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High-field transport in semiconductors. III. Wave-function renormalization
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The asymptotic form of the single-particle retarded Green function is discussed in the presence of
the homogeneous stationary electrical field. It is shown that different definitions of the instantane-
ous approximation of the self-energy lead to different values of the field effect on the scattering.
This inconsistency is removed if the wave-function renormalization is included. Finally, the choice
of the instantaneous approximation that removes the linear dependence on the field is discussed.

I. INTRQDUCTIC)N

During the past two decades many studies have been
devoted to the inhuence of the homogeneous electrostatic
field on the scattering rates in semiconductor devices. '

As far as we know, in all of these studies the wave-
function renormalization was neglected. There are two
reasons for this neglect. First, for simplicity a natural as-
sumption was to treat the field effect on the scattering
and the wave-function renormalization effects as indepen-
dent and hence to view the wave-function renormaliza-
tion as an unimportant complication. Second, the
asymptotic formulas of the single-particle Green function
that include the wave-function renormalization in the
presence of the external field were not available in print.
The only asymptotic formulas of the Green function with
the renormalization included was derived within the gra-
dient expansion (the gradient expansion of the entire
G-reen function, not the gradient expansion of the self-
energy), which is not acceptable in the high-field theory.
In this paper we show that the field effect on the scatter-
ing rates has to be studied together with the wave-
function renormalization, and we derive the asymptotic
formula of the single-particle Green function.

A simple illustration of the connection between the
wave-function renormalization and the field effect in the
total scattering rate is provided by a straightforward
evaluation of the lowest-order correction in the field. We
start with this example to introduce the problem on an
intuitive level.

A. Pole approximation in equilibrium

To introduce the wave-function renormalization we
brieAy review the pole approximation of the single-
particle retarded Green function in equilibrium. We will
not use the superscript R because in this paper we are
dealing exclusively with retarded Green functions. In the
momentum and energy representation the Green function
reads

G (co;k) =z (k) I
co —E(k) —o.(k)

(1.2)

where the pole value of the self-energy is given by the
self-consistent equation

cr(k) =X(E(k)+cr(k) )

and the wave-function renormalization z (k) is

i(k) 1
BX(co)

Bco co= a,(k)+ o.(k)
(1.4)

In the time representation one can express the pole
contribution as

G (t„t„k)= —i 8(t, —t, )z (k)

X exp —i j dt(E(k)+ o'(k) )
'2

This representation, with the integral over time in the ex-
ponent, will facilitate the connection to the nonequilibri-
um case.

B. Pole approximation in the presence of the Aeld

Here we momentarily neglect the wave-function renor-
malization and first generalize the pole approximation by
the presence of the electrical field F. With the vector
gauge A = —Ft the relation of the wave vector k and the
canonical momentum p becomes time dependent:
p=k —eFt. ' Using the replacement of the canonical
momentum p by its time-dependent value one finds from
(1.5) that the pole contribution to the Green function in
the presence of the electric field is (remember z has been
set to unity for simplicity)

G(co;k)= 1

co —E(k) —X(co)

The pole contribution of this Green function can be writ-
ten
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G(t„t„.k)= —iO(t, —t, )

tl
Xexp i—f dt(E(k —eFt)

t2

lem with (1.7) and in fact the integration limit —~ has to
be replaced by some finite value that is crudely t —3&(k),
where r(k) the quasiparticle lifetime. This point is dis-
cussed in Appendix A.

+o (k eFt—)) . (1 6)

The formula (1.6) involves the pole approximation of
the self-energy X(co;k)=o(k). That this approximation
may be problematic can be seen by expressing it in the
time representation

o.(k)= f dt'X(t, t')exp i f—dt(E(k)+o(k)) . (1.7)
QO

The formula (1.7) was derived in equilibrium and there is
no external field influence built into it. There are three
ways in which the external field can enter a possible gen-
eralization of the formula (1.7). First, X(t, t') depends on
the field. In Appendix A it is shown that X is field in-
dependent to a linear order in the field and thus we can
neglect this effect here. Second, the momentum k in the
argument of the kinetic energy has to be time dependent,
i.e., replaced by p=k —eFt. This correction is the essen-
tial one. Third, the pole approximation of the self-energy
o(k) that enters the argument of the exponential has to
be replaced by a field-dependent value o F(p ). This
correction is important if the wave-function renormaliza-
tion is discussed. Below we take these corrections into
account and discuss (1.6) with the field-dependent ap-
proximation of the self-energy.

In addition, we note that there is a convergence prob-
I

C. Field-induced correction to the pole approximation

Taking into account the presence of the electric field,
one should modify (1.6) by replacing o (k —e Ft) by
oF(k e—Ft), which is obtained from the field-dependent
generalization of (1.7) as

o~(k —eFt)
=f dt'X(t, t')

Xexp —i t c k —eFt +aF k —eFt

(1.8)

It was formula (1.8) that was used in Ref. 4 for the discus-
sion of the field effect on the scattering rate. At this
point formula (1.8) is used only as an intuitive tool to
demonstrate the relation between the wave-function re-
normalization and the field effect on the scattering rate.
There are alternative ways to generalize the equilibrium,
pole approximation (1.7), and these alternative generali-
zations leads to different results. We will clarify this
point in Sec. II.

The leading correction term in the strength of the field
can be obtained by the gradient expansion of the ex-
ponent of (1.8):

,F,~+~ (i, ,F,))~, , ~ B[E(k—eFt)+oF(k —eFt)] (toF(k —eFt)= dt'X(t, t')e 1+ieF
OO Bk 2

(1.9)

Expressing the time variable with help of the energy derivatives in the field we can simplify expression (1.9) to

B[e(k—eFt)+o ~(k —eFt)]
OF(k e'Ft) =X[E(k——e Ft)+ o F(k eFt) ]

—ie F—
Bk 2 Q~ co= E(k —eFt)+ 0 F(k —eFt)

(1.10)

Since the field-induced correction is supposed to be small, we expand X in the vicinity of the equilibrium pole value
given by {1.3). Formally it is an expansion in powers of o.F —cr that gives

(k —Ft)+ {k—eFt)] 1 ~ ~(
Bk Bco co=c(k —eFt)+ a+(k —eFt)

Here the wave-function renormalization resulted from the expansion of X; see (1.4). The left-hand side of (1.11) has the
form of the total derivative with respect to time. Thus Eq. (1.11) can be reorganized as

o ~(k —e Ft) —o (k —e Ft) =i ,' z (k —e F—t)
dz '(k —eFt)

Now we can evaluate the correction to the propagator that is caused by the field effect on the scattering rate:
r

G(ti, tz, k)= i g(ti —t2)exp ——i f dt(E(k eFt)+o+(k —eFt—))
'2

io(t, t2)exp i—f dt(s(k e——Ft)+o(k eFt)) exp—f—dt ,'z(k —eFt)—'1 dz '(k —eFt)
'2 '2

z(k eFt2)—
z(k —eFt, )

(1.13)



HIGH-FIELD TRANSPORT IN SEMICONDUCTORS. III. 6667

The last line of (1.13) is expressed exclusively in terms
of equilibrium functions: effective self-energy and wave-
function renormalization. The first part of the formula is
identical to the Green function (1.6) with the field effect
on the scattering neglected, the second part includes the
entire field effect on the scattering expressed in terms of
the time dependence of the wave-function renormaliza-
tion. Note that we have neglected the wave-function re-
normalization when deriving the formula (1.13), but the
result (1.13) makes this neglect suspicious.

Higher orders of the field effect on the scattering can-
not be reduced to the time dependence of the wave-
function renormalization. For instance, there is the field
effect on the local density of states ' that provides the
effect on the scattering rate already in the double-time
formulation and thus it does not depend on the artificial
procedure by which the instantaneous approximation is
obtained. However, to separate this intrinsic field effect
from the time dependence of the wave-function renormal-
ization one needs a more systematic procedure to develop
the instantaneous approximation.

D. Green function with wave-function renormalization

The formula (1.13) is not symmetric with respect to the
times t, and t2. The symmetry can be renewed if one
multiplies the formula by the wave-function renormaliza-
tion z (k —e Ft i ). Then the Green function reads

6 (t &, t~;k) = —i 0(t, —t2 )exp i dt(s(—k —e Ft)
'2

+o (k eFt))—
X+z(k —eFt, )+z(k —eFtz) . (1.14)

This form of the Green function is intuitively appealing
and in this paper we will prove it is correct. If one inter-
prets the pole part of the single-particle Green function
as the quasiparticle propagation projected into the
single-particle space, the pole value of the self-energy
plus the free-particle kinetic energy, E(k)+ cr(k),
represents the quasiparticle dispersion relation, while the
wave-function renormalization represents an overlap of
the quasiparticle and free-particle wave functions. Thus
one can read the formula (1.14) in the following manner.
At time t2 the free-electron wave function is projected
onto the quasiparticle wave function with the momentum
k; the evolution of the quasiparticle state is evaluated up
to the time t, and the quasiparticle state is projected back
on the free-particle state. We note that a formula similar
to (1.14), although for a different physical situation, was
derived from the WKB solution of the Dyson equation. '

We will call expression (1.14) the WKB approximation.
The gradient expansion of the G-reen function pro-

vides an expression that is similar to (1.14), but instead
of the geometric average of the wave-function renormal-
ization at the initial and final times,
Qz(k —

eFti )z(k —eFt2), the value at the center of the
time interval appears, z [k—eF(t&+t )/22]. To lowest
order in the field in an expansion of the entire Green

function these two values are identical.
Of course, the above approach is not a derivation of

the formula (1.14). We have used two ad hoc steps: (i)
the formula for the field effect on the self-energy, Eq.
(1.8); and (ii) the multiplication by a wave-function renor-
malization associated with the time t, . The main aim of
this paper is to derive both steps in a very systematic
manner. We will show that these steps are not indepen-
dent: the choice of the formula for the field effect on the
self-energy determines the time argument of the wave-
function renormalization. However, formula (1.14) will
always be the final result.

E. Content

The structure of the paper is as follows. In the first
part of Sec. II we derive formulas that describe the
asymptotic behavior of the Green function under quite
general conditions. The main assumption used in Sec. II
is an existence of a semiasymptotic region that was
shown to exist in equilibrium in Ref. 7. A detailed dis-
cussion of this assumption for a homogeneous electrostat-
ic field in GaAs is provided in Appendix A, where we
adapt the approach of Ref. 7 to the nonequilibrium case.
In Appendix B we restrict our attention to the equilibri-
um case and reorganize new formulas derived in Sec. II
into more familiar forms. Section III includes a discus-
sion of the field effect on the scattering. It is shown that
one can define the instant approximation of the self-
energy in a way that minimizes the field effect on the
scattering. In particular, the self-energy has no linear
term in the electric field.

II. ASYMPTOTIC FORM OF THE GREEN FUNCTION

In this section we study asymptotic properties of the
Green function G(ti, t2) for rd, „))t,—t2))r&z, where
TQI; is a quasiparticle formation time and ~d;, is the
characteristic time after which the power-law decay of
the Green function takes over the exponential decay.
(The existence of such times is demonstrated from the
model in Appendix A. ) Our theory works if
7 Qp 4K 7 ++ 7 djy where ~ is a quasiparticle lifetime. These
asymptotic properties of the Green function provide both
the formula for the instantaneous approximation of the
self-energy with the field effect included and the wave-
function renormalization.

In this section we construct as general an argument as
possible, even if we are not able to maintain this generali-
ty in Sec. III where we explicitly continue the argument
in the single-band limit in a static, uniform electric field.
We do this in part because we hope others will see how to
extend the arguments and in part because we think the
formulation is transparent. There are aspects of the for-
malism that need to be commented upon. (i) For a gen-
eral band structure the operators (e.g., G, X, etc.) are ma-
trices in the band indices. Accordingly, the order of the
operators matters and we strictly observe the correct or-
der in this section. (ii) For a general electric field, i.e.,
one that varies in time, the operators [e.g. , G ( t, , t2 ) ] are
not a function of time differences. (Even in the simple
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case where we use a static, uniform field in the momen-
tum representation, the Hamiltonian is time dependent.
So the choice of the gauge can by itself produce nonsta-
tionary Hamiltonians. ) Accordingly, we explicitly retain
the two-time Green-function formalism. (iii) A fortuitous
accident resulting from (ii) is that the time arguments in-
dicate the matrix formalism of (i). For example,

X(t„t)G(t,t, )~ g (m~2(t„t)~n )(n~G(t, t, )~m') .

Accordingly, in the formulas that follow we completely
suppress the band indices and matrix character.
Nonetheless, it can be readily reconstructed since the or-
der of the operators is already clear from the time argu-
ments.

It is shown that starting from two strictly equivalent
forms of the Dyson equation,

G(ti t )3=G (ot it2)

+ J dt3 dt4GO(ti ~t3 )X(t 3t4)G (t4~t2 )

(2.1)

G(t„t2)=G (ot„t )2

+I dt3 I dt4G(t„t3)X(t3yt4)GO(t4, t~)

(2.2)

one arrives at two different formulations that are con-
sistent only if the wave-function renormalization is taken
into account. There are two ways to proceed in reading
this paper. If the reader prefers to learn general argu-
ments before coming to the details of the model, we ad-
vise reading this section. If the reader prefers to under-
stand properties of the model which stimulated the indi-
vidual steps made in this section and which guarantee the
validity of assumptions made here, we recommend read-
ing Appendix A first.

Our main assumption used in this section is that the
self-energy decays with time t3 —t4 at least as fast as a
power law. As it is shown in Ref. 7, the power-law decay
of the self-energy results in an independence of the t4 in-
tegration in (2.1) on its lower limit t2, assuming
TQF ( t 3 t 2 ( Td;, . This will allow us to make the instan-
taneous approximation by replacing the lower integration
limit t2 by a more convenient semiasymptotic value that
is independent of t2. In Appendix A we follow the ap-
proach introduced in Ref. 7 and prove the validity of this
assumption for the electron in the central valley of the
conductivity band in GaAs under the inhuence of the
electric field. A similar argument applies for the upper
limit of the t3 integration in (2.2).

A. Kft'ective self-energies

The quasiparticle nature of the problem is essentially
the same as dealing with a non-Hermitian Hamiltonian,
hence one needs to define two sets of basis functions —one
conjugated to the other. This is handled by defining
time-development operators —which we call effective
propagators —that describe the time-development of the

i Hp(—t4) —o„gh, (t4) U„gh, (t4, t3)=0,
Bt4

(2.4)

with a boundary condition

Uright( t3 ~ t3 ) = 1 (2.5)

Equations (2.3)—(2.5) form a closed system providing the
self-energy X is known.

There are two important points to note. (i) The
effective self-energy o„gh, does not have a double-time
structure. As a result the effective propagator
U„ght satisfies a group property U„gh, (t4, t3)=

U„;gh, (t4, t)U„h, (t, t3) for any t. (ii) There is a certain
arbitrariness in the definition (2.3); why, for example, was
o.„„,(t) evaluated at one end point of X(t, t') and not the
other or not the mean time? This choice, together with
the one for o.„«(t), is one that simplifies the derivation
and allows us to simply include renormalization effects in
an electric field. One has to keep this specific choice of
the time-integration region in mind because it is this
choice that determines the field effect on the scattering
and the time argument of the wave-function renormaliza-
tion.

There is a problem with the lower limit of the integra-
tion in (2.3). The value t3 —3r provides the best
semiasymptotic value that can be obtained in the equilib-
rium. The definition (2.3) is based on our experience
that the integral in (2.3) as a function of the lower limit
has a plateau in which the integral does not depend on
the lower limit. This question is discussed in detail in
Ref. 7, and some comments can be found in Appendix A.

B. Asymptotic time development of the Green function

We have denoted the effective propagator U„h, (t4, t3 )

by the subscript "right, " which denotes that the Green
function decouples to the right-hand side in the sense

G(t„t, )= U„,„,(t, , t, )G(t„t, ) (2.6)

for ~d,,&&t, 5 t2 &&r&„. The validity—of Eq. (2.6) can be
proved as follows. From (2.4) one finds

a
i Ho(t4 ) —t7„h,(t4)—

Bt4

4 t3 )U ght(t4tt, t3) =6(t4 t,)—
From the differential form of (2.1), Go ' = G '+X, where
Go '(ti, t2)=[it)lt)ti Ho(ti ))6(ti —t2), one ca—n elimi-
nate Go ' and express the Green function G(t„t2) as the
perturbation to the effective propagator U„ (th, t, t~ ) as

"left-" and "right-" hand states (the function and its
conjugate). Accordingly, we introduce effective
propagator —self-energy pairs for the right and left states.
For example, in the case of the right states we define

E3

(Tttght( t3 ) = dt4X( t3, t4 ) U„g„,( t4, t, ), (2.3)
'3

where the effective propagator U„g„,(t4, t3 ) is defined as
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l36 (tl t2 ) ~(tl t2)Uright(tl t2 ) 1 I dt3 dt46 (tl t3 )I ~( 3 4) alright(t3 )~(t3 4)]Uright( 4 t2)
f2

(2.7)

The lower limit t2 of the t4 integral prevents a cancellation of the second term, thus we add and subtract the integral
from t3 —3~ to t2 as

6(t„t2)——10(t, —t2)U„gh, (t„t2)—1 dt3 dt46(tl&t3)[X(t3&t4) —o.„ght(t3)6(t3 t4)]—U„gh, (t4, t2)
f3 —3w

t2
+1 d, dt46(t„t3)[X(t„t4)—o„,ht(t3)5(t3 —t, )]U„,„,(t4, t, ) .

'2 '3
(2.&)

Then the first integral term is zero according to the definition (2.3). In the second term cr„.gh, (t3 )5(t3 t4) do—es not con-
tribute due to the absence of the overlap of the integration region of t3 and t4 and one finds

f2

G(tl, t2)= 10—(tl —t2)U„ght(t»t2)+1 dt3 dt46(t»t3)X(t3&t4)U„gh, (t4, t2), (2.9)
f2 f2 —37

where we have replaced the lower integration limit t3 —3~ by the more convenient t2 —3~. This approximation is possi-
ble because the integral in the definition (2.3) does not depend on the particular choice of the lower limit of the integra-
tion unless the limit is too close to the time t3 (closer than the quasiparticle formation time ) or too far from t3 (if the
length of the integrated region exceeds rd;„).

Equation (2.9) is useful by itself, namely it is used below to derive the wave-function renormalization. In addition
(2.9) can be used immediately to prove the asymptotic decoupling (2.6). To prove that (2.6) is a solution of (2.9) we sub-
stitute (2.6) in the right-hand side of (2.9)

min(, t l, t5 )

G(t»t, ) — 10(t, t, )—U«ght(t»—t, )U„g„„(t»t,)+ U„g„,(t, &t5)t dt, dt46(t»t, )&(t3&t4)U„g„,(t4, t2),
2 3r

(2.10)

where we have used the semigroup property of the
effective propagator to rearrange the first term. The
right-hand side of (2.10) is a product of the eff'ective prop-
agator U„.ght(t„t3) and two terms which resemble (2.9)
except for unessential 0 function (we are in the region
t, ~ & 0) and the upper limit of the t3 integration which is
the lesser of t, and t5 (according to 8 functions implicit
in the Green functions). Since the t3 integration has the
property that the integrand combines the power-law de-

cay of the self-energy with the oscillating function from
the Green function 6(t&, t3), the upper limit does not
matter if ~d;„))t, ~

—t3 ))~Q„. With t5 as the upper lim-

it we can use (2.9) to express both terms except via
6 (t5, t2 ) and the decoupling (2.6) is proved.

C. Wave-function renormalization

and the boundary condition is

Ul, r, (t3, t3)=1 . (2.13)

6 (tl& t3 )=G ( t„t2 )Uleft(t2&t3 ) (2.14)

where t( —tp »&QF.
Now we are ready to derive the wave-function renor-

malization. Using asymptotic form (2.14) in Eq. (2.9) one
finds

6(t„t2) 1 t dt—
3 dt4Ueft(t2&t3)

2

The asymptotic behavior of the Green function G(t, , t3)
for t, t3 »r&„—is similar to that of (2.6)

a
1 HO( t4 ) %left( t4 ) Uleft(t4& t3 )

Bt4
(2.11)

where (note the difFerent region of the time integral)
f3+37

left 3 ) = f dt4, eft 3& 4 )X( t4& t3 ) (2.12)

The asymptotic form of the Green function G(t„t2)
can be separated into a wave-function renormalization
which depends only on the time t2 and the effective prop-
agation given by U„h, (t„t2). We start from (2.9), but
we need an explicit left-hand effective propagator
U,«, (t„t2)

XX(t3 t4)U„; h, (t4, t2)

= —i8(t, t2 ) U„„,(t„t2 ) . —(2.15)

The term in large parentheses does not depend on t j ex-
cept via the upper integration limit of the t3 integration.
This dependence is negligible for t, —tz))~Q„and we
can use a more convenient value t2+3~. After this ap-
proximation the term in large parentheses depends ex-
clusively on t2.

From the asymptotic formula (2.15) we can define the
function z(t2),

f2+3~
z '(t, ) =1—

1 dt, dt4 Ut«t(t2& t3 )X(t3& t4) U„ght(t4& t2) .
f2 —3r

(2.16)
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In Appendix B it is shown in equilibrium that z is the
standard wave-function renormalization. We will call z
the wave-function renormalization even with the external
field present.

With the help of the defined wave-function renormal-
ization, the asymptotic form of the Green function reads

G(tl, t2)= —i9(t, —t2)U„gh, (tl, t2)z(t2) . (2.17)

One can repeat the entire procedure leading to (2.17), but
starting with left states. Then one recovers

G(t, , t2) = iz—(tl )0(tl —t2) Ul, f (fl f2) (2.18)

Uright( 1~ 2)z(f2) ( 1) le«(f1 & 2) (2.19)

This allows one to set renormalization at any convenient
time, for example,

Note that the wave-function renormalizations in (2.17)
and (2.18) have different time arguments. Thus we have
shown that the time argument of the wave-function re-
normalization is determined by the choice of the
definition of the instantaneous approximation.

Having the Green function expressed in two equivalent
forms (2.17) and (2.18) provides us with a useful identity

III. RELATION OF THE FIELD EFFECT
ON THE SCATTERING RATE

AND THE WAVE-FUNCTION RENORMALIZATIQN

In this section the asymptotic formulas for the Green
functions developed in the preceding section are used to
discuss the field effect on the scattering. We assume a
homogeneous electrostatic field described by a vector po-
tential A(t)= Ft. T—he vector gauge has an advantage
that all operators are diagonal in the momentum repre-
sentation. We keep the representation explicit
throughout the section.

A. Gauge invariance

To start we simplify the notation by eliminating the
time argument of the self-energy and the wave-function
renormalization. This simplification is possible due to
the gauge invariance. Since the gauge invariance allows
us to add any constant potential, we can add AO=Fto.
This change of the gauge appears in the shift of the
canonical momentum p~p —Fto. If we shift simultane-
ously the origin of the time axis to to, any equation is
identical with its form before both changes. One finds
that all operators satisfy the invariance

G(fl, t2) — i8(tl ——t2)U„ht(t, , t3)z(t3)Uleft(f3&f2)

(2.20)
o „. ht(to, k) =cr„h,(0;k—eFto):cr„h—,(k eFto) —. (3.1)

To resume the result of this section, we have assumed
that the integral of the self-energy multiplied by the oscil-
lating Green function reaches some constant value in a
characteristic time ~&F which is much smaller than the
quasiparticle lifetime ~. Based on this assumption, we
have shown that for t, —t2))~&F the Green function
G (f, , t2) can be expressed as the product of the quasipar-
ticle propagator U„gh, (t, , t2) [or U„«(t„t2)] and the
wave-function renormalization z(t2) [or z(t, )]. The
quasiparticle propagators have the desirable property
that they are solutions of the true differential equation,
i.e., the effective self-energy is the instantaneous operator.

The relation of the definitions (2.3), (2.12), and (2.16) to
the pole approximation used in equilibrium is discussed
in Appendix B.

The last part of the equation is a definition of the reduced
notation. BrieAy, the reduced functions can be recog-
nized by the absence of the time argument. The notation
used in Sec. I is identical with this reduction notation.

B. WEB approximation of the Green function

First we confirm the WKB formula (1.14) as a linear
approximation of the field effect on the self-energy. The
lowest order field effect on o.„h, results from a lineariza-
tion of (2.3). However, we do not need to perform the
algebra since comparing (1.8) with (2.3) one can see that
o F(k eFt) =cr„ght(t—;k). Thus the field effect on o „h, is
given by Eq. (1.11). The lowest order of the field effect on
cr] ft results from a linearization of (2.12),

. F c)[s(k —eFt)+cr(k —eFt)] 1 c) X(co)

co= c(k —eFt)+ o.(k —eFt)
(3.2)

N««he opposite signs of the field effect in (1.11) ancl
(3 2) These opposite signs have resulted from the
different integral regions in the time integral in
definitions (2.3) and (2.12). From the different signs it is
clear that one should not interpret the linear corrections
in (1.11) and (3.2) as the field effect on the scattering.
Indeed, we have already shown that it is the time depen-
dence of the wave-function renormalization that is de-
scribed by these linear terms.

Now we can evaluate the efFective propagators
U, ;g„, „f,. Solving (2.4) [or (2.11)],one obtains

Uright. , left f 1' 2' )

t(
=exp i f dt(s(k —eFt)+cr«ght „—„,(k —eFf))

Again we express the terms linear in the field via the
derivative of the wave-function renormalization, which
yields

(3.3)

U„( htt fk2)=exp —i f dt(E(k —eFt)+cr(k eFt))—
'2

1/2z (k eFt2)—
X

z(k —eFt, )
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and

(3.4)

U&,«(t„t 2, k)=exp —i f dt(E(k —eFt)+o(k —eFt))
'2

z (k —eFt, )
X

z(k —eFt2)

From (3.8) and the definition (3.6) one can see that the
difference between the right (or left) self-energy and the o.

is equal to the half of the logarithmic derivative of the
wave-function renormalization. Now one can follow the
steps used in (1.13) and prove the validity of (3.5) for any
field strength.

Note that the denominator and the numerator are inter-
changed in (3.4) compared to (3.3). While it was incon-
sistent to discuss the field effect on the scattering with
wave-function renormalization neglected, it is easy to see
that the field effect on the scattering is consistent with the
formula (2.19). From both (2.17) and (2.18) one recovers
the formula (1.14).

C. The asymptotic form of the Green function
beyond the WKB approximation

In fact in the homogeneous electric field a formula
identical to (1.14),

G (t„t2;k)= —i 0(t, t2 )Qz—(k —eFt, )z (k —eFt2)

D. Symmetry in the orientation of the electric field

The simplicity of (3.5) within the linear approximation
results from the symmetry of the effective self-energies
and the wave-function renormalization with respect to
change of the sign of the electrical field. Now we will
show that the wave-function renormalization and the
effective self-energy o [defined by (3.6)] do not change if
the sign of the electric field is Hipped. In other words, z
and o. are even function of the electrical field. This prop-
erty follows from our model: Einstein (dispersionless)
phonons and momentum-independent electron-phonon
interaction.

The symmetry of the wave-function renormalization
and the effective self-energy follows from the symmetry

Xexp —i dt c. k —eFt
o.„«(k; [ —F])=o.„„,(k; [F]), (3.9)

+a(k —eFt))

o (k) =
—,
' [o„i„(k)+cri,«(k) ] . (3.6)

The field-dependent z is defined by (2.16). Note that in
(3.6) the instant of the scattering event is placed in the
center of time-integration regions, in contrast to the
definitions (2.3) and (2.12). By this property the
definition (3.6) is close in spirit to the pole approximation
used within Wigner mixed energy-time representation.

To prove a validity of (3.5) beyond the linear term we
need to show that the relation (1.12) is more general than
the way in which it was derived in the Introduction sug-
gests. From (2.19) [using (2.4) and (2.11)]one obtains

az =i j z '(t) [H, (t)+ o.„,„,(t) ]at
—[Ho(t) +o.),«(t)]z '(t)J . (3.7)

In the homogeneous field described by the vector poten-
tial all operators commute so that Eq. (3.7) provides an
equivalent to Eq. (1.12),

az-'(t)
z(t) =i [o„si„(t)—o&e«(t)] .

at
(3.8)

Note that the validity of (3.8) is restricted to a single-
band model and homogeneous fields. However, stationar-
ity is not used in this step.

(3.5)

applies even if the nonlinear terms of the gradient expan-
sion of the self-energy are taken into account. In such a
case the effective self-energy cr and the wave-function re-
normalization have to be treated as field dependent.
Since we want to remove the linear field dependence of
the effective self-energy, we define the field-dependent
generalization of o as

where the square brackets denote the functional depen-
dence. We will prove this symmetry from the definitions
(2.3) and (2.12). We start from (2.3).

The retarded self-energy X(t3, t&) depends only on the
time difference t3 —t4 independently from the field
strength. At the same time X does not depend on the
sign of the field. This property is shown in Appendix A;
see (A9). One can understand the absence of the depen-
dence on t3+t4 from the fact that the self-energy de-
pends only on a local density of states that is a
momentum-independent quantity. Since the dependence
on t3+ t4 can be moved into the momentum dependence,
see (3.1), the momentum independence implies the in-
dependence from t3+t4. The independence of X(t3, t&)
from t3+ t4 allows us to rearrange (2.3) as

o.„i„(k)= f dt~X(0, t4) U„ i„(t~,O;k)—37.

= f dt4U„„,(
—t~, O;k)X(t~, O),

0
(3.10)

=U (O,0t~;k;[ —F]) . (3.11)

where we set t3=0 without losing generality, see (3.1),
and take the substitution t4~ —t4. We have used the di-

agonality to interchange the order of the product. Clear-
ly we need to turn U„g&, into U&efg.

First we will show that the symmetry (3.8) is satisfied if
the propagator is approximated by its free particle value.
Then we will use the iterative argument to show that the
symmetry applies to any order. Flipping of the direction
of the electrical field in the free-particle propagator is
identical to the inversion of the time How,

Uo( —t4, 0;k; [F])=exp i f dt s(k—eFt)—
4

f4
=exp i f dt E(k+—eFt )

0
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After a substitution of (3.11) into (3.10) one finds that the
symmetry (3.9) is satisfied within the free-particle approx-
imation of the propagator.

Now we assume an iteration of Eqs. (2.3) and (2.4) that
starts from the free-particle propagator in the first step.

Let us assume that the symmetry (3.9) is satisfied in some
order; we will show that it is satisfied in the next one as
well. The propagator U„h, ( t4—, 0;k;[F]) can be recog-
nized as

0
U„„,( t4, 0;k—; [F])=exp i — dt (s(k —eFt)+o.„h,(k —eFt; [F)))

4

t4
=exp i f d—t (s(k+eFt )+o „h,(k+eFt; [F]))

0

According to (3.9) the right effective self-energy can be replaced by the left effective self-energy

o„„,(k+eFt;[F])=o.„t,[k —e( —F)t;[—F]I .

After the substitution of (3.13) into (3.12) one recovers the relation

U„h, ( t4, 0; k; [F—] ) = U),f, (0, t4, k; [ —F ]),

(3.12)

(3.13)

(3.14)

which substituted into (3.10) proves the symmetry (3.9) in a higher order of the iteration. Thus the symmetry (3.9)
holds for any order.

From the symmetry (3.9) the even dependence of o (0;k) on the field strength follows immediately,

cr(k) =
—,
' [o'„„,(k)+cr„„,(k)]=

—,
' [o „. „,(k; [F])+o „„,(k; [—F])] . (3.15)

We prove the even field dependence of z(k) from the definition (2.16). Let us write the wave-function renormaliza-
tion with the Aipped sign of the field

z '(k;[ —F])=1 i f 'dt, f d—t, U„„(O,t„k;[—F])X(t„t4)U„s„,(t„O;k;[—F]) .
0 —3w

From the symmetry (3.14) one obtains

z '(k;[ —F])=1—i f dt f dt U, ; „,( —t,O;k;[F])X(t,t )U„,(0, t;k;[F]) . —

After substitutions t3~ t3 and t4~ t—
4 Eq. (3.17) re—ads

z '(k;[ —F])=1 i f —dt3 f dt U4„ (Ot, t k4;[F])X( t3, —t4)U„—h, (t3,0;k;[F]) .—3r 0

(3.17)

(3.18)

Since the self-energy depends only on the difference in
time, X( —t3, t4)=X(t4, t3—). Equation (3.18) is identical
to (2.16) evaluated for the field with an unflipped sign,
therefore

z '(k;[ —F])=z '(k;[F]) . (3.19)

IV. CONCLUSIONS

The even symmetry of cr(k) and z(k) shows that the
main field effect (linear order) is given by the time depen-
dence of the momentum argument in the formula (1.14).
Within the linear approximation of the field effect on the
self-energy the WKB formula is correct. The intrinsic
field effect requires a study of the field dependence of
cr(k). The electrical fields for which the majority of elec-
trons is in the central valley of GaAs is below 3X10
V/m. For these fields the field effect on the scattering is
rather small and the nonlinear corrections are negligible.
More details and results of the numerical evaluation of
the right and left effective self-energies are in Appendix
A; see Fig. 1.

I

the self-energy, a necessary step to introduce scattering
rates, is not unique. The particular choice of the
definition of the instantaneous approximation is very im-
portant because the linear order of the field dependence
of the instantaneous self-energy is determined by this
choice. In particular, there is a definition within which
the field effect on the instantaneous approximation of the
self-energy is even in powers of the field strength so that
the linear order contribution is zero. Since the super-
linear terms are small for electric field typically met in
GaAs devices, one can use equilibrium values of the self-
energy and the wave-function renormalization.
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APPENDIX A: QUASIPARTICLE FORMATION
IN THE ELECTRICAL FIELD

In the paper we have discussed the field effect on the
total scattering rate in semiconductors. We have shown
that the definition of the instantaneous approximation of

In this appendix we discuss the characteristic time
scales that appear in the Dyson equation if the stationary
homogeneous electrical field is taken into account. There
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are two main questions of the discussion: (i) Is there any
characteristic time scale that will allow us to use the in-
stantaneous approximation of the self-energy instead of
the true double-time functions (ii) How should the in-
stantaneous approximation of the self-energy be defined
beyond the gradient expansion, i.e., if the pole approxi-
mation (1.3) is unacceptable' The first question addresses
the possibility of introducing the effective self-energies
(2.3) and (2.12) at all. The second question addresses
forms of (2.3) and (2.12), in particular, why two
definitions are necessary, while the instantaneous scatter-
ing rates are uniquely defined by the Fermi golden rule.

2. Dyson equation

The retarded Green function is the solution of the
Dyson equation

G ( t ) ~ t 2 ~k ):G o( t
&

t 2 ) k )

t3+ f dt3 f dt4GO(t„t3;k)

XX(t3 t4)G(t4, t~;k) . (A2)

In (A2) we have eliminated the momentum dependence of
the self-energy restricting our attention to the interaction
local in space such as the optic-phonon scattering that
will be the main concern of this paper.

Beside Eq. (A2) there is an alternative form of the
Dyson equation that reads

1. Free-electron Hamiltonian within the vector gauge

G(t„t„k)=G,(t„t„.k)

+ f dt, f dt, G(t„t„k)

X X(t3, t4 )Go(t4, t2', k) . (A3)

The two forms (A2) and (A3) are strictly equivalent, but
ad hoc estimates of the field effect depend on which form
was used as a starting point. We will show that the con-
sistency of both approaches can be maintained only if the
wave-function renormalization is taken into account.

3. Free-electron Green function

The free-electron Green function Go(t„t3) has a solu-
tion of the free-particle Dyson equation

a
i —H(ot]' k) G (ot& t3'k)=5(t& t3)

Bt&
(A4)

K (to;k)= [ke+e A(t)]= /k —eFt/'
(A 1)

that is"

For the sake of simplicity we will assume in our discus-
sion one parabolic band of electrons with the dispersion
relation E(k) =k /2m. In our estimates we take
m = 5 X 10 kg, that is, the mass in the I valley of the
GaAs. An extension of the model including intervalley
scattering leads to a modification of the regions of validi-
ty of the instant approximation; however, the overall pic-
ture does not change. This extension is presented in Ap-
pendix C.

For the electrical field F we take 3X10 V/m for the
field effect on the scattering rate and 3 X 10 V/m for the
case when the electron is decelerated so that it crosses the
optic-phonon-emission threshold. Both fields are below
the onset of the Gunn effect. The smaller magnitude of
the field in the case of the threshold crossing is chosen to
amplify the eff'ect [see the discussion following Eq. (A23)].

The electrical field is described within the vector gauge
A(t)= Ft. The v—ector gauge has the advantage of
keeping the Hamiltonian transparently translation invari-
ant; therefore the Hamiltonian is diagonal in the momen-
tum representation k. The price one has to pay is the
time dependence of the Hamiltonian that appears in spite
of the stationarity of the field. ' The free-electron Ham-
iltonian within the vector gauge reads

Go(ti, t3, k) = —iO(t, —t3)exp i f dt5H—o(t~;k)
'3

2= —iOi'i —t je
—

& (k„/2m)(t1 —t3 )
—i (k /2m)(t1 —t3 ) —i (k /2m)(t1 —t3 ) i (k eF/2m)(t2 t2 ) —i (]/3)[(eF)2/2m](t —t

e 1 31 3 z 1 31 3 z 1 3 e 1 3

(A5)

where we have associated the direction of the field with
the z direction.

4. Self-energy in the external field

The typical lifetime of electrons in the central I valley
above the optic-phonon-emission threshold is 2X10
s. ' Our parametrization and estimates will be based on
this value.

In our model we adopt two simplifications to the self-
energy: (i) We assume only single optic-phonon interac-

tions. Optic phonons are described by a single Aat band,
i.e., by the Einstein model, and a constant interaction
vertex y. (ii) The density of electrons is infinitely small
and therefore the phonon distribution can be assumed to
be in equilibrium. Under these simplifications the self-
energy reads

(A6)

where the optic-phonon correlation function D is
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i—~ot &+ 1 ietotDt= e '+ e
2coo 2coo

(A7)
To remove this divergence we will use an exponential
cutoff of the density of states; therefore the actual density
of states

N = I/[e xp( oco/k 21T)
—1] is the Bose-Einstein distribu-

tion, and coo is the optic-phonon frequency.
As the simplest approximation of the self-energy one

can neglect the self-consistency and use the free-electron
Green function for the internal line of the self-energy.
Below we wi11 take self-consistency into account in an ap-
proximative way.

The local element of the free-electron Green function

f dk Go can be evaluated from (A5) with the help of the
Fresnel integrals

GQ(t3t t4tk) 1 0( t3 t4)nt, [1(t3 t4)]
dk

(21r )'

Xe
—i (1/12) [(eF) /2m]( t —t )3 4

(AS)

where the prefactor is nb = (m /21r)
The density of states of the infinite parabolic band is

growing in the high-energy region. This limiting behav-
ior causes a divergence in the real part of the self-energy.

I

—2Im dk 2m 6() m, k =4 ~nb co

will be replaced by

—2Im fdk(21r) GQ(co;k)=43/1rnbv'coexp( —co/ot, „,),

where co,„,-2 eV is of the order of the bandwidth. The
exponential cutoff in the time representation results in
the removal of the short-time singularity of the density of
states by replacing [i ( t3 t4 ) ] —by the regular func-
tion [1/t11,„t+i (t3 t4)] —. For simplicity of the nota-
tion the cutoff is eliminated from the formulas in the pa-
per, but it is used in plots. Accordingly, we will ignore
the singular behavior in the limit t3 —t4~0. More de-
tails about the cutoff and the self-energy used can be
found in Ref. 7.

According to (A6) and (AS), the self-energy is a func-
tion only of the time difference t3 t4,

—i eto( t&
—t4 ) i tfto( t&

—t4 1, , 3/2 i ( 1/12) ((e 1 1/2 —)( ttt&t—t4 )

Xo(t3 —t4)= —iO(t3 —t4 —[¹' + %+1 e ' j[i t3 —t4 j e
2 ~' (A9)

In (A9) we have used the prefactor a=23/mynb/too, .
which corresponds to the parametrization of the self-
energy usually used within the energy representation
where —2 ImX(to) =a[XO(co+ coo)+to+ t11Q+ (X + 1)0(co

ado) 1/ti) coo].
Note that the self-energy does not depend on F in the

linear order. This confirms the assumption made in Secs.
II and III that self-energy has its equilibrium value
within the lowest-order approximation.

5. Self-consistent self-energy

In the formula (A6) we have used the free-electron
Green function to evaluate the self-energy. As we have
shown in (A9), the nonanalytical square-root behavior of
the density of states near the band edge results in the
power-law decay of the self-energy. Since the long-time
decay of the self-energy is crucial in a discussion of the
instantaneous approximation, one can improve the for-
mula (A6) by taking into account the final lifetime of the
electron in the vicinity of the band edge. In the simplest
manner one can approximate the scattering rate by a
momentum-independent constant that is fitted to the cru-
cial value at the band edge. Then the free-electron Green

I

I

function Go(t3, t4; k) in (A6) is replaced by

G (t3 t4 k) GQ(t3 t4 k)exp[ —(t3 t4 )/27ro]

where the lifetime near the band edge ~0 approximately
reads 1/ro = —2 ImX(co =0). Within this approximation
the self-energy (A9) has an additional multiplicative time
dependence

X(t3 —t, ) =Xo(t3 —t„)exp[ —(t, t )/42 —ojr. (A10)

The lifetime near the band edge ro is entirely due to ab-
sorption processes. Accordingly, ~o depends on the tem-
perature via the Bose-Einstein distribution. Since at the
room temperature N=0. 27, the lifetime on the band
edge can be neglected for electrons above the optic-
phonon-emission threshold. Below the threshold and in
its vicinity the self-consistency provides an important
correction that supports the applicability of the instan-
taneous approximation of the self-energy.

Let us check that the lifetime on the band edge is the
relevant one for the long-time behavior of the self-energy.
To this end we need to evaluate the local element of the
Green function with the lifetime included. Within the
pole approximation the Green function reads

f G(t3, t4;k)= —i8(t3 t4) f exp i f —dt(k—eFt) /2m —exp —f dt/2r(k —eFt)
(2m. ) (21r) . '4 4

—i (1/12)[(eF) /2m](t3 t4)
8(t3 t,)e— —

dkx dk& —i (k + k )(t —t )/2m
Xfx y 3 4

277 277

dkz —i [k —eF(t3+t4)/2] (t& —t&)/2m
X e ' ' ' ' ' exp — dt/2r(k eFt)—2' 4

(A 1 1)
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For large t3 —t4 the integration over the perpendicular
part of the momentum has an appreciable value only for
k„(2m I( t 3

—t4 ), therefore only the vicinity of the
band edge in the perpendicular momentum counts. In
the parallel direction the momentum in the center of the
time interval has to be close to the band edge, thus the
zero-momentum value of the lifetime is the best approxi-
mation for the decay term, which confirms the approxi-
mation (A10).

1.2

1.0

0.8

0.6

6. Instantaneous approximation of the self-energy

Now we are ready to discuss the two questions stated
in the introduction to this appendix. We will start with
the second one: Assuming that the instantaneous ap-
proximation exists, what is its form? To answer this
question we will follow the method developed in Ref. 7.
By the following discussion we aim to motivate the
definitions (2.3) and (2.12).

First, we introduce the effective self-energy o.„.sh, (t;k)
that is instantaneous (local in the time variables or energy
independent) and approximate the true double-time (i.e.,
energy-dependent) self-energy X. After the substitution
of this effective self-energy into the Dyson equation (A2),

G(t„t2;k) =Go(t„t3;k)

+ f df3GO(f] f3 k)

X (7g]sh]( f 3 j k )G ( 3fy f ,2k) (A12)

Qne finds by comparing (A12) with (A2) that o.„sh, should
satisfy

0.2

0.0

t 1O-'3 s

FIG. 1. Test functions s„gh, (0;k;t) (thick line) and s~,ft(0;k;t)
(thin line) vs t for the electric field F =3X 10' V/m. For com-
parison with the equilibrium value we plot Ims/Imo. (k) so that
the equilibrium value is reproduced if the plateau reaches 1.
The characteristic times are quasiparticle formation
1 QF fi/[ e( k ) coo

—] 10=' s, quasiparticle lifetime
~= —A/2Imo. (k) =1.5X10 " s. The momentum k=(0, 0, k, )

corresponds to the energy c(k) =4co0=0. 16 eV and is chosen so
that the field decelerates the electron. Both curves can be ap-
proximated by a plateau with the value 1 for t )2~&F. The aver-
aged value of s&,« is a little smaller than the averaged value of
s„gh, due to the field effect on the scattering; however, in both
cases the field effect is very small.

0p]sh](l3&k)G(f3if2', k)= dt4X(t3yf4)G(t4, t, ;k)

(A13)

The condition (A13) cannot be satisfied for arbitrary t3
and t2, but there is a region of times for which (A13)
holds. To find the region of t3 and t2 where the approxi-
mation (A13) applies we divide the right-hand side by
G (t3, tz, k) and plot as a test function

t, 3

sr]s( h]3 fk |i)f=2dt4X( t 3, t4 )G ( t4, t2; k ) IG ( t 3, t2; k )

(A14)

The plot of s„.gh, as a function of t2 for fixed t3 and k is in
Fig. 1. Apparently there is a plateau in which the ap-
proximation (A14) holds and the plateau value of s„.s„, is
identified as o.„gh, .

Before we discuss test function s„gh, in the analytical
way, let us check whether the condition (A13) results if
one starts from (A3). To distinguish these two forms we
introduce a new effective self-energy o],«(t;k). After the
substitution of o],f,(t;k) into (A3) and the similar com-
parison with the nonapproximative form (A3) one finds
that cr],«(t;k) shouid satisfy

fl
G (t„t3 k) ~] f(7(te4], k) = dt3G (f] i f3 k)X(ii3y f4

(A15)

That is different from (A13). Introducing the similar test
function

] sf e( ]4fk; t2 )= dt3G (t„t3;k)X( t3, t4 )IG (t„t4;k)
f4

(A16)

one finds that there is a region of the validity of (A15),
but the plateau value of sI ft is different from s„h, . Thus
the effective self-energies o.„h, and o „f, are different. The
test function s] f] is plotted in Fig. 1 for t4 = f3 []f4 is from
formula (A16), while t3 is from formula (A14)] and the
same value of k as s„gh, . From Fig. 1 one can see that the
difference between the plateau value of s„h, and s&,f, is
rather small. This is due to a small magnitude of the field
effect on the scattering. We did not use a stronger elec-
tric field to make the difference between s„gh, and s&,ft
more visible since then the electron is driven across the
intervalley-scattering threshold and the asymptotic be-
havior becomes more complex.

The inconsistency of the conditions (A13) and (A15)
does not mean that the instantaneous approximation is
not possible. The only restriction that follows from this
disagreement is that one has only to specify which form
of the Dyson equation is being used.
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7. Estimate of the applicability
of the instantaneous approximation

(1.6) in the formula (A14). Within the approximation
(1.6) the ratio of propagators simplifies as

In Fig. 1 one can see that the instantaneous approxi-
mation fails for very short times. Similarly the instan-
taneous approximation fails in the very long-time region
that is absent in Fig. 1 to keep the appropriate scale for
the more important short-time region. The long-time
failure can be seen from the formula (A20) and the reader
can find more details in Ref. 7. The region of applicabili-
ty can be estimated analytically from the test function

sright '

For the purpose of the estimate we can neglect the field
effect on the scattering rate and use the Green function

G ( t„t„k)/6 (t„t„k)
t3

=exp i f dt(e(k —eFt)+o.(k —eFt))
t 4

(A17)

Within (A17) the ratio of the Green functions is indepen-
dent from t2 and the entire t2 dependence of s„h, comes
from the integration limit. Note that the ratio of the
Green function is an exponentially increasing function of
the difference time t3 t4.

Now we are ready to use the explicit form of the self-
energy (A9). By the substitution of (A9) and (A17) into
(A14) one finds

5 ' st(t3 k tp)= —i —f dt4[Ne ' +(N + 1 )e ' '
j[i (t3 t4) j

2 ~ '2

—i (1/12)[(eF) /2m](t3 —t4) —(t3 —t4)/2ro 3
Xe ' ' e ' ' exp i dt c k —eFt +o k —eFt . A] 8

4

The self-energy, and thus the test function, involves two analytical pieces corresponding to the emission and the ab-
sorption of the phonon. These two pieces have to be discussed separately. We will concentrate on the emission part
(proportional to N+ 1), which is larger and, moreover, has the threshold inside the electron band. Equation (A18) can
be simplified by the substitution t4 = t3 t,

s„„,(t;k;t )= — — dt t 3~2exp i dt'(E(k —eFt') co +cr(k eF—t')) e "—~'~' '+ '~2 )' e
a(N+1) '3 '2

3 z 2 3 —t/2r

lK 0 '3

(A19)

where we have already omitted the absorption part.
Let us assume first that the momentum k is such that the condition s(k —eFt) —

coo
—(eFt) /8m ))—Imo (k —eFt) is

satisfied for all t in the interval t2 ( t ( t3. Within the linear term in the field F this condition means that the energy of
the electron is above the optic-phonon-emission threshold during the time interval (t2, t3). The integrand in (A19) is a
product of the oscillating exponential function

exp i f dt'(E(k eFt')——coo) i (eF) —t /(24m)
t3 —t

and the real envelope function
t3

t exp f '
dt'/2r(k eFt') —t/2ro—

3

» the crude estimate the amplitude of the deviation of the test function s„h,(t3;k;t2) from the average plateau value is

proportional to the product of the envelope function for t =t3 t2 and 2/rr times —the half-period of the oscil-
»tion ~/(e(k eFt2) ——coo). For details see Ref. 7. The amplitude of the deviation 6s„„,(t;k;t )=s„„„(t;k;t)
—o (k —eFt3) of the self-energy from the plateau value then can be estimated as

~5s„. „,(t3;k;t2)~ = (t3 t2) exp ——f dt(l/2r(k —eFt) —1/2')a(N+1)
2''" '2

2'
E(k —eFt2) —coo —[eI'(tz —t3)] /8m

(A20)

The instantaneous approximation applies in the time
region where the plateau value is a good approximation
of the test function s„h„ i.e., in the region where the am-
plitude of the oscillation is small comparing to the self-
energy. Since the imaginary part of the self-energy has a
meaning of the total scattering rate while the real part

provides only an unimportant correction of the disper-
sion relation, we relate the condition of applicability to
the imaginary part only:

~5s„,„,(t„.k;t, )
~

« —21mo, ;„;,„(k—eFt, ) .

This condition restricts the time t2 from both sides.
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From below the increase of the power term (t3 —t2)
restricts the applicability to the region of the order of one
period of the oscillation, from above the exponential term
restricts applicability to few (typically more than five)

quaisparticle lifetimes. As it is shown in Ref. 7, the
period of oscillation therefore can be interpreted as the
quasiparticle formation time ~&„, and ~d;„ is a few times
the quasiparticle lifetime.

8. Crossing of the threshold

In the above discussion we have eliminated the cases in
which the electron passes through the optic-phonon-
emission threshold. Here we discuss the case when the
energy of the electron at the time t3 is above the thresh-
old while at t2 the electron energy was below. The test
function s„h, for this case is plotted in Fig. 2.

In Fig. 2 there is one new feature: the test function
jumps from one plateau value to another one. The jump
is in the vicinity of the time when the energy of the elec-
tron crosses the threshold.

In the vicinity of the threshold the period of the oscil-
lating function gets large and we cannot use the estimate
(A19) of the deviation from the plateau value. However,
for sufficiently strong fields it is possible to estimate the
size of the step from the saddle-point approximation.
The time tc at which the electron energy effectively
passes through the threshold is found from the condition

E(k —e Ftc ) —coo —[eF( tc —t3 ) ]2/8m =0 . (A21)

Note that the quadratic term modifies the condition for
tc comparing to the zero-field limit. The dependence of
t& on t3 is not intuitively clear to us. In the vicinity of tc
it is advantageous to express the argument of the oscillat-
ing function in (A19) in powers of t3 t —t—c,

(eF) t '3 (eF) (t3 tc)—
f dt'(E(k eFt—') coo)— — =f dt (E'(k e—pt )

—'coo)—
t3- t 0 24m tc 0 24m

eF(k —eFtc ) (eF)2 5(eF)+
2m

+ (t —r ) (r —t —r )' — (t t tc)—'—. (A22)
8m c 3 c 24 3 c

l~s„, ,(k)l=rp-,'~(N+1)(t t )
'"

Xexp —f dt Imo(k —eFt)
C

(A23)

The step bs„h, (k) picks up the complex prefactor from
the first term in (A22), therefore the actual step observed
in the imaginary or real part of the test function can be
both positive or negative and (A23) is the upper limit of
the magnitude. The most important field dependence is
the prefactor ~F —1/')/F. Hence the step increases for
decreasing fields.

To have a crude estimate of the magnitudes of indivi-
dual terms let us use t& in the zero-field limit. From the
condition (A21) one finds that k, =k, eFtc —(2m—coo
—k —k )'~ and thus the value of k, ranges from zero

to 1/2mcoo. The characteristic time associated with the
linear term in the field is wF=[m/(eFk„)]', which
ranges from 2 X 10 ' s to infinity for the field F =3 X 10
V/m. For stnall parallel momenta there is a region in
which rF ( 1/[ —2 ImX(coo)] =8.6 X 10 ' s, thus the
saddle-point approximation applies. Note that the validi-
ty of the saddle-point approximation becomes better for
higher fields.

Beside the quadratic term there is a cubic term
(eF) /6m (t3 t tc) . —Th—is term has the characteristic
time 7. 2=[2m/(eF) ]'~ =10 ' s. We will restrict at-

tention to the case ~F &&~ & and neglect the cubic term.
For the estimate we take the simplest saddle-point ap-

proximation of the integral in (A19) at the vicinity of the
threshold. Thus the estimate of the magnitude b,s„. h, of
the step of the test function is

1.02

1.01

1.00

0.99
'IO 15 20

(io-" s')

30

FIG. 2. A detail of the test functions s„gh, (0;k;t) vs t for the
electric field F=3X10 V/m. The characteristic times are
quasiparticle formation ~&„=A/[e(k) —coo]=3.6X10 ' s,
quasiparticle lifetime ~= —A/2 Imcr(k) =2.2 X 10 ' s. The
momentum k=(0,0,k, ) corresponds to the energy c(k) =1.9')p
and is chosen so that the field decelerates the electron. The time
tc at which the electron effectively crosses the threshold of the
optical phonon emission is 1.9X 10 ' s. The maximal value of
the step ~hs„s„,(k)

~
predicted by the formula (3.24) is 3 X 10

the actual value is smaller because of the phase factor that
reduces the projection into the imaginary part. The small high-
frequency oscillations are caused by the phonon-absorption con-
tribution.
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From (A23) one can see that the magnitude of the step
is appreciable in the long-time region where the instan-
taneous approximation of the self-energy already fails
and if the time t3 is very close to the passing through the
threshold. In the short-time region one finds that the
step is negligible [i.e., bs„gh, (k) «o.(t, ;k)] if
t3 tc ))—(r~/too)'r =4 X 10 ' s. According to this re-
striction of t3 the instantaneous approximation does not
hold if the momentum k —eI't3 is in the vicinity of the
threshold that spreads over coo/5 [if E(k eI't—

3 )—coo&coo/5]. We note that the applicability of the in-
stantaneous approximation is problematic in this energy
strip already in the zero-field case because the imaginary
part of the self-energy is crudely cop/5 at the threshold.

9. Conclusions

4„,h (P)[ (

=0„ght«) [E«)—E(»]e„ght«) =0 . (88)

The check of the orthogonality of the left states is simi-
lar. To satisfy the orthogonality we take the normaliza-
tion conditions as

are permissible connection relations.
The normalization of right and left states differs from

the standard normalization of eigenstates of the
Schrodinger equation because the operators Hp+o. „gh,
and Hp+o. &,z, are non-Hermitian. The choice of the nor-
malization is restricted by the conjugacy and the connec-
tion given by (86) and (87). The conjugacy of p and p
follows from Eqs. (Bl) and (82). Multiplying Eq. (81) by
p„gh, (p) with pea one finds

In this appendix we have shown that there is a time re-
gion within which the instantaneous approximation of
the self-energy holds. This region covers the most impor-
tant time scale for the transport properties since it starts
at a fraction of the quasiparticle lifetime and exceeds a
few quasiparticle lifetimes.

The instantaneous approximation can be used even if
the electron passed through the phonon-emission thresh-
old, assuming that the final electron state is already
sufficiently far from the threshold.

4'right(»Aright( ) ~P, a

A.n(»A. r«a) =
&p,.

(89)

(810)

1. Effective self-energy in equilibrium

With help of the right states one can express the
e6'ective propagator Ui, f, (

—t3 ) as

The set (86), (87), (89), and (810) provides the required
normalization condition.

APPENDIX B: QUASIPARTICLE EIGENSTATES
IN EQUILIBRIUM

—iC(a)(t4 —t3 )
U„gh, (t4, t3)p„.gh, (a)=e ' p„.gh, (a) . (811)

Ho vari h ]4'.'
h (a)=0

,«(a) [E(a)—Ho

(81)

(82)

In addition to the right and left states we need their con-
jugates. Conjugated functions are solutions of the equa-
tions

In the equilibrium the effective propagators U„h, and
Uf fg can be conveniently expressed with help of the set of
wave functions which are eigenstates of the operators
Hp +0 'gh~ and Hp +0

~ fg respectively. This set of wave
functions is not orthonormal because the effective self-
energy is not a Hermitian operator.

The right and left states are solutions of the equations

One can check (811) from (2.4). The representation (811)
of the effective propagator allows us to express the
effective self-energy in terms of poles. By the substitution
of (811) in the definition (2.3) one finds

'3 —i E(a)(t4 —t3 )

cr„g}„P„gh,(a)= dt&X(t3, t4)P„;ghi(a)e
'3

(812)

For the states p„h,(a) for which the integration over
t4 reaches the plateau value (812) gives the pole value of
the self-energy. Projecting (812) to a single state one
finds

o.„h,P„h,(a) =X (E(a))P,; h, (a) . (813)
p„ghi(a) [E(a)—Ho —o „gh, ]=0,
[«a) —Ho —ai.n]k.fi(a) =0 .

(83)

(84)
From (812) one finds that states p„.gh, (a) solve the equa-
tion

The right and left states are connected to the conjugated
left and right states, respectively, by the wave-function
renormalization z. This relation is recovered by taking
the derivative with respect to t, of both sides of (2.19)
from which one finds that

[E(a)—Ho —X(E(a))]g„gh,(a)=0, (814)

so that the states p„gh, (a) are quasiparticle eigenstates.
In contrast, the conjugated states cannot in general be as-
sociated with the quasiparticle eigenstates.

(Ho+cr„h, )z =z(Ho+cri, f, ) .

From (85) one can check that

vari ht(a) zeal ft(a)

41 ft(a) Ari ht(a)z

(85)

(86)

(87)

2. Wave-function renormalization in equilibrium

The expression (2.16) for the wave-function renormal-
ization is in a nonstandard form. We will evaluate (2.16)
in terms of the quasiparticle states to demonstrate its re-
lation to the standard approach. Let us take the element
of (2.16) as
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ft(p}z p„.ght(a ) =p ]«( p)p„ght( a} —i dt3 dt4$], f (p) U„f,(0, t3 )X( t3, t4 }U„ght ( t4, 0 )p„ght( a ) (815)
0 —37

where we have set t2 =0 for the simplicity of the notation. This choice is possible since we are dealing with the equilib-
rium. According to (811) and the similar expression for U],f„ the projections of the effective propagators reduce to the
simple exponentials; thus one finds

is(p)t3 —ic(a)t4
ft(p)z (])nght(a ) = (tt],ft(p)p„ght(a )

—i dt3 dt4e 'e p],«(p)X( t3, t4 )p„ht(a )
0 —3v

For the retarded self-energy one can use the spectral representation that gives

(816)

cleft(p)z pt]ght(a) f left( p)(t tight(a) f tjk]eft(p)I (co)pt]ght(a) f dt3e ' f dt4e (817)

1

fo —E(a)
1

co —e(p)
(818)

The integral over the energy ~ defines the analytical
continuation of the spectral function of the self-energy
into the retarded complex energy half-plane. Thus the
formula (2.16) finally leads to the expression

A.ft«}z '0. ght«}

X(E(a))—&(e(p) )
]t,«( ) (p) ttght

Here the spectral function of the self-energy is
I (fo)=i [X(fo)—2 "(fo)].

The integrations over t3 and t4 can be evaluated easily.
There are two kinds of the contributions, the terms ap-
pearing on the integration limits t3 4~0 and the terms
following from the integration limits at t 3 ~3~ and
t4~ —3~. The oscillating terms from the artificial in-
tegration limits do not survive the integration over the
energy fo at least for states t}t],«(P) and P„. h, (a) that are
not close to the nonanalytical points of the self-energy.
This independence on the artificial integration limit is our
main assumption. Neglecting the terms from the
artificial limits one finds

p]eft( p )z '
p„ght( a )

el ft(P}qt'right(a )

dco
ft(p)p(m )p„ght(a )

1

2 E a E

APPENDIX C EFFECT OF THE INTERVALLEY
SCATTERING

In this appendix we extend the discussion presented in
Appendix A by including the scattering into L valley via
the emission or absorption of optic phonons. We will not
repeat the entire theory but only list model features that
are necessary to include and compare numerical results.

1. Free-electron Hamiltonian in L minima

In GaAs there are three minima around L points in the
Brillouin zone. The dispersion relation in these minima
is strongly anisotropic; we will use two different masses
m„and m, for its description. The effective mass in the
radial direction from the I point is larger, we use
m„=2.5m, the effective mass in the directions parallel to
the zone boundary are close to the effective mass of the I
valley, thus we use m, =m. Both values were extracted
from Ref. 12 together with the L-minima bottom energy
Ef =0.3 eV (the value is related to the bottom of the I
valley). We denote kL the distance of the L point from
the I point; however, the numerical value of kL does not
matter because of the dispersionless phonons.

In the absence of the electrical field all minima are de-
generate. Within the special choice of field direction
along the I -L line, two minima remain degenerate while
the minimum in the direction of the field has to be dis-
tinguished. We associate the direction of the field with
the coordinate z. [In Ref. 12 the line I Lhas a direction-
vector (1,1,1) and its rotations, while we use (0,0, 1) and its
rotations. ] For the minimum in the direction of the field
the free-particle dispersion reads

(819) k„+k k, —kf eFtl—
H„(t;k) =eL + +

2m, 2m
(C 1)

The formula (819) is close in the form to the general-
ized Ward identity. ' In the diagonal elements the ratio
in large parentheses has to be evaluated by the 1'Hopital
rule, which simplifies the formula (819) to the known
form

4'1 ft(a) Arigh(a)

t)X(fo)

(k —kL ) k (k, —eFt)
H, (t;k) =sL+ + +2m„2m, 2m,

(C2)

2. Contribution of L minima to the local Green function

Two other minima experience the field in the direction of
the Brillouin-zone boundary. We express the dispersion
for the minimum in the x direction

co=a(a)

(820)
The self-energy of the intervalley scattering has the

form (A6) with the only difference being that the integra-
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tion over momenta is performed in the vicinity of L
points. Similarly to Appendix A we use the simplification
of infinite bands in the vicinity of L points and include
the cutoff by the artificial exponential factors. The cutoff

is eliminated from formulas but not from the numerical
calculation.

The contribution of L minima to the local element of
the free-electron Green function is

G20(t3, t4, k)= —ie(t3 —t4)e nt [i(t3 t4)]—f dk R «I ('3 '4 . —3/
(2m)

i (1/—12)[(eF) /2m, ](t& —t4 )
—t (1/12)[(eF) /2m, )(t3 —t4)X e 4 +2e (C3)

(21r )
(C4)

where ~l is the lifetime at the bottom of the L minima.
This correction is even more important here since ~L is
shorter than lifetime ~ in the central valley below the
intervalley-scattering threshold.

2.5

where the prefactor is nL =(2m) / mtQm„. In the
same manner as in Appendix A, we can introduce the
final lifetime correction to the local element of the Green
function,

GL t3, t4', k
dk

(21r)

3. Test function

In Appendix A we discussed the applicability of the in-
stantaneous approximation with the help of the test func-
tions s„gh, and s&,«. Here we discuss the effect of the in-
tervalley scattering included on these functions.

The modification of the self-energy is obtained by add-
ing the local Green function (C3) to the local Green func-
tion due to the central minimum in the formula (A6).
The resulting self-energy has six terms corresponding to
emission-absorption, intravalley-intervalley, and interval-
ley terms split into radial and tangential terms. All of
these terms are of the same form except for values of pa-
rameters, therefore the analytical discussion would be a
trivial modification of the discussion in Appendix A. In-
dividual contributions enter the test functions with
different magnitudes and periods of oscillation. In Fig. 3
one can see how the test function is changed if the inter-
valley scattering is on or off. The large deviation in the
short-time region is due to the fact that the intervalley

2.0

1.5

1.0 1.01

0.5

0.0

1.00

(10 "8)

FICx. 3. Comparison of the test functions s„gh, (0;k;t) with
the intervalley scattering turned on (thin line) and ofT (thick
line). A11 other parameters are identical to those used in Fig. 1;
therefore the thin line is exactly the same as the thick line in
Fig. 1. The remarkably di6'erent behavior of s„~h, (0;k;t) in the
short-time region is caused by a large density of states in the L
minima. The magnitude of the oscillations due to the interval-
ley terms drops more rapidly with time than the magnitude of
the oscillations due to the intravalley contribution as a result of
the shorter lifetime at the bottom of the L minima. In the
short-time region the importance of the intervalley scattering is
apparent.

0.99
10 15 20

(10-"e)
25 30

FIG. 4. Comparison of the test functions s„gh, (0;k;t) for the
intervalley scattering on (thin line) and off (thick line). All other
parameters are identical to those used in Fig. 2. The constant
shift of the value is due to the tails of the intervalley-scattering
self-energy. There is no inAuence of the intervalley-scattering
terms on the value of the step; therefore the presence of the in-
tervalley scattering is not important for the crossing of the
phonon-emission threshold.
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self-energy has 3(m, m„/m )'~ larger prefactor. In the
long-time region the exponential decay of the intervalley
scattering takes over and the oscillating contributions
disappear, leaving only a constant shift due to tails of the
self-energy below the thresholds.

In Fig. 4 the crossing of the optic-phonon-emission
threshold is shown. There is no inhuence of the interval-

ley scattering on the value of the step that appears when
the threshold is crossed. One can see that with interval-
ley scattering on there is small oscillations of the test
function that disappear with increasing time. These os-
cillations have a small amplitude compared to the main
contribution since amplitudes of individual oscillations
depend on the distance from the thresholds.
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