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The collision duration time ~cD (a short time scale & 10 s) is estimated for an equilibrium non-

degenerate semiconductor. For interaction with nonpolar optical phonons, it is shown that there is
one common sca1e 7cD for both the scattering-in and scattering-out integrals. This time is defined so
that if 7CD «7 (7 is the quasiparticle lifetime) subsequent scattering events do not interfere. We find

that the best estimator for this time, which is independent of the temperature, is the Landau cri-
terion proposed for metals.

I. INTRODUCTION

Transport theory of nondegenerate semiconductors is
largely based on the Boltzmann equation. To derive the
Boltzmann equation from the quantum description of
electrons interacting with phonons or impurities one has
to assume that individual interaction events are indepen-
dent of each other, i.e., that the collision is completed be-
fore another interaction starts. Formally, we say that the
Boltzmann equation is derived under the assumption that
the collision duration time 7cD «7, where 7 is the quasi-
particle lifetime or the mean free time. '

In spite of its importance a precise definition of the col-
lision duration time is not in print. There are few intui-
tive estimators of the collision duration time 7cD that
show a variety of trends and values. We will briefly dis-
cuss them for a local interaction, such as the interaction
with polar optical phonons or with neutral impurities.
All our estimates are appropriate for the I valley in
GaAs and the electron energy -0.2 eV. This high value
of the energy was chosen for the discussion since it is ap-
propriate for the high-energy tail of the distribution for
which it is difficult to justify the Boltzmann equation.

1. Classical estimate

Within classical mechanics an estimator of the collision
duration time is the time the electron spends in the region
of the interaction potential, assuming that the velocity of
the electron is equal to the velocity of the initial or final
state. Since the interaction with optical phonons is lo-
calized to one elementary cell (a —10 m) and electron
velocity v is 10 m/s, one finds

7cD= ——10 ' s .
v

In the parabolic band the classical estimator for an elec-
tron of energy co is proportional to 1/&co.

2. Energy derivative ofphase shift

The theory of elastic scattering associates the "col-
lision delay time" 7CD with the energy derivative of the
phase shift. In the lowest-order approximation such an
interpretation of the collision duration gives

dX( co )
7CD ~ 7T

dco
—10 ' s (1.2)

3. Applicability of the pole approximation
to the spectral function

Alternative quantum-mechanical estimators are based
on the applicability of the pole approximation to the
spectral function A of the single-particle Green function

A (co;k)= —2 Im
1

co —E(k) —X (co)

= —2 Im
co —e(k) —X (E(k))

(1.3)

where the energy co and the kinetic energy e(k) are in-
dependent.

Since the real part of the self-energy is usually model

where X is the density of states per atomic unit ( —&co),
and V-1 eV was used for the impurity potential. This
value of the collision delay time differs from the classical
estimator 7CD in that it depends on the strength of the
impurity potential. On the other hand, both have the
same energy dependence 1/&co.
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I (co) « I (co),dI (co) (1.4)

dependent, it is better to base the estimator entirely on
the spectral function of the self-energy I (to )
= —2 ImX+(co). The spectral function A (co;k) has a
Lorentzian peak of the width I (E(k)) in the vicinity of
co=E(k). The pole approximation is applicable if the
change of the self-energy within the width I (co) is small
relatively to its value

gy are essentially different from the scattering-out in-
tegral (1.6). Incidentally, in the early 1950s the criterion
A/kz T & ~ was supposed to limit the validity of the Lan-
dau Fermi-liquid theory for metals. We should note that
this criterion is extremely restrictive at low temperatures
and also at high energies when ~ becomes very small.
Later, it was shown by Landau that this criterion is ir-
relevant and he proposed the correct criterion
(AD-1/E~), which is much less restrictive in metals.

which can be rearranged as

dr(~)
I (co) dco I (co)

(1.5)

The right-hand side of (1.5) is the quasiparticle lifetime
r= 1/I, so that the expression on the left-hand side can
be associated with ~cD,

(3) d lnl (co)
7 CD

—10 s.
dc'

(1.6)

Since the spectral function of the self-energy is typical-
ly proportional to the density of states, one can then re-
place I by N in (1.3), which gives ~CD-))1/(2'). This
definition is not only independent of the interaction po-
tential, but the energy dependence is different from (1.2).
This characteristic time directly relates to the scattering-
out integral of the Boltzmann equation. See the discus-
sion in Sec. III.

4. Applicability of the pole approximation to the correlation
function of the self energy-

The pole approximation of the correlation function of
the self-energy A (co;k)X (co)= A (co;k)X (e(k) ) was
used by Kadanoff and Baym to derive the scattering-in
integral of the Boltzmann equation from the nonequilibri-
um Green functions. The applicability of the pole ap-
proximation to the correlation function of the self-energy

d lnf„D(co)I (co)
~CD-A

dco
—10 '4 s. (1.8)

In (1.8) the dominant part of the logarithmic derivative
arises from the Fermi-Dirac distribution and one can
simplify the criterion to the inverse temperature

7( D=A/k~ T- 10 ' s (1.9)

where we have used room temperature for T.
This definition relates to the scattering-in integral of

the Boltzmann equation. The value and trend with ener-

X'(~o) =fFD(co)1 (co),

where fFD is the Fermi-Dirac distribution and
I (co)= —2 ImX (co), requires that the energy depen-
dence of the correlation function of the self-energy is
small relative to the pole value in the vicinity of the
pole. ' This relative energy dependence can be charac-
terized by a time

5. Landau criterion

Finally there is an intuitive estimator proposed by Lan-
dau within the theory of Fermi liquid that the relevant
characteristic time is given by the reciprocal energy dis-
tance from the nearest nonanalytical point in the density
of states. The strongest nonanalytical points are typically
close to the band edge and thus one finds, if ~ measures
the nearest separation from the nonanalytical point in the
density of states,

(5) ~ 1014+CD
CO

(1.10)

II. ELECTRON-PHONON COUPLED SYSTEM

As an archetypical problem, we study a nondegenerate
system of noninteracting electrons coupled to phonons.
In this section we introduce the full set of nonequilibrium
Green functions and specify the approximations we use.
The set of equations for nonequilibrium Green functions
is an input of our paper, and our aim is to discuss the

For simple metals this characteristic time simplifies to
2M/EI;, where EI; is the Fermi energy.

In this paper we will ask a simple question: what
characteristic time scale allows scattering events to be
treated as independent? Since the scattering events enter
the transport equation (for instant, the Boltzmann equa-
tion) via the scattering-in and scattering-out integrals,
one has to discuss the characteristic time scale in two
different frameworks.

The scattering-out term is the simpler one because it
involves only the single-particle Green function. For the
discussion of the scattering-in term one has to use the en-
tire transport equation, which includes statistical infor-
mation such as the temperature. We show in this paper
that (at least at the equilibrium) the noninterference of
subsequent processes, either involved in the scattering
out or scattering in, is given by a single characteristic
time scale. The best estimator of this time scale is the
Landau suggestion (1.10).

The paper is organized as follows. The model, approx-
irnation, and formalism introduced in Sec. II are used to
evaluate, in Sec. III, the quasiparticle formation of the
single-particle Green function and, in Sec. IV, the charac-
teristic time scale that corresponds to the interference of
individual scattering events. In Sec. V we assume that
both new times are short compared to the quasiparticle
lifetime and prove a validity of the Boltzmann equation
in this limit. In Sec. VI we discuss the completed col-
lision approximation in the formulation used for high-
field transport theory. Section VII contains conclusions.
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characteristic time scales that are involved in this set at
equilibrium.

A. Definitions of Green functions

Our conventions are as follows. The correlation func-
tions are defined for electrons and phonons, respectively,
as

G '(t; k) =Tr[pg (0;k) li(t; k) ],
G (t;k)=Tr[pg(t;k)P (0;k)],

(2.1)

(2.2)

and

D ~(t)=Tr[pu(0)u(t)], (2.3)

D (t)=Tr[pu (t )u (0)], (2.4)

where lijt (g) is a creation (annihilation) operator of an
electron, u is an atomic position deviation, and p is a
grand-canonical ensemble-averaging operator. In the
definition of the phonon correlation function we have al-
ready taken into account that we will be concerned only
with the fIat optical-phonon mode and thus we exclude
the momentum dependence of D and D

The retarded and advanced operators are composed of
the correlation parts as

FIG. 1. Dressing of single-electron Green function; the

Dyson equation.

is the local (in space) correlation function.
According to the definition (2.5), X can be reorgan-

1zed as

X~(t) = i 0(t—)[y'D '(t)g (t) +y'D '(t)g (t)]
=y'D (t)g'(t) y'D—'(t)g (t) . (2.10)

will be the focus of our interest.

C. Spectral representation

The last form in (2.10) is the most suitable for the low
electron-density limit, where the second term of (2.10)
vanishes.

The transport equation for the correlation function,
called the generalized Kadanoff-Baym equation,

G (t;k)= f dt, f dt~G (t t„k)—
XX~(t) —t2)G (tq,'k), (2.11)

and

Z~(t) = —ie(t)[Z'(t)+Z '(t)] (2.5)

(2.6)

For the sake of convenience we describe the model
property in the energy representation. Our convention
for the energy representation is

where the upper (lower) sign is for fermionlike (bosonlike)
operators. While, as in (2.5) and (2.6), we put Pi= 1

throughout the paper, for the reader's convenience we
write A explicitly whenever we recall material parameters
that are fitted to the central valley of conductivity band
in GaAs.

B. Approximations of Green functions

To express approximations we take advantage of the
diagrammatical language and use the rules of the gen-
eralized Kadanoff-Baym formalism to write down equa-
tions determined by the diagrams. The set of equations
that will be the focus of our interest follows from the
dressing of the electron Green function. It is diagram-
matically expressed by the equation on Fig. 1.

The Dyson equation for the single-electron Green
function 6 thus reads

The self-energy X consists of the analytical parts

''(t)=y D''(t)g ' (t),
where y is the coupling constant, and

(2.8)

G~(t;k)=G(t;k)+ f dt, f dt, G(t —t„k)
XX~(t, t, )G~(t„k). —

(2.7)

Z(co)= f dt e' 'Z(t) . (2.12)

The equilibrium correlation functions are related to the
single-particle Green functions via the Schwinger bound-
ary condition

G (co;k)=f„o(co)i[G (co;k) G "(co;k)],—

X (co)=f„o(co)i[2(co)—X"(co)] .

(2.13)

(2.14)

Our main interest will be nondegenerate systems where
the Fermi-Dirac distribution f„o reduces to the
Boltzmann distribution

— y~~ Tfpo(co) =nde (2.15)

where nd =n(2vrlmkz T) includes the electron density
n and the normalization of the Boltzmann distribution
with respect to a density of electron states to satisfy

f (dco/2')g (co) =n

D. Spectral function of the self-energy

X (co)=y f D (z)g (co —z) .dz
2' (2.16)

In the self-energy, given by the last line of (2.10), we as-
sume that the semiconductor is nondegenerate and the
concentration of electrons in the conduction band van-
ishes, i.e., n ~0. The second term of (2.10) thus vanishes
and the energy representation of the self-energy reads

g '(t)=, G '(t;k)dk
(2~)

(2.9) The correlation function of Einstein phonons is purely
1eal,
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—2 Img o (co) = nb 8(co)&co, (2.18)

where nb =(&2/m)m ~; note the norm nb depends on
the effective mass of electrons.

Since in a real material the integration over momentum
does not go to infinity but is 1'imited by the Brillouin
zone, we introduce an artificial exponential cutoff

—2 Imgo (co) =nb8(co)&cue (2.19)

where co,„,is of the order of the energy bandwidth (-2
eV). This form of cutoff'is not motivated by any physical
property of the system. In fact, in GaAs the density of
states increases more rapidly than the square root in the
upper part of the conductivity band and moreover in-
volves the additional nonanalytical points due to X and I.
minima. We use the exponential cutoff because it re-
moves fast oscillating parts in the time dependence of the
self-energy and leads to convenient analytic expressions.

Upon the substitution of (2.17) and (2.19) into the
imaginary part of (2.16) one finds

D (z) =N 5(z+coo)+ (N+ 1) 5(z —coo), (2.17)
1 1

2cop 2cop

where coo is the phonon frequency (or energy since A'=1)
and N is the Bose-Einstein distribution N= [exp(cool
k~ T) 1]—

For simplicity we neglect the dressing of the line inside
the self-energy. In other words, we approximate the local
Green function g in (2.16) by the free-particle Green
function gp. For the parabolic band the integration over
momentum [see Eq. (2.9)] thus results in the free-electron
density of states

—2 ImX (co) =Na8(co+coo)+co+cooe

+(N+ 1)a8(co—coo)

( co coo ) /co
X +co—cooe (2.20)

III. PROPERTIES OF THE RETARDED
REEN FUNCTION G ( t ] t 2 )

Here we discuss properties of the retarded Green func-
tion G (t&, t2) in equilibrium. Although the energy rep-
resentation is advantageous in equilibrium, we will dis-
cuss the Green function in a time representation to natu-
rally demonstrate the characteristic times.

A. Retarded self-energy in the time representation

The retarded self-energy in the time representation is
obtained from (2.20) by inverse Fourier transformation

X (t)= i8(t) I —e ' '( —2)lmX (co) .2' (3.1)

In (3.1) the entire retarded self-energy in the time repre-
sentation is evaluated only from the imaginary part of its

where e =y nb /2cop. Figure 2 shows that two nonanalyt-
ical points at —

cop and at cop are common for both self-
energies, the spectral function of the self-energy
ImX (co), and the correlation function of the self-energy
X (co). The nonanalytical point at —coo, due to the pho-
non absorption part of the self-energy, lies below the
band edge and thus it is always far from the electron en-
ergy. The nonanalytical point at cop is due to the phonon
emission, and it will be in the center of our interest.

0.0040

0.0030

N

0.0020
o5

N

I 00010-

0.0000
—0.10 0.00 0.10

(u (eV)

0.20 0.30

FIG. 2. Spectral function of the self-energy —2 ImX (co), thick line; and the correlation function of the self-energy 2 (co), thin
line. To make the two scales comparable we set nd = I in the plot. The parameters we use are coo=0.04 eV, +=2.5X 10 ' eV' ', and
T= 300 K.
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energy representation. This simplification is possible be-
cause of the following identities known from spectral rep-
resentation. First, the retarded self-energy can be ex-
pressed as X (t)=)9(t)[X (t) —X (t)] because the ad-
vanced self-energy is zero for t )0. In the energy repre-
sentation the difference of the retarded and advanced
self-energies is the spectral function of the self-energy
X (co)—X"(co)= i—( —2)ImX (co) because the retarded
and advanced functions are conjugated to one another,
X (co)=X "(co), where the overbar denotes the complex
conjugate.

From (3.1) and (2.20) one finds

X (t)= iO—(t) —[Ne '+(N+1)e '
]4&~

C. Green function in the pole approximation

We introduce the pole approximation using the time
representation, which will permit a discussion of the ap-
plicability of the pole approximation in terms of charac-
teristic times. Within the pole (quasiparticle) approxima-
tion

X (co)=tT (k), (3.7)

the Dyson equation for the retarded Green function (2.7)
reads

G (t;k)=G() (t;k)+ J dt, 6() (t t )k—) cr(k)Gq (t, ) .
0

(3.8)
' —3/2

1 +it
~cut

(3.2)
The exact solution of (3.8) for the quasiparticle approxi-
mation for 6 is

B. Pole (quasiparticle) approximation in equilibrium

In semiclassical transport theory the scattering-out
term is treated as an instantaneous event. Within the
double-time Green-function approach the scattering-out
events are described by X (t), which is certainly not an
instantaneous function of time; see (3.2). Our aim there-
fore is to approximate the self-energy X (t) by some
effective self-energy o (t;k) that is instantaneous but
may be momentum dependent,

t7R(t;k) =5(t)o R(k) . (3.3)

In the energy representation this instantaneous approxi-
mation means that 0. is energy independent. The stan-
dard way to obtain such an approximation is the pole ap-
proximation '

(k):X (tt) ) l — tk)+ Rtk)0
(3.4)

where eo(k)=k /2m is the free-electron dispersion rela-
tion.

The real part of the effective self-energy o (k) is an
effective potential and the correction of the dispersion re-
lation (correction to the mass of electron). The quasipar-
ticle energy dispersion is then

The cutoff energy co,„,does not affect the self-energy ex-
cept for the times t 8 A'/co, „,. For co,„,=2 eV,
A/co, „,-10 "s.

We note that the self-energy (3.2) has the form of the
original expression (2.10) X (t) =y D (t)go (t) Sinc.e
D (t) is a sum of two exponentials, the power-law decay
follows entirely from the time dependence of the Green
function go (r). This power-law behavior of go (t) fol-
lows from the square-root behavior of the density of
states (2.19).

G R
( r .k ) t. g( t )e

—i t.t k ) te —t /2v( k)

q
(3.9)

D. Limits of validity of pole approximation: Test function

is independent of t, . In particular, if s (t„'k)is indepen-
dent of t, over a dominant part of the integral over t& in
(2.7) or (3.8), then the pole approximation holds and
o. (k) is equal to s (t, ;k) in the region of the latter's
constant value.

E. Limits of validity of pole approximation:
Numerical results

Consider the test function (3.11) for our model. Since
ti i )0 in (3.11), the product of the retarded Green func-
tion with its inverse, according to (3.9), is

The form (3.8) of the pole-approximated Dyson equa-
tion permits direct comparison with the nonapproximat-
ed Dyson equation (2.7). If the eff'ective Green function
G should approximate the asymptotic behavior of the
Green function G, the terms containing self-energies in
(2.7) and (3.8) must lead to the same result,

dt, X"(t,—t, )GR(t„k)=oR(k)GR(t„.k) .
0

The condition (3.10) cannot be satisfied for a general
time argument t &, but there is a region in which approxi-
mation (3.10) is valid. To gain insight into regions of ap-
plicability of (3.10) we approximate the Green function
G (tz, k) in the left-hand side of (3.10) by the effective
Green function G (t2', k). Dividing both sides of (3.10)
by G (t) ', k), one then finds that the approximation (3.10)
is possible in the region where the test function

EIs"(t„k)=I dt2X (t) —t2)G (t2;k)[G (t„k)]
0

(3.11)

E(k)=EO(k)+Reo. (k) . (3.5)

The imaginary part relates to the quasiparticle lifetime (3.12)

= —2Imo. (k) .
1

~k (3.6) But the substitution of (3.12) and (3.2) into (3.11) one
finds



43 HIGH-FIELD TRANSPORT IN SEMICONDUCTORS. II. 6655

1 +i(r, —r, )

i—f dt —[Ne + (N+ 1)e ]4&7r

t)
s (r, ;k)= —i f dt2 [¹ ' ' ' +(N+1)e ' ' '

]' 4&~ ~au~

1
—3/2

e ic(k) te t /2g k)

—3/2
ic(k)(t& —t2) (t& t2)/2+k)

(3.13)

The function s (t, ;k) can be separated into the absorp-
tion part, the term with Xe ', and the emission part, the

l cgot
term with (N+1)e '. The emission part of the func-
tion s (t„'k)is plotted in Fig. 3. The behavior of the ab-
sorption part is very similar.

The main features of the function s (t, ;k) are as fol-
lows. The function oscillates around the pole value of the
self-energy with a constant period ~&F

r F(k)= 2&
E(k ) —coo

(3.14)

1.2

1.0

[Below we show that the period of oscillations is a good
estimator of the quasiparticle formation time. Indeed, it
is identical with Landau s proposal (1.10).] The ampli-
tude of the oscillations is minimal at the time t& =3~, in-

creases as t j for t, ~0, and exponentially diverges for
t

&
~~. There is a deviation from this behavior in a very

short-time region t, &2~A/co, „,because of the complex
shift of the time (t i /co—,„,) in (3.13).

With respect to validity of the pole approximation
there are three important regions apparent in Fig. 3. In
the region t, &rO„=2.8X10 ' s the function s (t, ;k)
diA'ers from the pole approximation of the self-energy.

The middle region r&„(k) & t
&

& rd;„=1.7 X 10 s pro-
vides a plateau in which the pole approximation of the
self-energy holds. For t, )~d;, the integral starts to oscil-
late with an exponentially increasing amplitude. An esti-
mate for rd;„will later be provided by (3.20).

F. Limits of validity of pole approximation:
Analytical estimate

The characteristic features of Fig. 3 can be derived
analytically. The emission part of the integrand in (3.13)
is a product of the oscillating term exp[i[E(k) —coo]t]
and the envelope function which is

(a/4v'm)(N+1)t . exp[t/2r(k)]

for t &) 1/co,„,.
The minimum of the envelope function is at t =3r(k ).

As a result, around the point 3r(k) the oscillation of
s "(t,;k) has the smallest amplitude. Since the envelope
function monotonically increases with ~t

—3r(k)~, the
amplitude of fluctuations of s (t, ;k) increase as one goes
from the "center" of plateau at 3r(k) toward the limiting
regions either of very short times (before the quasiparticle
is formed) or to very long times (when quasiparticles are
decaying and power-law tails are dominant).

An estimator of the amplitude b,s ( r, ;k ) of oscillations
of s (t, ;k) can be obtained by integrating t over a half-

period bt=rr/[e(k) —coo]—:rOF(k)/2 of the oscillating
term in the vicinity of t, ,

t~ O,B

2
0.6

As (t„k)=~s (r, +At/2;k) s(r, —At—/2;k)~

d
a(N+1) —3zz new)

t t at/2 —4+~
X c os[ E(k )( t —t, ) ] . (3.15)

0.4
We approximate the time dependence of the envelope
function by its value at t = t

&, ,

0.2
—17,0 —1 6.0 —15.0 —14.0 —13.0 —12.0 —11.0

a(N+1) 3~2 tt/Mk) 2

4V~ ' s(k) —coo
(3.16)

log [t (s)]

FIG. 3. Test of the pole approximation for scattering out.
The figure contains a plot of the emission part of the test func-
tion s vs log, o[t (s)] for the energy s(k)=0.2 eV. There are
three regions of interest. For t & ~&F, log»(~&„)= —13.55 from
(3.14), the quasiparticle is forming, and s varies strongly. In
the interval ~&F & t (rd;„,log&0(~d;„)= —11.77 from (3.20), there

is a plateau on which the pole approximation is acceptable. For
t )~d;„the power-law tails of the propagator take over the ex-

ponentially decaying quasiparticle part, which results in the

breakdown of the pole approximation. The quasiparticle life-

time is v= 1.9X 10 ' s, therefore the smallest amplitude of the

oscillations is around log&o(3~) = —12.24.

This approximation is valid if ~&F, which is the period of
oscillation of the oscillating function, is smaller than t,
and ~, the scales on which the envelope function varies.

The pole approximation of self-energy is correct for
times t& for which the test function is constant, i.e., the
oscillation is negligible. The amplitude of the oscillation
has to be compared with both the real and imaginary
parts of the pole approximation of the self-energy; how-
ever, obtaining the correct value of the imaginary part of
the pole approximation is more important since it has the
direct meaning of the scattering rate while the real part
produces only a small correction to the band structure.
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We do not discuss the validity of the pole approximation
of the real part since the artificial energy cutoff (2.19)
does not guarantee the right behavior of the real part of
the self-energy anyway. Thus our criterion of the validity
of the pole approximation is to require that the amplitude
of oscillation hs (t„'k)be small compared to the pole
approximation of the emission part of the self-energy—21mX," (E(k) ) in the plateau

bs, (t, ;k) «1.—21m'," (e(k))
(3.17)

From (2.20) one finds the pole approximation of the
emission part of the self-energy

—2 ImX, (E(k) ) =a(N+ 1)+E(k)—co0, (3.18)

where we have neglected the bandwidth cutoff co,„„since
we assume E(k) «co,„„andwe have left out the function
9(E(k)—co0), since we are interested in the high-energy
part of the spectra.

By substituting (3.16) and (3.18) into (3.17) one finds
that for t& to lie in the plateau the following condition
has to be satisfied:

(2' ) t

V2 ~oF(k)

3/2 —t) /2&k)
e ))1 . (3.19)

—=3r(k)ln 3r(k)
~gF(k)

(3.20)

Let us summarize the results of this section. We have
formulated the criterion for the pole approximation of
the retarded self-energy in terms of the semiasymptotic
behavior of the test function s (t&', k). In the plateau re-
gion of s, given by (3.20), the pole approximation ap-
plies and the instantaneous approximation of the self-
energy holds. The criterion (3.20) provides both the
short-time limit and the long-time limit. In the short-
time limit the criterion defines the quasiparticle forma-
tion time and our result confirms Landau's criterion
(1.10).

The time scale ~QF that allows us to use the instantane-
ous approximation of the retarded self-energy appears in
the transport equation in the scattering-out term. In
this sense we have confirmed that the estimator (1.10) ap-
plies to the scattering-out integral and one can identify

The criterion works for both short- and long-time limits
of the pole approximation. In the short-time region one
can neglect the exponential term and thus one recovers
the condition t, ) r&„(k).That is why the period of the
oscillation of the test function plays the role of the quasi-
particle formation time. In the long-time region the ex-
ponential term prevails. Then one can approximate t& by
3r(k) in the power-law term and one finds that the pole
approximation applies for t, smaller than
3r(k)ln[3r(k)/a&i;(k)]. The region of the validity of the
pole approximation thus reads

277 :7 Qp(k) & t, & 1 d~y(k)
0

7 QF with ~cD with respect to scattering out. However,
the discussion of the propagator does not provide a cri-
terion for the scattering-in term.

IV. CHARACTERISTIC TIMES
OF THE TRANSPORT EQUATION

FOR THE CORRELATION FUNCTION
IN EQUILIBRIUM

In this section we discuss characteristic times that ap-
pear in the transport equation for the correlation func-
tion g (t) in equilibrium. Our main aim is to show un-
der what conditions the double-time integration in (2.11)
can be reduced to a single-time integration, i.e., under
what criterion the quantum scattering in can be described
by scattering rates of instantaneous events as it is done
using the Fermi golden rule. We shall show that the
relevant time scale for scattering in is identical to the
time scale for scattering out, i.e., the quasiparticle forma-
tion time r&„defined by (3.14). In particular we shall
show that the semiclassical Boltzmann equation for semi-
conductors is valid under the condition ~QF&~. This
condition is identical to the one proposed by Landau for
metals.

A. Transport equation for the correlation function local
in space

An important property of the correlation function of
the self-energy is that it depends only on those elements
of the correlation function G (t, k) that are local in
space, g (t). Indeed, from (2.10) and (2.11) one finds
that g (t ) satisfies the closed equation

g'(t)= f dt, f dt, )"D'(t, t,)—
(2'�)
XG (t„.k)g (t, t, ) . (4.1)—

We note that the local element g (t) provides only
very limited information about the system. On the other
hand, once g (t) is evaluated, the generalized Kadanoff-
Baym equation (2.11) is no longer a difficult self-
consistent equation since X is known. Accordingly, g
involves exactly that information necessary to evaluate
the self-consistent transport equation and thus the
characteristic time scale of (4.1) is the relevant one that
determines the noninterference of individual scattering
events within the generalized Kadanoff-Baym equation.

There are two time integrations in (4.1). We shall show
that for a given t there is a region in the plane of t, and
t2, where the integration provides the dominant contribu-
tion; see Fig. 4. In the rest of this section we show the
following three points: (i) the dominant region is a strip
centered around t, t2=t; (ii) the width of t—his strip is

~ t, —t2 —t
~

& r&z, and (iii) in the limit of an
infinitesimally narrow strip, i.e., for ~QF&&~, two subse-
quent scattering events do not interfere. From these
three points it follows that the ~QF can be interpreted as
the collision duration time that confirms Landau s cri-
terion (1.10).
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Using the free-particle approximation (2.19), we find the
equilibrium correlation function from (2.13)
[i(G~—G")=—2 ImG ] and (2.19)

g (co)=f„D(co)nt,8(ro)&coe (4.3)

The approximation (4.3) will be used only for the internal
line of the correlation function of the self-energy in the
right-hand side of (4.1).

To discuss the collision duration time as a function of
the energy of the incoming electron we define the
response function P(t;to) as

P(t;to)= f dt, f dt, y'D'(t, t, )—
X G t —ti, k G" t2, k

dk
(2~)

Xe
—ice(t —t )

(4.4)

FIG. 4. Dominant region of the double-time integration in

the GKB equation (4.1). The cross-hatched area represents the

strip It) t, —t
I

&—r&„,which gives the dominant contribution.

B. Spectral representation of initial states of scattering in

2' (4.2)

The correlation function of the self-energy,
X (t, t2), i—s the quantum-mechanical analog of the
scattering-in integral of the Boltzmann equation. The
correlation function g (t, t2) in—(4.1) represents a sum
over all the initial (incoming) states of the scattering-in
event. The validity of the approximation of the
quantum-mechanical scattering by instantaneous scatter-
ing rates, known from the Fermi golden rule, depends on
the energy of the incoming electron. Within the language
of characteristic times we can say that the collision dura-
tion time depends on the energy of the incoming electron.
To separate incoming states with different energies we ex-
press the correlation function g (t, t2) in the energy—
representation

The reduced transport equation (4.1) in terms of the
response function reads

g '(t) = f P(t;ro)g '(to) .
0 2' (4.5)

The collision duration time we want to discuss is a prop-
erty P(t;co)

—iz(k)t& t 22/(kz)
(4.6)

here we have used G "(t2)=G (
—t2 ), where the overbar

indicates the complex conjugate. Within the quasiparti-
cle approximation (4.6) the response function reads

C. Response function

The response function P(t;co) involves the retarded
and advanced Green functions. For simplicity we take
the quasiparticle approximation (3.9) of the propagators

G~(t t„k)G"(t„k)—
t'E(k)(t t) ) (t tl )/2&k)i8(t t, )e —— ' e

2 ( dk —i[co—c(k)](tl 2 —ic(k)t (t t) —t2)[1/2~(k)]
p(t;to)= dt, dt y D (t, —t2)—OO (2~)'

(4.7)

The characteristic times of the response function P are mostly determined by the integration over the final momen-
tum k. Since the momentum dependence of the integrand in (4.7) appears only via the quasiparticle energy s(k), it is

advantageous to express the integration over momentum in terms of the integration over final-state energy. Within the
free-particle approximation of the quasiparticle energy, s(k) =Eo(k), the response function reads

dz ~
— —z/t0

„

t 0 2 ( —t(cu —z)(t) —t~); t
—(t —t) —t2)[1/2z(z)]

P(t;ro) =nb 'ze '"' t) tzy t, —t2 e ' ' e '"e
0 2& oo oo

(4.&)

where we have introduced the exponential cutoff exp( —z /co, „t) to simulate the finite size of the Brillouin zone.
The phonon correlation function

2cop 2cop
(4.9)

has the absorption part (first term) and the emission part (second term). Again we discuss below only the emission part;
the absorption part is similar. Finally, the part of the response function we will study is



6658 LIPAVSKY, KHAN, KALVOVA, AND WILKINS 43

oo dZ ——z/~o~1 t 0 —i(co—z —coo)(t& —t2) —izt t1 —t2)[1/2+z)]fP (t co)=(N+1)a &ze '"' dti dt2e ' ' e '"e
0 27T OO QO

where ~=y nb/2co0.

(4.10)

D. Characteristic time scale of scattering in

As already mentioned there are two time integrations in the response function I' and we want to find the region of t]
and t2 producing the dominant contribution. Towards this end we assume t )0 and keep t2 fixed while integrating over

The path of this integration corresponds to the dashed line in Fig. 4. Our aim will be to show that the main contri-
bution to the integral comes from the region around the point of intersection of the dashed line and the line t, —t2 =t
indicated by the point X in the figure. First we interchange the order of t, and t2 integrations in (4.10) and then change
the t, variable via the substitution t'= t, —t2 —t to get

—i(co cu0)t —ao dz — zlco—„,0 t /i6z) 2, —i {co z ——
co0 i/[2Hz)]) t'

dt'e
0 2' QO QO

(4. 1 1)

Now the dashed line in Fig. 4 is the path of the t integra-
tion and the point X corresponds to t'=0.

Our approach will roughly be the following. First we
replace the upper limit of the t' integration by an in-
dependent variable t and study the integration over the
path shown by the dashed line. We then show that this
integration, as a function of t, exhibits a step-function-
like jump at t =0. This indicates that the main contribu-
tion to the t' integration is coming from the region t -0,
which is indicated by the point X in the figure. To ac-
complish this we introduce the test function

oo dZ — —z/~ „,t2/~(z)
pt t(t, t2,'(0)= +ze "e 2

—i I co —z —a)o+ i/[2r(z)] I
t'fX dt'e

step is relatively small compared to the oscillations; note
that the scale in Fig. 5(b) is two orders of magnitude
smaller than in Fig. 5(a). This refiects the fact that large
values of t2 ))~ contribute little to the generalized
lt adanoff-Baym equation (4.1). Note that the position of
the jump corresponds to the point X in Fig. 4 while the
value of the test function entering the response function
(4.13) is for the value t = —t2 which corresponds to the
point L in Fig. 4. The important fact is that at point L
the value of the oscillations in the test function have a
small magnitude and are smaller than the magnitude of
the step. Below we discuss the approximation of neglect-
ing the oscillations completely and keeping only the step.
It will be shown in Sec. V that this approximation leads
to the Boltzmann equation.

(4.12)

In terms of this test function the response function (4.11)
reads

P, (t; )(0=(N+1)ae ' f dt2p„„(—t2, t2, (ti) .

(4.13)

The behavior of p„„(t,t2, 0i) as a function of t, ob-
tained numerically, is demonstrated in Fig. 5 for two
different choices of the time t2. In Fig. 5(a) we have
10 ' s=~t2~ (&=2.6X10 ' s and one can see that the
real part of the test function p(t, t2, co) has a jump at t =0
which is nearly a step function. The deviation of the real
part from the step function is in a region of the order of
the quasiparticle formation time ~OF(co)=4X10 ' s.
The imaginary part of p(t, t2', 0i) does not have the step
contribution and oscillates around the value zero. As dis-
cussed above, the presence of this step shows that the
main contribution to the integration is coming from the
region around point X of width w&F((0). In Sec. IVE
these results will be confirmed analytically. In Fig. 5(b)
the condition 10 ' s= ~t2~ )&=2.6X10 ' s is satisfied
and the step contribution is not so obvious. However,
one can see that the test function oscillates around a
nonzero value on the right-hand side of the figure. This
value provides a step contribution. The magnitude of the

(
—

)
~ dz ~— zlru „t—t2/tiz)

+test & 2~ ~ ze '"e
0 2/T

('0 —z co0+i /—[2~(z) ]

Xe
—i I ~—z —co +i /[2~(z)] I t

(4.14)

Now we discuss the properties of the integral over energy
z via contour integration in the complex plane; the con-
tours are shown in Fig. 6. The choice of the contours de-
pends on the sign of t. For t (0 the integrand of (4.14)
goes to zero exponentially in the right lower half-plane,
i.e., for Rez )0 and Imz (0. This region is contoured by
the curve c & with clockwise orientation. For t )0 the in-
tegrand of (4.14) goes to zero exponentially in the right
upper half-plane, i.e., for Rez &0 and Imz &0. This re-
gion is contoured by the curve c &, which has a counter-
clockwise orientation.

We express the integration along the real axis from 0 to
as the integral over the contour minus the integral

along the imaginary axis,

E. Pole (quasiparticle) approximation of scattering in

In this section we shall try to understand the features
of the test function p„„(t,t2;co) (4.12) analytically. In-
tegrating over t' gives
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p„„(t,t2;co) =0( t—) dZ / Z /6)AU) t2 /6 z) —i (~—z —coo+i I 1/[2+z ) ] I )t
e

co —z c—oo+i lt 2~(z) ]

dZ ~— —z/co
„

t&/gz) —i(co—z —coo+i I 1/[2+z)]I )t
e2' co —z —coo+i /[2&(z ) ]

(4.15)

6.00 xlo"

(a)

-IO
4.00x IQ

-IO~ 2.00xIO

0

-2.OOxlO
- -I.OOxIO -5.00x IO 5.00xIO I.OOx IO

Time t (s)

I.OOx IO

-l2
5.00 x IO

—12-5.00 x IO

-II-I.OO x IO
—I.oox IO -5.00x lO

Time t (s)

5.00x IO I.OOx IQ

FIG. 5. Test of the pole approximation for scattering in. The real part of the test function p„„(t,t2) is plotted for the energy
co=0.2 eV and for two different values of t2 (time separation between consecutive scatterings). In (a) we have t2 = —10 s, which

—13

corresponds to scattering events close to one another, since the quasiparticle lifetime is ~=2.6X 10 s. In (b) the value t, = —10
—13 —12

s is used, which corresponds to a long free Aight between two events. For both values of t2, p behaves like 0(t ). The sharp jump at
t =0 (represented by point X in Fig. 4) develops within the time scale A/m, „,-10 ' s (where co,„,is the band cutoff, which is too
short to be readable from the figure. The oscillations have the period ~QF-4X 10 ' s and the asymptotic value is achieved for t ) ~QF
in (a) and after few periods in (b). Comparing (a) and (b) one sees that the oscillations are relatively larger for bigger

~ t2 ~. Note that
the scales are different in (a) and (b).
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The only pole occurs in the contour c & for z =co —coo+i /27(co —coo) with contribution

( co cop ) /co t t2 /g co cc)p )

p ~,(t, t2, co) =8(t )B(co coo—)+co coo—e '"'e (4.16)

where we have omitted the complex shift of the energy in the square root. We observe from (4.16) that the pole contrib-
utes to the reduced transport equation (4.1) in the form of a sharp 8 function in time t.

Both integrations along the imaginary axis (we call them the off-pole contributions p, ft) are of the same order and
have similar behavior. The region t &0 is more important because t = t2 in—(4.13) and tz &0, thus we focus on the
case t & 0. We can estimate the integral along the imaginary axis in (4.15) for values of t satisfying ~t

~

& 2m/~co —coo~,

i.e., for
~
t

~

& 7&„(co).For these values of t the integration is important only in the region Imz &(co—coo and one can ap-
proximate z by zero except for the term V z exp(izt ),

I oo dz Z/6) t t2 /QZ) l —i ( co —z —cop+ i [ 1/2g z ) ] ) t
p, tt(t, t2;to) = V'ze '"'e ' e

0 27T z —co+ coo i —/27(z )

t /QO) &i —i (co—co +i [1/2+0)]Jt oo dZ
e &ze—co+ coo —i /27(0) 0 27T

(4.17)

Since

—zt 1 ——3/2~ze
o 2m 4&~ (4.18)

pop(t& t2 jm)

p pole ( t ~ t 2 ~ & )

—3/2

one obtains the oscillating tail of the test function p„„,
which has the same form as the deviations from the pole
value of the retarded self-energy (see Sec. III). The pre-
factor of (4.18) falls exponentially slower than (4.16) since
1/7(0) (I/7(co —coo). In the estimates that follow we
will neglect 1/7(0) compared to I /7(co —coo).

Now we are in a position to estimate the width of the
shaded region of Fig. 4 for fixed t2. The shaded area indi-
cates the region where the off-pole contribution cannot be
neglected compared with the pole contribution. Accord-
ing to (4.17) and (4.16) one finds

Imz
HL

277/( Cd2 COO)
(4.19)

The energy distance from the nonanalytical point co —co0

can be expressed in terms of the quasiparticle formation
time ~&F. Then, from the requirement that the off-pole
contribution has to be negligible compared to the pole
contribution, one gets

(4.20)

Thus we see that for t2 of order ~ or less, the dominant
region of integration represented by the shaded area in
Fig. 4 has a width of order ~&„.

In the reduced transport equation t is replaced by —t2,
see (4.13); we can also ask the question that for which
values of t2 the pole approximation is valid? By replac-
ing t by ~ tz ~

in (4.20) we get

7($ so)
rg„(co)& ~t2~ & 37(co —coo)ln

rqp CO

(4.21)

Rez

One can see that the criterion (4.21) gives less than half
the value of the upper limit compared to the criterion
(3.20) for the retar'ded self-energy, the order of magni-
tude, however, is the same. The upper limit on ~t2~

shows that for large enough values of ~tz~ the off-pole

contribution cannot be neglected compared the pole part.
This is due to the fact that the pole contribution decays
faster than the off-pole contribution; however, the magni-
tude of both these contributions is small in this region.

V. RELATION OF THE POLE APPROXIMATION
TO THE BOLTZMANN EQUATION

FICx. 6. Contours c& and c& in the complex plane used to
solve (4.14). The cross represents the pole enclosed by the con-
tour c

The pole approximation (4.16) brings about a strong
simplification in the physical processes involved in the
correlation function g . In fact, in this section we show
that within the pole approximation the quantum general-
ized Kadanoff-Baym equation (4.1) reduces to the semi-
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classical Boltzmann equation and establishes the criterion
for validity to be ~QF ((T.

A. The generalized Kadanoft'-Baym equation
within the pole approximation

g (t)= f a&coe
0 2'

X f dt2e ' [(N+ l)g (co+coo)

+Ng (co —coo) ], (5.2)

Now we write g within the pole approximation (4.16)
derived in Sec. IV. Equation (4.16) includes only the
emission part; the absorption part is obtained by replac-
ing —coo~coo and (N+1)~N. The substitution of (4.16)
into (4.13) gives

~(t;co)= f dtz[e ' (N+1)a8(co —coo)

t2/g M COO)X~ co —cope

where we have used the substitutions co~co+cop in the
emission and absorption parts. Finally, to get this equa-
tion closer to the semiclassical Boltzmann equation, we
express the co integration as an integration over the
momentum k [note that a=(y /2coo)(&2/m)m ],

—iso(k)t
g t =

3
e

(2~)'

X f dt2e ' [(N+1)g '(eo(k)+coo)
2cop

—I (,co+ coo) t+e ' Na8(co+coo)+co+coo
B. Connection with the Boltzmann equation

(5.3)

t2 /6 co+ caO)Xe' (5.1)
Now we want to show that (5.3) is equivalent to the

semiclassical Boltzmann equation. First we define a func-
tion f(k)=f(eo(k)) by [see (2.9)]

Note that (4.13) involves an integration over all values of
negative t2, whereas the pole approximation is only valid
under the condition (4.21). However, since the main re-
gion of integration in (4.13) extends over a quasiparticle
lifetime ~, the error introduced by the pole approxima-
tion is only of the order ~&„/r. Using (5.1) in (4.5) gives

(2m )
(5.4)

Then we substitute this into the left-hand and right-hand
sides of (5.3), after using inverse of (4.2), and find that
f(k) must satisfy the following equation:

f(k) = f dt2e ' f f(k ')[N5(EO(k) —eo(k ') —coo)+(N+ 1)5(eo(k)—Eo(k ')+coo)] .
0 t2/gk)

OO p 77
(5.5)

This equation is exactly the Boltzmann equation in its in-
tegral form. %'e want to remind the reader that the ar-
guments given in this section do not depend on the tern-
perature. Indeed we have derived the Boltzmann equa-
tion subject to the Landau criterion ~QF((~ and not
A/k~T «r

VI. THE COMPLETED COLLISION
APPROXIMATION

dependent criterion for the validity of the Boltzmann
equation. In this section we will discuss this assumption
and demonstrate its failure in the high-energy tails of the
distribution.

A. Correlation function of the self-energy
in the time representation

Up to now we have discussed the integrated transport
equation (4.1). This is not a standard approach to the
derivation of the Boltzmann equation or its more general
derivation from quantum-field theory (in our paper
represented by the generalized Kadanoff-Baym equation).
In derivations of the Boltzmann equation one usually as-
sumes that the strip which gives the dominant contribu-
tion to the double-time integral in (2.11) is defined by
~t, —

tz~ &rcD. This assumption is used to derive the
completed collision approximation; ' the same assump-
tion leads to a simplification which is called the general-
ized Kadanoff-Baym ansatz. " We will see that using this
assumption leads to an overly restrictive, temperature-

The time dependence of the correlation function of the
self-energy X (t) can be evaluated analytically from the
spectral representation

X (t)= e' 'X (co) .dc@

2' (6.1)

According to the Schwinger boundary condition (2.14)
and the formula for the spectral function of the
self-energy (2.21), one finds Ii [X (co)—X (co) ]= —21m% (co)I
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X (co) =nde a[9(co+co0)N+co+co0e

+ 8(co 0i—0)(N+ 1)

0 cut](N CO )/CO

which results in

(6.2)

X (t) = —[Ne ' +(N+1)e '
]4&~ kBT

'

—3/2

(6.3)

where we have neglected A'/to, „t-10' s compared to
the inverse temperature A/kBT-3X10 ' s. One can

I

see, that up to times t-A'Iki)T-3X10 ' s, the time
dependence of X (r ) is dominated by the temperature.

B. Completed collision approximation

It is interesting to see how the integrations over times

t, and t2 in the entire generalized Kadanoff-Baym equa-
tion (2.11) proceed for different final momenta k, i.e., for
different energies of the final state. We study this to
determine when the completed collision approxima-
tion ' is satisfied and thus when the Boltzmann equation
can be derived with the help of this approximation.

To derive the Boltzmann equation in the way used in
high-field transport theory, ' one keeps the momentum
dependence while the energy is integrated out, i.e., one
sets t =0. Thus the generalized Kadanoff-Baym equation
(2.11) reads, using quasiparticle approximation for G
(4.6),

0 0 ic(k)(t) —t2) (t)+t~)/2&(k) ( 0 0 ic(k)(t) —t2) (t(+t )/22 (kc) (
G (0;k)= dt2 dt)e ' 'e ' X (t) —t2 + dti dt2e ' 'e ' ' X t, —t2—oo ti

(6.4)

where we have separated the regions t, ) t2 and t, &t2 as is necessary if one uses the generalized Kadanoff-Baym an-
3 11

The correlation function of the self-energy satisfies X (t) t2) =X —(t2 —t, ), where the overbar denotes the complex

conjugate [this can be checked from (6.3)]. Interchanging t, and t2 in the second term of (6.4) one finds that the second
term is a complex conjugate of the first term. Here the correlation function G (0;k) is a real function [this can be
checked independently from (2.13) by integration over energy co]. Thus we express (6.4) as

0 0 ic(k)(t) —ti) (t) t+)/22 kc)((
G 0;k =2Re dt2 dt, e ' 'e ' ' X t, —t2

0 t2/~(k) 0 ic(k)(t, —t2) (t) —ti)/26k)
dt2e ' 2Re dt, e ' ' e ' ' X t, t2—

OO t2

f(k)= f dt2e ' X (tt))l, (k) . (6.6)

From a straightforward comparison of (6.6) and the
second line of (6.5) one finds that the Boltzmann equation

I

This equation has a structure similar to the Boltzmann
equation in the integral form. To get the Boltzmann
equation one needs two simplifications. (i) The time diag-
onal element of the correlation function G (0;k) has to
be interpreted as the Boltzmann distribution f(k). This
is true in the weak-coupling limit we assume here. (ii)
The correlation function of the self-energy X (co) has to
be approximated by some energy-independent function,
which is its pole value X (E(k)). Since energy indepen-
dence in the double-time representation corresponds to a
function proportional to the 6 function in the difference
time, the Boltzmann equation for equilibrium in our no-
tation reads [see (5.5) and substitute (5.4) in (2.8) for com-
parison]

holds if
ic(k)(t) t2) (t, tz)/2d—k)—

'2

(0') I „=c(k). (6.7)

This equation cannot be satisfied for a general time argu-
ment t2 and a general momentum k. Equation (6.7) is
called the completed collision approximation.

C. Numerical test of the completed
collision approximation

We keep the time t2 as a parameter and test the possi-
bility to integrate out t, in (6.5), i.e. , the applicability of
the completed collision approximation (6.7). To simplify
the notation we introduce the test functions

&(N+1)nd 0 ic(k)(t t ) —(t —t )/26k) ice (t —t )—
c (t k)=em 2t 4~ t I

' —3/2
1 +i(t) —t, )
B

c((N 1)Bd f & ic(k)t t 26 /)tk~ot
4v'7r

—3/2
1 +it
BT

(6.8)
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c,b(t2;k) = —t )t ) /2 r( k ) l'coo( E Ii~(k)(t —tz )
—(t&

—tzo.Xn„p „(
dt, e

4&~
+i(t, —t2 )

kBT
'' 3/2

2+k) ' 0'oN d dte e4v'~ 0
+lt

kBT

—3/2

(6.9)

form of the correlationpwhere we have use
(6.3) and separatedf the self-energy . a

f the test function reads'on (6.5) in terms o eEquati
—tz/~(k)6 (0;k)=2Re J dt~e

(t k)+c,b(t2,'k)] .X cern 2r (6.10)
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2hc, (t2, k) «1.
X, (E(k))

From (2.14) one finds

(6.13)

The criterion of the validity of the completed collision
approximation is derived from the requirement that the
amplitude of the oscillation 26c, (t2,'k) (the factor of 2
comes from 2Rec, ) be small compared to the pole ap-
proximation X, (E(k)),

introduced by the completed collision approximation at
high energies becomes relatively small again, one has to
be careful about this approximation if one studies phe-
nomena that depend exclusively on the high-energy tails
of the distribution. In contrast, we have shown in Sec.
V B that within the pole approximation of the scattering-
in integral, the Boltzmann equation holds even in the
high-energy tails of the distribution where the completed
collision approximation fails.

X, (E(k))=nde ( —2)1m', (E(k)), (6.14)

and thus the criterion (6.13) becomes

2b.c, (t2, k)

&, (E(k))
1 hs, (tz, k) «1.—E(k)/ks T Ims R

I 3r(k ).k ]

(6.15)

Using the estimate of As, /Ims, derived in Sec. III
one finds that the time region within which the complet-
ed oscillation approximation is accurate is set by the con-
dition

3/2
(2~)
V2 rqF(k)

—t2/2T(k) c.(k)/k~ T
e &&e (6.16)

This criterion has the same left-hand side as (3.19), but
the right-hand side depends strongly on the energy e(k).
For energies that are of the order of averaged thermal en-
ergy kit T the right-hand side of (6.16) is of the order of
unity and one finds that in the long-time region the
completed collision approximation is satisfied with the
same accuracy as the pole approximation of the retarded
self-energy. In the high-energy region E(k)) ksT the
right-hand side of (6.16) is large and the plateau region
disappears entirely and the completed collision approxi-
mation does not apply at all.

Note that it is not the large amplitude of the oscillation
bc, (t2', k) which leads to the failure of the completed
co111s1on approximation at high cIicIg1cs, but instead, lt 1s

the sma11 value of the total scattering-in rate which
makes these oscillations relatively large (see Fig. 2). Al-
though, after integrating over momenta, the discrepancy

VII. CONCLUSIONS

In the paper we have discussed the characteristic time
scales that appear in the generalized Kadanoff-Baym
(GKB) equation (transport equation for the single-
electron correlation function) in equilibrium. We used
parameters appropriate for a nondegenerate electron gas
in GaAS. By analyzing the GKB transport equation we
have identified a short-time ~cD collision duration time,
which has the property that if the condition ~co &(~ is
satisfied, then the Boltzmann equation is valid, where w is
the quasiparticle life time. This time scale is identical
with the quasiparticle formation time ~&F, associated
with the single-particle propagator. The best estimate of
this time scale is given by the inverse energy separation
from the nearest nonanalytical point in the local density
of states; this is in agreement with the argument proposed
by Landau for the elastic scattering in metals. In particu-
lar, the inverse temperature does not enter into the cri-
terion for the validity of the Boltzmann equation.

We have also discussed the validity of the completed
collison approximation, which is an alternative way to
derive the Boltzmann equation. We show that this ap-
proximation is overly restrictive and fails in the high-
energy tails of the distribution function where
Eo(k) &(k&T, and where the Boltzmann equation is still
valid.
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