true Mott "f" state for a
given "i" state is determined by the minimum of the ac-
curate Mott term in Eq. (5.7). Once the best "f"is estab-
lished, it serves as an "i"for the next Mott hop, etc. This
way one calculates all Mott paths between electrodes and
determines R, as well as its fluctuations with B, EF, and
n.

VI. SUMMARY

(i) I introduced an impurity D function (IDF) D(r),
which is as useful in solving the Schrodinger (and in gen-
eral a partial differential) equation in higher dimensional-
ities as a 6 function is in 1D. In 2D, e.g. ,

D (r) =2[p ln(d /p)] 'exp( —r /p ) .

If an impurity potential is U(r) =(fi /2M)D (r), then its
eigenenergy is

where Ko is the Bessel function and d is the impurity
Bohr radius. In magnetic field the eigenenergy is deter-
mined by Eqs. (2.11) and (2.8); the eigenfunction is deter-
mined by Eq. (2.14).

(ii) The Schrodinger equation in magnetic field for an
arbitrary configuration of N metallic IDF's with the po-
tentials —(iri /2M)D, (r —r, ) accurately reduces to the
eigenstates of (explicitly presented) the XXX matrix in
Eqs. (4.7)—(4.9) and (2.13). Magnetic fiux determines its
(NSS-type) phase and the exponential factor.

(iii) Bloch dispersion (for B =0) is presented by the ex-
plicit analytical formula (5.1).

(iv) Bloch electrons in very high magnetic fields yield
magnetoresistance R, which increases exponentially with
B. In intermediate fields, R may have a minimum.

(v) A low concentration (ann & 1) of randomly situated
metallic IDF's leads to positive magnetoresistance R (B).
It is exponential in B and the Li-Thouless T ' in high
magnetic fields (Qr~att &lH &rsvp) Hig.h IDF concen-
tration (attn ) 1) leads to a magnetoresistance minimum
(or minima). In very high magnetic fields (lHn & 1) in
both cases probability density decreases exponentially
with r B (rather than with B), and lnR ~ (B/T). '~

Positive and negative R (B) were observed experimen-
tally and are consistent with the theory. The main pre-
dictions of this paper are lnR ~ &B /T in very high mag-
netic fields and the magnetoresistance minimum at high
metal concentrations.
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