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We introduce and discuss the concept of scale-invariant disorder in connection with breakdown
and fracture models of disordered brittle materials. We show that in the case of quenched-disorder
models where the local breaking thresholds are randomly sampled, only two numbers determine the
scaling properties of the models. These numbers characterize the behavior of the distribution of
thresholds close to zero and to infinity. We review briefly some results obtained in the literature
and show how they fit into this framework. Finally, we address the case of an annealed disorder,
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and show via a mapping onto a quenched-disorder model, that our analysis is also valid there.

I. INTRODUCTION

It has been long known that material properties may be
strongly influenced by the presence of disorder. Howev-
er, the sensitivity to the disorder is widely different, ac-
cording to which property one is interested in. Usually,
transport properties, for example, conductance and elas-
tic constants, are much less sensitive than breakdown
properties such as material strength. In breakdown pro-
cesses, such as the seemingly simple case of brittle
fracture—i.e., fracture that do not involve local plastic
deformations—extreme sensitivity to rare events makes
the problem very difficult to handle theoretically. This
has led to transport properties having been much more
studied. As a result, they are therefore today much
better understood than the breakdown processes. How-
ever, recently the breakdown problems have been ap-
proached within the same statistical-physics framework
as the transport problems, and a number of interesting re-
sults have been found.!

In particular, several recent numerical studies of the
breakdown of networks of either elastic or electrical ele-
ments have been done with the aim of investigating the
relation between disorder and the global properties of the
entire network, such as evolution of breaking stress or
strain, the damage at peak stress, or the total damage at
the breakdown point. At the outset, it was expected that
these global properties of the networks should depend
strongly on the type of disorder that was put into the
models. However, this turned out not to be the case, but
a rather puzzling picture emerged: For wide classes of
disorders—here in the maximum loads each bond in the
network is able to sustain before breaking down—the glo-
bal properties are very little sensitive,2~* in fact so little
that one might suspect universality, in much the same
way as has been found in connection with transport prop-
erties in disordered materials.® For other distributions,
on the other hand, the dependence of the global proper-
ties on the disorder was very strong.

The universality manifests itself through scaling laws
between the global properties of the networks and the
size of the networks. These scaling laws are governed by
nontrivial scaling exponents, and universality means that
the exponents are independent of the details of the partic-
ular breakdown model that is used. The suggestion of
universality was based on numerical measurements of the
exponents involved in three very different models, one
based on an electrical network of random fuses,’ the
second one based on a network of elastic beams, each
having random breaking thresholds,? and the third model
consisting of a network of central-force springs—i.e.,
springs that rotate frictionless about their end points.
Also in this case the springs were assigned random max-
imum loads they could sustain before breaking.? In each
of these three models several different distributions for
the randomness of the breaking thresholds were investi-
gated. The exponents describing the breakdown process-
es seen in these models as a function of external load were
found to be rather insensitive to the disorder (we will
come back to this statement more precisely later) and
even to which model was used.

In Ref. 4, a study was made of the transition from an
ohmic to a superconducting state of a network of super-
conductors, as a current through it is lowered. In this
case the disorder is introduced through the current
thresholds of each bond in the network, below which the
bond becomes superconducting. Also in this case, scaling
behavior was found, with the corresponding exponents
being insensitive to the distribution of thresholds.

The appearance of such a universality in breakdown
processes such as fracture would be quite important, as
these are not scaling exponents describing a physical sys-
tem near a critical point—i.e., in a limited region of some
parameter space—but rather describing the typical situa-
tion, much in the same way that the Kolmogorov scaling
theory is able to describe universal features in fully
developed turbulence.®

It is the aim of this paper to investigate under what cir-
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cumstances the scaling laws appear, and what the source
is for the observed insensitivity to the disorder.

In Sec. II, we discuss the random-fuse model’ in more
detail and summarize the scaling results of Refs. 2 and 3
as well as other works on this model that did not show
such scaling behavior.°

In Sec. III we introduce the notion of scale-invariant
disorder and relate the appearance of the scaling laws in
the breakdown process to this scale invariance. Two ini-
tial distributions having the same scale invariant com-
ponents are expected to behave in a similar way.

The meaning of “scale-invariant distributions” may be
understood as follows: The current distribution in a net-
work of fuses broadens as the breakdown process
proceeds. If we pick one well-defined point in the break-
down process, for example right before the network
breaks apart, the width of the current distribution de-
pends on the system size in a logarithmic way. The
threshold distribution must be as broad as the current
distribution, and thus its width must also increase loga-
rithmically with the system size. This is so, since when
the current distribution becomes broader than the thresh-
old distribution a single crack will occur, breaking the en-
tire network apart without much further widening of the
current distribution. Those components of the disorder
that depend on the system size, at least logarithmically,
form the scale-invariant part of the distribution. Those
distributions that were used in works where no scaling
laws were observed®® had a scale-invariant part that was
equivalent to no disorder.

When no size dependence is present in the disorder dis-
tribution, such as is the case in correlated distributions,
the scale-invariant distributions can simply be character-
ized by power laws close to 0 and «. The exponents re-
ported in Refs. 2 and 3 depend weakly on the exponent of
these power laws, and therein lies the reason for the
universality: The scaling behavior of the breakdown pro-
cess is universal in that it only depends on the exponent
of the scale-invariant component of the threshold distri-
bution. We are thus dealing with a weaker form of
universality than that found near critical points.

In Sec. IV, we show how results previously obtained in
the literature fit into our analysis. The distribution of
weak bonds is important in the beginning of the break-
down process. However, the distribution of the strongest
bonds also play a role in the development of the break-
down process, in that they arrest or redirect the develop-
ment of large cracks. This is also discussed in some detail
in Sec. IV.

Algorithms where the disorder is introduced before the
breakdown process starts, we will refer to as quenched-
disorder models. The model we discuss in Sec. V belongs
to the class of models we may refer to as annealed-
disorder models, where there is no disorder at the begin-
ning of the breakdown process, but is introduced by sto-
chasticity in the bond-breaking algorithm. The particu-
lar model we describe in this section corresponds to a
random-fuse model with annealed disorder.!® This model
cannot be compared directly to the fuse model discussed
so far. However, we use an algorithm to reconstruct'! the
quenched disorder that would have produced the same

breaking pattern—spatially and temporally—with the
random-fuse model. The disorder we find has a nontrivi-
al scale-invariant component, which results from the
current distribution that has appeared in the network
throughout the breakdown process and thus fit the pic-
ture we are proposing well.

The annealed-disorder model with an added connected-
ness requirement for the cracks that develop is equivalent
to the dual'? of the dielectric-breakdown model of
Niemeyer et al.,'?i.e., equivalent to the scalar version of
the fracture-growth model of Louis and Guinea!* and of
Hinrichsen, Hansen, and Roux.!> Thus, we are able to
investigate the connection between quenched disorder
and annealed disorder in Sec. VI and show that they can
all be fitted into the same mold. Using the above-
mentioned correspondence between quenched and an-
nealed disorders, we studied quenched and annealed
single-crack models. There is no apparent difference in
the scaling properties between these two models.!! Thus,
also in this case, which touches closely upon the
dielectric-breakdown model and thus diffusion-limited
aggregation (DLA), we find an underlying scale-invariant
disorder.

In Sec. VII, we draw some general conclusions from
these results.

II. THE FUSE MODEL
AND OTHER QUENCHED-DISORDER MODELS

The scaling properties we discuss in this section have
been seen in network models with quenched disorder,
such as the fuse model:’ We imagine a network where
each bond is an electrical fuse; i.e., it has a constant con-
ductance equal to, say, unity up to a threshold current ¢.
If the current flowing through the fuse, i, exceeds this
threshold current, the fuse “burns” out; i.e., it turns ir-
reversibly into an insulator with zero conductance. This
is illustrated in Fig. 1(a). The threshold ¢ is drawn from
some probability distribution p(z). We now imagine
sending a current through the network, I, which is slowly
being increased, and record several parameters describing
the subsequent breakdown process. ‘““Slow” here means
that the currents have time to relax into the pattern dic-
tated by the Kirchhoff equations between each time a
new fuse burns out—this is in some sense in a quasistatic
limit.

In practice, however, since the Kirchhoff equations are
linear, we solve them with I =1, and then search for the
bond for which the ratio i/t is maximum. This is the

v i

FIG. 1. The characteristics of a single bond in (a) the fuse
model and (b) the conductor-superconductor model.
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next bond to break, since this is the one that will first
reach its maximum load as the external current [ is in-
creased. This ratio gives the inverse of the external
current through the network, which is necessary to break
this bond. Let uscallit I,

I.=min (1)

The corresponding voltage across the network is V.. If
we now record ¥V, versus I, the characteristic of the net-
work, and, say, I, versus n, the number of blown fuses,
we find a functional dependence between them:

Ic Vc n

L* |LP LY
where L is the linear size of the network. Thus, all L
dependence is absorbed into the three reduced variables
I./L% V, /L5, and n/L”. The exponents «, 3, and y
turn out to be rather insensitive to the probability distri-
bution p(i,) the thresholds have been picked from, as
long as it is broad enough. It is one of the major subjects
of this paper to investigate what “broadness” means in
this connection. It was found that a=~fB~=~0.75 and
y =~1.75 within more or less 10% in the elastic models;’
the exponents found in the electrical-fuse model® are list-
ed in Table I.

Earlier work on the random-fuse model did not show
such a scaling behavior as Eq. (2) indicates.®® In Ref. 8,
a uniform distribution between 1—w /2 and 1+w /2 was
investigated. Kahng et al.?® found that the properties of
the breakdown process were strongly dependent on w.
For w <2 they found that the number of bonds necessary
to break the network apart grew as L, whereas at max-
imum current, this number was finite (independent of the
system size). In the case of w—2, the number of bonds
necessary to break the network apart grew faster than L
(assuming a two-dimensional network).

That the number necessary to break the network apart
scales as L indicates that the breakdown is caused by one
unstable crack growing through the network, as was de-

=G

=F ) ()

scribed in Sec. I. This is very different from the scaling
found in Refs. 2 and 3 where the number of bonds neces-
sary to break the network apart scales as LY, where
v=~1.7-1.8. However, in a network without disorder, we
expect the number of broken bonds at breakdown to scale
as L. This is so, since the bonds that will be closest to
breakdown will be the bonds carrying the maximum
current—and these are throughout the entire breakdown
process located at the crack tips.

Duxbury and co-workers® have studied a threshold dis-
tribution of the form p(i,)=p&(1—i,)+(1—p)8(i,),
where &8(i) is the Dirac § function. Also in this case it
was found that the number of bonds that had to burn out
in order to break the network apart was a vanishing frac-
tion of the total number of bonds.

In a recent study,'® the following question was asked:
Suppose the first bond has broken. At what distance is it
most likely that the next one will break? With a thresh-
old distribution of the same type as the one used by
Kahng et al.® it was found that for w <2 the most likely
distance between the first and the second bond that burns
out, A(w), is finite. As w-—2, this distance goes to
infinity. The third bond that breaks is, for w <2, likely

to break at a distance from the first two of the same order
as A(w), since the breaking of the first two increases the

current distribution in this area. This argument may be
repeated over and over, and we see that the network
breaks apart in a way reminiscent of the way a network
without disorder breaks apart, but with an effective lattice
constant equal to A(w). Only in the limit w—2 is it im-
possible to describe the rupture process in this way.

Using the same type of approach, different distribu-
tions were considered. Since the distribution p (¢) close to
0 seemed to be an important feature, cases where p (¢) fol-
lowed a power-law close to the origin p(¢) <t~ '"# were
also analyzed. It was found that, depending on the value
of B3, two regimes could appear. If 3>2, then an uncon-
trolled breaking of the structure is expected after a finite
number of bonds have broken, whereas for 3 <2, the ear-
ly stage of fracture is a random dilution of the network
(diffuse damage).

TABLE I. The values of the exponents a, 3, and ¥ as a function of the disorder ¢, as measured by de
Arcangelis and Herrmann (Ref. 3). The last row in this table refers to the corresponding figure in Ref.
3 from which the data were taken. In Ref. 3, Fig. 1 showed I/L* as a function of ¥ /L?, Fig. 2 showed
I1/L“ as a function of n /L7, Fig. 3 the average number of bonds cut to reach the maximum of the I-V
characteristics, and Fig. 4 the total number of bonds broken before the networks fall apart. In these
two last figures, ¥ was determined from data collapse with different sizes L.

) a B Y

0.5 0.80 1.85 1.82

1 0.89 0.89 0.83 1.80 1.65 1.73

2 0.90 0.90 0.85 1.70 1.65 1.58

5 0.92 0.88 1.36 1.32

10 0.90 0.85 0.95 1.11
Fig. in Ref. 3 1 2 1 2 3 4
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III. BROADNESS IN THE LANGUAGE
OF MULTIFRACTALS

In Ref. 3 it was shown numerically that the current
distribution right before the network breaks apart is mul-
tifractal when the threshold distribution was chosen to be
broad. The same was found for the stress distribution in
the elastic networks at rupture.? This means that the log-
arithmically binned histogram of the currents show the
following scaling form:

NG, L)~Lf® | (3)
where
i~L 7%, 4)

If f(a) is a more complicated function of a than of the
form a +ba, then the current distribution is multifrac-
tal.'? Such a distribution indicates that the network at
the final breaking stage is “critical,” i.e., that there are no
length scales in the problem apart from L. The broad-
ness of the current distribution indicated by Eq. (3) does
not develop suddenly in the breakdown process but rath-
er gradually. There is some correlation length £ that
marks the length scale at which the network crosses over
from showing the scaling properties of a system with a
narrow current distribution, and the scaling behavior of a
system with a multifractal current distribution. Then, at
a “time” in the breakdown process when the correlation
length is less than L, the current distribution is!®

N(l',L’g)~L2+{f(a)—2]]n§/lnL , (5)
where
i~L“l+(1—‘a)ln§/lnL . (6)

This is a result that follows directly from finite-size scal-
ing.

What we have accomplished through Egs. (5) and (6) is
to identify an intensive—in a thermodynamical sense—
formulation of the development of the current distribu-
tion through the breakdown process. We may use the in-
tensive variable

— In§
=1L (7)
rather than 7 —the number of broken bonds—as a
“time” parameter in the process. Likewise, an intensive
current is

a(r)=1—(a—1)7, (8)
and an intensive histogram is

fla(r),r)=2—[f(a)—2]7. 9)
These variables are those that describe the current distri-
bution in the limit L — o. [There is no consensus in the
literature as to how these quantities are to be defined.
For example, Mandelbrot!® uses a definition correspond-
ing to f =In(tp)/InL rather than f =In(L?tp)/InL. The
convention we are using corresponds to that of the
random-resistor-network literature.]

The breakdown process is governed by Eq. (1). Let us
now write the threshold distribution in intensive variables

rather than the extensive ones, ¢ and p (¢). This we do in
a way similar to that of the current distribution, Egs. (3)
and (4):

Lip()=L"""", (10)
where
fm LY (1n

The extra factor ¢ in Eq. (10) is a result of binning the his-
togram logarithmically. Thus, the intensive thresholds
and threshold distribution are

Int
a,zm‘“ (12)
and
2
fila,)=10lL p (0] (13)

InL

in the limit of L — .

As the breakdown proceeds, 7 grows from O to 1, and
the current distribution evolves from a point a=—1,
f =2 to a multifractal curve f (a). At the same time, the
threshold distribution evolves. This, since the thresholds
belong to the bonds that burn out, new ones cannot be
picked. Thus, there is a 7 dependence in both f, and «,.
However, while the distribution of currents becomes
broader as the breakdown process evolves, the threshold
distribution becomes narrower.

The rupture criterion, Eq. (1), in these variables be-
comes

max%—»max[a,(T)—a(T)] . (14)

We have no way of using this formulation to predict
the detailed shape of f(a), since it is merely a rewriting
of our starting point in different variables. However, this
makes it possible to deduce some powerful statements on
what kind of threshold distributions may allow for the
evolvement of multifractality in the current
distribution—and presumably on the scaling behavior
seen in Refs. 2 and 3.

We have already introduced through Egs. (12) and (13)
the notion of a multifractal spectrum computed from a
given distribution. Let us now show that when the distri-
bution does not explicitly depend on the system size, its
multifractal spectrum reduces to a very simple curve.

Suppose that the threshold distribution is bounded be-
tween 7. <t<t,. Then, from extreme statistics,?’ we
may estimate the smallest and largest thresholds, ¢ . (L)
and 7. (L), that we expect to find among the L? bonds in
the network,

t (L) Ly 1
dtp(t)—ft>(udtp(t)—F. (15)

I.

Quite generally, we have that ¢ _(L)=¢_+e€e_(L), and

t.(L)=t, —e€. (L), where both €, (L) and €, (L) tend to
0as L — «. Thus,

In[t . (L)]

B e— i 16

o —0 if 1. #0, (16)

and
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2 o

FIG. 2. The uniform distribution between O and 1 is ex-
pressed in the intensive variables a, and f,.

In[z, (L)]
InL

This result shows that unless either ¢t =0 or t = o is in-
cluded in the threshold distribution, it is equivalent to no
disorder in the limit L — oo} i.e., it is only a point a, =0,
fi=2.

Taking the logarithmic binning into account, a flat dis-
tribution between O and 1 gives an f,-a, curve as shown
in Fig. 2. The “Weibull” distributions discussed in Ref. 3
have the form

0 ift,70. (17)

p(t)~tm"le™" 0<t<1. (18)

This probability distribution, expressed in terms of Inz
rather than ¢, has the form

pllnt)~tme =" . (19)
Now, using Egs. (16) and (17), we find

fia,)= lim In[Z?p (In?)]
t t
L— o

InL
mar
=2—ma,— Lli_rgq 0L (20

The last term on the right-hand side of this equation ap-
proaches 0 as L — «, since a, =0. Using Eq. (15), we
find that the range of , is from 0 to 2 /m.

Similarly, a power law on the interval 0=z <1,

p(t)y~et$~ 1, 1)
gives
fla)=2—4a,, OSa,S%. (22)
Comparing Egs. (20) and (22), we see that the two distri-
f
2
~2/¢u 2/¢o [0

FIG. 3. The general scale-invariant spectrum of a size-
independent threshold distribution in the intensive variables a,
and f,(a,).

butions have exactly the same scale-invariant form when
identifying m =¢.

In the general case, we can characterize the behavior of
p(t) close to 0 and o by taking the limits

In[tp (2)]

lim Int

t—0/

=¢O/oo . (23)

These two numbers, ¢, and ¢, are enough to construct
the multifractal spectrum of p(#). It consists in three
points of coordinates, (—2/¢,0), (0,2), and (2/¢,,0),
joined by straight lines (see Fig. 3). From this property it
is obvious that very different distributions can share the
same spectrum. For instance, an exponential distribution
from O to oo has the same spectrum that a uniform distri-
bution between O and 1 does. Both of them are charac-
terized by ¢o=1 and 1/¢_,, =0 (Fig. 2).

IV. SOME RESULTS OBTAINED
IN BREAKDOWN AND FRACTURE MODELS

It is apparently surprising to consider not only the
small threshold part of the distribution but also the large
threshold part. Indeed, if a very fragile bond can initiate
the breakdown of the complete lattice, the role of very
strong bonds is more subtle, since one very strong ele-
ment can easily be avoided by the crack.

Let us give some arguments to understand how these
strong bonds can play a determining role and obtain in
addition a criterion for a nontrivial behavior. Let us con-
sider here, for the sake of simplicity, a distribution of
thresholds bounded by a nonzero lower value, and having
a long tail up to infinity, say, p (2)=pt "' "Bfort€[1, » ].
Let us first assume that this tail is unimportant. We
would expect, due to the above-presented argument, that
eventually after some transient stage, a single straight
crack develops and finally disconnects the medium. This
crack may start from a locally weak zone. Once the
growth of this linear crack has started, then we known
precisely where the crack is supposed to propagate. Let
us call / the length of this crack, and let us suppose that
the lattice size is infinite. We know that the current flow-
ing at the tip of the crack, iy, scales as

igp <V . (24)

On the other hand, we can use the form of the distribu-
tion p (¢) to determine the value of the largest threshold,
max- The crack will encounter®®

toan < 117E (25)

Therefore, by forming the ratio of these two quantities,
we can write the scaling of the macroscopic breaking
current I (/) necessary to create a crack of length I:

I(l)ec VB2 (26)

From this result, we can distinguish two regimes ac-
cording to the value of B. If B> 2, then I (]) will decrease
with increasing /; otherwise it will increase. Let us note
that we chose here a very particular scenario for the frac-
ture process. Obviously, the current I(/) is an upper
bound for the breaking current.
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This scenario should be compared with an alternative
one, which is extremely simple; i.e., bonds break in in-
creasing order of their threshold. This corresponds to a
random dilution of the lattice. Since the distribution p (#)
is bounded below by a positive number (here 1), the
breaking current is constant in the early stage of fracture,
independent of the number of bonds broken.

When >2, the decrease of I(/) with the number of
bonds broken makes the straight-crack scenario much
more favorable than the random dilution. We indeed ex-
pect in this case that the fracture will only produce a sin-
gle straight crack; i.e., it will be identical to what is ex-
pected in a disorderless material.

On the contrary, for <2, I(l) will increase according
to the first scenario [Eq. (26)]. The physical meaning of
this property is clear. Any linear crack will be arrested
by a bond of very high strength, and thus the current has
to be increased in order to follow the prescribed path.
However, this increase is not realistic. We have indeed
seen that the random-dilution hypothesis does not need
any increase of the external current. Thus, the first
scenario cannot be followed. It is difficult to say whether
the random dilution will be a good approximation of the
process or not, but we can use the fact that this scenario
gives an upper bound on the breaking current. Thus we
expect in all cases to see that the breaking current will
decrease or remain constant as the number of broken
bonds increases. Simultaneously, we obtain that the
number of bonds at the final stage of rupture varies faster
than L, where L is the system size. In the case of the ran-
dom dilution, it goes as L 2 as we will show later.

Therefore, we see that the role of strong bonds may
affect the development of the fracture, by arresting cracks
and forcing the nucleation of new ones, until finally the
crowding of microcracks will produce a local enhance-
ment of the currents at the tips of some of them. Clearly
this situation is much more difficult to analyze. Howev-
er, we will show some data relative to numerical simula-
tion of such distributions that suggest that the proportion
of bonds broken when the fracture becomes unstable is
finite and approaches a constant when the system size in-
creases, in contrast to what is seen for the opposite situa-
tion, i.e., a power-law distribution close to zero threshold.

Let us again mention an example that shows the im-
portance of strong bonds. It is the example of a simple
hierarchical one-dimensional medium studied both
analytically and numerically by Gabrielov and New-
man.?! The model consists in connecting two borders by
strings grouped in pairs hierarchically. Each pair of
strings is grouped into a bundle, which are themselves as-
sembled by pairs, and this is at all levels. The grouping
of strings and bundles is used to model the load sharing.
At a given level, if two elements are not broken, they
share the load equally, and if one is broken, the other car-
ries the load entirely. Using this simple model it is possi-
ble to study the breaking of the structure, after having as-
signed at random local breaking thresholds according to
some probability distribution p(¢). The result of Ga-
brielov and Newman?! is the following: If the distribu-
tion p(¢) reaches zero at infinity faster than 1/¢2, then
the mean breaking strength of the structure decreases as

1/In[In(L)], where L is its size. It is easy to complement
their result for distributions that behave as ¢~ '7# at
infinity for < 1. In this case, the breaking strength of
the medium goes as L1755,

We would like to emphasize in this example the fact
that only the behavior of p(z) close to infinity is impor-
tant, and moreover, only the index ¢ introduced above
[Eq. (23)] allows us to characterize the scaling behavior
entirely, irrespective of rest of the distribution. In this
simple example, since the structure is a one-dimensional
array of bonds in parallel, only the large threshold part is
relevant. If the strings had been placed in series, only the
weak part would have contributed. For a two- (or more-)
dimensional medium, both series and parallel contribu-
tions are mixed, and thus both sides of the distribution
are relevant. Let us finally mention the parallel between
this hierarchical model and the above-presented argu-
ment. The difference of limit value for 3 for a nontrivial
regime comes from the load sharing rules, but besides
that the spirit of the result is similar, since the localiza-
tion of a single crack has a one-dimensional geometry.

Let us now see how the results obtained in previous
studies of brittle fracture can be fitted into the picture.
In Ref. 8, Kahng et al. studied the case of a uniform dis-
tribution, p (¢1)=1/wfort€[1—w /2, 1+w /2] They ob-
served that, for all values of w less than 2, the uncon-
trolled fracture of the medium occurred after a finite
number of bonds were broken, independent of the system
size. Kahng et al. also noted that as w approached 2, a
different behavior was found. Let us now rephrase this
result in terms of scale-invariant distribution. The spec-
trum of the distribution for w <2 is reduced to a point, as
noted previously, since neither O nor « are included in
the distribution. We thus indeed expect to see the behav-
ior of a disorderless material, as observed numerically
and demonstrated theoretically.® For w =2, p(¢) is a uni-
form distribution between O and 2, and thus Eq. (23)
shows that ¢,=1. We see clearly that the limit w—2
corresponds to a change in the scale-invariant part of the
distribution as noted previously. We will come back to
the behavior in this limit in the discussion of the results
of Refs. 2 and 3.

In Ref. 16, a similar problem was addressed with
equivalent conclusions. A different distribution was also
studied, i.e., a power-law distribution close to the origin.
This is exactly the case of a variable ¢, and a fixed
1/¢.,=0. In this case, the conclusion was that for ¢ less
than 2 a disorderless behavior was observed, but for ¢,
greater than 2 a more complex scaling behavior could be
expected. Again, we see that naturally the criterion for
determining the scaling behavior of the model lies ex-
clusively on ¢, (since ¢, is fixed).

In Ref. 9, Duxbury and co-workers studied the fracture
of a randomly diluted medium. The distribution of
breaking thresholds can be written as
pd(t —1)+(1—p)6(¢t), where & is a Dirac distribution,
and p is the fraction of present bonds. In this case, the
scale-invariant part of the distribution cannot be obtained
by the direct use of Eq. (23). However, since our interest
is the effect of a change of scale, we can in this case apply
a renormalization-group argument to study the evolution
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of this distribution as the scale changes. It is a classical
result from percolation theory, that if p is equal to the
percolation threshold p,., then the distribution p (¢) is in-
variant under rescaling. For values of p larger than p,
(i.e., the lattice is not yet broken in the initial state) upon
rescaling, the disorder will disappear, and the effective
value of p defined at a scale L will converge to 1 as L goes
to infinity. Therefore, away from the percolation thresh-
old, the spectrum of the distribution is equivalent to no
disorder at all; i.e., in our language 1/¢,=1/¢_,=0.
Thus we expect that the scaling properties of the fracture
of such systems is, at the limit of a large-size lattice, that
of a disorderless material. Thus, it seems that the results
of Duxbury and co-workers® apply to a first transient be-
havior.

In Refs. 2 and 3, various types of distributions were
considered and studied numerically. All of them could be
characterized by a finite ¢, and 1/¢.,=0. In particular,
the Weibull distribution considered in Ref. 3,
p()xt™~le™'" is characterized by $o=m and
1/¢.,=0. We have already mentioned [Eq. (2)] the type
of scaling observed numerically for small values of ¢,. As
¢, increased, up to 10 in Ref. 3, a progressive change of
behavior was seen towards that of a disorderless material.
Table I recalls some results obtained for ¢,=5 and 10,
and we see clearly the trend that the scaling exponents «
and B approach a value of 1, as expected for a medium
with no disorder. The fact that the change of behavior
appears progressively is certainly a consequence of the
finite size of the systems studied, and we believe that at
the thermodynamic limit the transition is much more
abrupt and probably occurs for a finite value of ¢, as ar-
gued for in Ref. 16.

In Ref. 4, the conductor-superconductor transition in
the presence of disorder was studied. Let us note that
this problem cannot be compared directly to the fracture
problem, but the same conclusions as the ones we have
presented do apply in this case: Only ¢, and ¢, deter-
mine the scaling properties, but these might be different
from those of the fracture. The disordered superconduc-
tor was there, modeled by a network consisting of bonds
having characteristics as shown in Fig. 1(b). When the
current i through an element is larger than a threshold ¢,
the bond acts as an ohmic resistor, but if the current
drops below ¢ it turns irreversibly into a superconductor.
The disorder is introduced through a distribution of the
thresholds p (¢). An external current I is lowered from a
value high enough so that all elements are in the ohmic
state to a low enough value so that all elements are super-
conducting. Three different threshold distributions were
used: (1) The flat distribution discussed above, (2) an ex-
ponential distribution of the form

p(t)~e !, 0<t<ow , (27)

and (3) a power law, p ()=Bt "' P for 1 <t < o, with the
exponent 3=0.5. With the analysis just presented, we
see that the exponential and the uniform distribution are
characterized by the same indices, ¢,=1 and 1/¢ ., =0,
and indeed these two cases led to similar conclusions.
The last case, of a power-law distribution led, in the early

stage, to scaling laws comparable to those of fracture
with a small ¢,

From the different examples we mentioned, we see that
all reported results on the brittle fracture of disordered
media can be fitted into our analysis. We did not find any
example of two distributions having the same scale-
invariant part and different scaling behaviors. In the fol-
lowing we will show some additional examples that again
fit into the framework. These examples will deal with an-
nealed models and with single cracks simulations.

V. ANNEALED-DISORDER MODELS

In Ref. 10, a breakdown model with annealed disorder
rather than quenched disorder was introduced. In the
quenched-disorder models discussed so far, the disorder
was introduced at the beginning of the breakdown pro-
cess and not changed thereafter: The algorithm modeling
the breakdown process is a deterministic one. In the
annealed-disorder models, theie is no disorder present in
the network at the beginning of the breakdown process,
but disorder is created by a stochasticity in the algorithm
that is used to determine which bond is to break next. In
particular, the algorithm used in Ref. 10 was the follow-
ing: The setup is a two-dimensional network between
two bus bars hooked up to an external voltage source.
The current distribution is recalculated between each
time a bond is broken by solving the Kirchhoff laws.
Which bond to break next is then determined by choos-
ing one with a probability proportional to the current it
carries raised to a power 7. It should be noted how close
this model is to the fracture-growth model'*!>—the only
difference being that the growing cracks are not forced to
be connected.

For small values of 7, it was found that a finite fraction
of bonds had to break in order to break the network
apart. For n=1, and on a square lattice, this finite frac-
tion is about 30% in the limit of L — . This percentage
drops rapidly to zero with increasing 77, and an argument
along the lines of that presented in Ref. 16 hints at there
being a transition in behavior for =2 so that the frac-
tion of broken bonds at a rupture becomes identical to 0
for 7>2.' For 5> 2, this model and the scalar version
of the fracture-growth model'*'* become equivalent.

Seemingly, this model cannot provide an I-V charac-
teristics of the breakdown process. The reason for this is
that there is no absolute scale by which we may compare
the currents flowing in the network at one stage in the
process with the currents flowing at a different stage. In
the quenched-disorder models, this scale is provided by
the threshold distribution.

It is possible to reconstruct'! a threshold distribution
that with the quenched-disorder algorithms of Ref. 7
would produce the same breaking patterns as with the
annealed-disorder algorithm. This we do by using the
following algorithm: In the annealed model, assign to
each bond j a number ¢; that is set equal to 1. Then pick
bonds with the annealed-disorder algorithm. Suppose
now, that bond k was just picked. All ¢; assigned to
bonds that have not yet broken are then updated accord-
ing to the formula
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The idea behind this formula is to adjust upwards all
bonds whose thresholds are such that the corresponding
bonds should have broken before the one that actually
broke. If we now use the quenched-disorder algorithm
with this distribution of thresholds, we will reproduce ex-
actly the same cluster as the annealed algorithm did.

After the network has broken apart, bonds will either
have broken down or not. Only the reconstructed thresh-
olds of these bonds that broke down have a meaning as
thresholds in the sense of Eq. (1). These are those that set
the scale leading to an I-V characteristics for the break-
down process.

The log-log histogram of the threshold distribution for
=13 is shown in Fig. 4. We see after a small transient re-
gime (the first bonds broken, or the smallest thresholds)
the distribution can be very well fitted by a power law
with a small value of ¢ . Respectively for n=1, 2, 3, and
4, the values of ¢, are 0.07, 0.16, 0.43, and 0.46. For the
largest thresholds, we see a departure from this power-
law behavior.

There is a question as to how to compare the recon-
structed thresholds taken from one sample in the ensem-
ble with those from other samples. The algorithm of Eq.
(28) has a normalization built into it in that the smallest
thresholds always will be equal to 1. This normalization
leads to rather large fluctuations. We have in Fig. 4,
however, shown the histogram as being taken when the
second moment of the threshold distribution is fixed and
set equal to 1. This leads to a nice data collapse for the
larger thresholds—i.e., a, near zero—while the finite-size
effects makes the small thresholds—large negative values
of a,—decrease with increasing L. It is clear that the
linear part of the histogram in Fig. 4 increase with in-
creasing lattice size L.

This demonstrates that the reconstructed threshold
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FIG. 4. The reconstructed thresholds, based on the bonds
that broke throughout the breakdown process, for =3 in in-
tensive variables «, and f,(«,) for lattice sizes L =20 (0), 30
(@), and 40 (O).

distribution is scale invariant. In all cases, the exponent
¢, is smaller than 2 as expected from the above-
presented argument, in order to have a scaling behavior
different from the no-disorder case.

In Fig. 5 we show the distribution of thresholds based
on the bonds that did not break down—i.e., the distribu-
tion from which the reconstructed thresholds are picked.
We will, in the following, demonstrate why we expect
there to be two power laws appearing in distribution of
unbroken thresholds—one for small thresholds and one
for large thresholds, why the exponents of these two
power laws should be equal, and how these exponents are
related to those governing the current distribution ap-
pearing in the network during the breakdown process.

It seems that there is a rather clear power law on the
small threshold side of the histogram of Fig. 5, but
whether there is a power law for large thresholds is less
certain. It should be noted, however, that these histo-
grams are known to converge very slowly to their asymp-
totic shapes, and the finite-size effect are very different for
small and large values of @,. For example, the normaliza-
tion used keeping the second moment of the distribution
constant introduces an asymmetry. The slope of the
power law on the small-¢, side is about 1.5. A power law
with slope — 1.5 is not inconsistent with the behavior of
the histogram on the large-q, side.

The basis for the following discussion of the distribu-
tion of the unbroken thresholds is that this distribution
lacks an absolute scale, which is present in the distribu-
tion of thresholds belonging to bonds that have broken.
This may be seen by rewriting Eq. (28) as

ti(n+1)
t;(n)

tj(n)

tk(n) ’ ik(n)

i;(n)

(29)

where n is the number of broken bonds so far. We now
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FIG. 5. The reconstructed thresholds, based on the bonds
that did not break, for the same networks as in Fig. 4. We note
that the maximum f, value is not 2—the spatial dimension of
the lattice—but a lower value. This is a finite-size effect. The
maximum value of f, approaches 2 in the limit L — .
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introduce the ratio

t;(n+1)
ri(n +1)=-"—x— . (30)
tk ( n )
Equation (29) then becomes the following if bond / broke
at step » —1 and bond k at step n:

ri(n) i;(n) . 31)

ri(n +1)=max () 5y

We now see that scaling r;(n)—c(n)r;(n) makes no

difference in the way Eq. (31) updates the thresholds. In
particular, we could choose

c(n)= ) (32)

ry ( n )
where bond k broke at step n. This choice makes it par-
ticularly easy to analyze the relative distribution of
thresholds belonging to unbroken bonds.
This choice of scale leads to the following updating
rule for the thresholds:
i;(n)

rir(n), i;(n)

rig(n +1)=max (33)

The absolute values of the ratios between the thresholds
will now be completely different from what Eq. (28)
would give. However, the relative distribution between
them will not be changed.

The updating rule of Eq. (33) gives rise to a distribution
of ratios between the thresholds that is easy to analyze
within the framework of extreme statistics.?’ We assume
no correlations between ¢; and i; at a particular step in
the breakdown process. Then Eq. (33) tells us that r;i(n)
is the largest ratio i; /iy —where k refers to bonds that
have broken—that has ever appeared through the n first
steps of the breakdown process. Thus, we have that?°

p(N=n[1—1I(N]""1=(r), (34)

where 7 and II are the distribution and the cumulative
distribution of i; /i, throughout the breakdown process,
and p(r) is the distribution of rescaled ratios. Following
Ref. 18, we will, in a moment, demonstrate that the dis-
tribution 7 is a power law,

(i /i)~ /i) 7P (35)

This leads to the cumulative distribution P(r) in Eq. (34)
being of the form?°
P(r)~e~r ", (36)
which for large rescaled ratios r behaves as
P(r)~1—rF, 37
i.e., a power law similar to that followed by i, /i, .

J
The behavior of m(i; /i) for small values of the argu-

ment is also that of a power law,
w(i; /i )~ (i /i BT (38)

but with the sign of the exponent reversed. An identical
argument that led to Eq. (37), now leads to

P(r)~1—r8 (39)

for the small-threshold behavior of the unbroken thresh-
old distribution.

The natural question to ask now is where the exponent
B appearing in Egs. (35)—(39) comes from. There are two
steps involved in showing this. The first one is based en-
tirely on the discussion of Roux and Hansen,'® where it
was shown that a histogram of the currents in bonds
picked in a breakdown process will show two power laws
in the form of a wedge if the distribution develops to-
wards a multifractal limit, as in Eqgs. (8) and (9). The
slopes of the two power laws do not show the symmetry
indicated by Egs. (37) and (39). We show such a histo-
gram for =3 in Fig. 6. It is, however, the ratio between
two currents appearing in the network at each stage in
the breakdown process that we are interested in. When
the current distribution is multifractal, the distribution of
possible ratios is also multifractal. A simple steepest-
descent calculation shows this. The histogram of the
multifractal current distribution is given by Egs. (3) and
(4). If we define the current ratios, p= i; /i) as

p~L . (40)
Then the histogram of the ratios at the breakdown point
is given by

Sl

Np(P)"’L o ) f(a(p))+f(a(p)—ap)—2

N 5 , (41)

where a(p) solves the equation

df (a) 4 df(a—ap) —0
da da
The function f,(a,) is symmetric about the a, such that

Sfla(p)) is maximum. Now, again following Ref. 18, the
histogram of these ratios, collected throughout the entire

(42)
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FIG. 6. A Histogram of the currents of the bonds broken in
the annealed-disorder model of Ref. 13, when the total current
flowing in the network was fixed equal to unity. The wedge
shape indicates that the current distribution is developing to-
wards a multifractal distribution. The exponents of the two
power laws are +6.9 and —1.2 for n=3.
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breakdown process must consist of two power laws and
the exponents of these two power laws must be equal,
since the underlying f p(ap) curve has a symmetry axis.

The distribution of reconstructed thresholds belonging
to bonds that have broken is much more complicated
than the distribution that we have just discussed. We
note that it is the histogram of the rescaling factor
defined in Eq. (32), which constitutes the histogram of the
thresholds belonging to bonds that broke. This rescaling
factor we took out of the problem in the subsequent dis-
cussion leading to the two power laws in the distribution
of unbroken thresholds. Thus, there is no simple connec-
tion between the histogram of Fig. 5, and the one thresh-
old that broke; see Fig. 4.

Once more, let us stress here the key role played by the
multifractal representation  which form the basis of the
scale-invariance concept. Using the reconstructed
threshold distribution, it is possible to study the I-V
characteristic of the fracture process. This is shown in
Fig. 7 for n=1.

The reconstruction algorithm obviously allows us to
reproduce exactly the annealed disorder model with a
quenched disorder, since it has been fitted to this pur-
pose. However, it might very well be that spatial correla-
tions are present in the distribution of thresholds. If it
were so, then the reconstruction would be a purely
academic exercise, since a random shuffling of the thresh-
old would destroy the correspondence. It is thus ex-
tremely important to test the existence or lack of ex-
istence of spatial correlation. In order to do so, we first
note that we cannot simply reshuffle the thresholds and
run the quenched model. The reason is that the bonds
that have not been broken in the annealed model are not
given a real threshold but a lower bound on it. So we first
extrapolate the result on the distribution of real thresh-
olds, and extract a scale invariant part of the distribution.
We chose the simplest distribution having the same spec-
trum, i.e., a power-law distribution from 1 to .

Now, we can test the presence of correlations by a
direct study of the quenched disorder model with the
power-law distribution. Figure 8 shows the characteristic
obtained in this case. We can see that it is extremely
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FIG. 7. The reconstructed I-V characteristics of the an-
nealed model of Ref. 10, with =1, and L =20.
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FIG. 8. The I-V characteristics of a quenched-disorder mod-
el where the thresholds are distributed as a power law ¢ #71,
where 8=0.07, and ¢t <1. The value of 8 corresponds to the
one found in the reconstruction algorithm, Eq. (28) for n=1.
This characteristics is similar to that of Fig. 7. Since there is an
undetermined scale factor both in ¥ and I when comparing this
figure with Fig. 7, we have normalized both axes in this figure to
match those of Fig. 7.

comparable to the one recorded during the reconstruc-
tion (Fig. 7). In addition, we also studied the number of
bonds to be broken to reach an uncontrolled fracture of
the medium. This number of bonds scales as L?, where L
is the lattice size as shown in Fig. 9. This scaling is iden-
tical to the one observed directly on annealed models
with the corresponding 7, see Fig. 10.

We may ask what happens in the limit of n—07". This
limit is the screened percolation limit.?2 In this limit,
bonds are broken at random as long as they belong to the
current-carrying backbone. This problem is related to
the usual percolation problem,”> where bonds are
removed—i.e., broken—at random whether they are part
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FIG. 9. Number of bonds broken, Ny, for the fracture of the
annealed-disorder model plotted against the lattice size L, for
n=1. The slope of the line, which is a least-squares fit based on
the sizes L =20, 32, and 64, has a slope of 1.93. We expect that
this slope will tend towards 2 in the limit L — .
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FIG. 10. Number of bonds broken for the fracture of the
quenched disorder model, where the disorder is based on a
power law, t “#~! where 8=0.07 and ¢ < 1. This value of 8 cor-
responds to the one found in the reconstruction algorithm, Eq.
(28) for n=1. The straight line is a least-squares fit based on all
data points. The slope is 1.93. Presumably, this slope will, as in
Fig. 9, tend towards 2 in the limit L — oo.

of the current-carrying backbone or not. In percolation
there is a critical density of unbroken bonds, p., that
marks the division between conduction or nonconduction
in the limit L — co. The density of the current-carrying
backbone varies as

Pe 43)

Pgg~(p—p.)
for pZp.. Pgg is zero for p <p, The probability to
break a bond in the limit 7—07, r is related to p by

dr

o ~Pgp , (44)

which gives

1+PBgp

(r—r.)~(p—p.) (45)

after an integration. The critical density of broken bonds
1

is r.=0.44, while p. =1 on the two-dimensional square
lattice. Thus, in this limit the network breaks apart at a
finite concentration of broken bonds also in this limit.
This behavior is basically the same as found in the
annealed-disorder model for other values of 7 that are
larger than O and that form a natural limiting behavior.

In Ref. 22 it was argued that this screened percolation
behavior would also be the limiting behavior of the
quenched fuse models in the limit of and the infinitely
broad threshold distribution, such as Eq. (21) in the limit
¢—0. This conclusion was reached by noting that in Eq.
(1) if the threshold distribution is infinitely broad, the
current distribution will never become broad enough to
compete with the threshold distribution.

This limit can be reached in two ways: When ¢, or ¢,
or both go to 0, we reach the screened percolation limit.
We note that when ¢, decrease, the exponent ¢ [intro-
duced in Eq. (2)] that gives the scaling of the number of

bonds broken at fracture, increases, reaching 1.75 for
$0=0.5. This trend is consistent with the limit of
screened percolation, where ¥ =2 and ¢,=0. Consider-
ing the other way to reach the limit, i.e., ¢, —0, we note
that for small values of ¢, such as the one encountered
in the reconstruction of annealed-disorder models, the ex-
ponent y already has the value 2.

VI. A CONNECTION WITH THE
DIELECTRIC-BREAKDOWN MODEL

As was discussed in the Introduction, there is an in-
teresting connection between the annealed-disorder mod-
el of Ref. 11, which was discussed in the preceding sec-
tion, and the dielectric-breakdown model.!*> This model
in turn is a very close relative of the diffusion-limited ag-
gregation (DLA) model, which has been the focus of a
major research effort over the past few years.?*

The interest in the dielectric-breakdown model in the
present context is that it comes close to modeling the last
stages of the breakdown processes of the models studied
so far in the limit where we can consider the rest of the
lattice as being homogeneous. These last stages of the
breakdown process are governed by the growth of a sin-
gle crack, which eventually eats through the network
breaking it apart. In this part of the breakdown process
no scaling behavior is found.?>? The dielectric-breakdown
model, or rather the fracture-growth model'* !> as we will
show in a moment, models the unstable growth of a sin-
gle crack by demanding that the crack is to be singly con-
nected. This completely suppresses the initial stages of
the rupture process where there is a competition between
the disorder and the current distribution, leading to
diffuse microcracking.

In the dielectric-breakdown model, bonds break down
in a stochastic way, as in the model of Ref. 11, but with
three important differences. (1) The bonds that are liable
to break are neighbors of those that have already broken,
(2) the bonds that “break” change their resistance from a
finite amount to 0, rather than their conductance, and (3)
the boundary conditions are different: The network is on
all sides connected to grounded bus bars, while the clus-
ter of “broken” bonds is kept at a constant voltage. It
has long been known that in two dimensions the two dual
situations we have here are equivalent.'> The influence of
the change of boundary conditions as described in (3) but
with the connectedness criterion of (1) have been studied
in Ref. 15. No change in the fractal dimension of the
clusters that were grown were found whether one or the
other boundary condition is used. Whether there is a
connectedness requirement or not (1) is, however, a major
difference between the two models.

The fracture-growth model and the dielectric-
breakdown model produce fractal cracks, whose radii of
gyration depend on the number of bonds belonging to the
crack as a power law.?® The exponent of this power
law—being the inverse of the fractal dimension of the
crack—goes from ] for =0 to 1 in the limit n— .
The first case is the screened Eden model where bonds on
the surface are picked at random as long as they carry a
current, while the second limit is the simple case where
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the crack grows in the direction of the largest gradient in
the electric potential.

If we demand that only a singly connected crack is to
be allowed in the quenched-disorder model, whose break-
ing criterion is given in Eq. (1), we also find cracks with
well-defined fractal dimensions. This is much more
surprising than in the annealed-disorder model, since the
simple arguments presented to describe the various stages
of the breakdown processes in the case where diffuse
crack growth is allowed seem to indicate that there
should be no well-defined fractal dimension but rather a
crossover from screened invasion percolation®® to a single
straight-crack propagation: At the beginning of the
breakdown process, the current distribution is narrow
and the threshold distribution dominates in Eq. (1).
Thus, the bonds that break are those on the surface of the
already existing crack that have the smallest thresholds,
as long as they carry a current. This is screened invasion
percolation. Then follows a regime where the current
distribution on the surface of the crack matches the
threshold distribution in width. Subsequently, the
current distribution dominates, and the growth happens
where the current is largest. However, this argument
neglects the fact that the sample of thresholds at any
given stage of the breakdown process is not a random
sample of the original threshold distribution. Indeed,
these bonds belong to the surface of already existing
cracks. This is already clear from the distinction between
the Eden model and invasion percolation: If we between
each growth step in the invasion percolation model
picked the thresholds assigned to the surface bonds anew,
we would be dealing with the Eden model. It is this bias-
ing of the threshold distribution that prevents the current
distribution from eventually dominating the breakdown
process in the quenched-disorder model with a singly
connected crack. The well-defined fractal dimension in-
dicates that the competition between the threshold distri-
bution and the current distribution enters a ‘steady
state.”” This means that the width of the current distribu-
tion on the surface and the width of the threshold distri-
bution become equal. It is known that the surface
current distribution is multifractal.?’ This implies that
the intensive current variable a introduced in Eq. (3) ex-
ists at intervals and is not just a single value. The thresh-
old distribution on the surface must therefore, when ex-
pressed in the intensive variable «,, Eq. (12), be defined at
the same interval. This shows that the important part of
the threshold distribution on the surface must be scale in-
variant. The surface threshold distribution is a biased
subset of the entire threshold distribution. Thus, it is ob-
vious that the entire distribution is as broad as the sur-
face threshold distribution—remember that “broadness”
as we have used it in this context is a statement about
scaling. The surface threshold distribution is biased in
that it will tend to pick out the smaller values from the
entire distribution, thus making the surface distribution
seem broader than the entire distribution. However, if
the scale-invariant part of the entire distribution is
equivalent to the no-disorder case, i.e., it has an a, hav-
ing just one value, then the surface distribution will also
be equivalent to the no-disorder case. A linear crack will
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FIG. 11. The radius of gyration as a function of the number
of bonds broken for a singly connected crack grown from the
reconstructed threshold distribution with (a) n=1, (b) =2, and
(c) n=3. The straight lines are the values for the dielectric-
breakdown model found by Amitrano (Ref. 28). Our data are
based on averages over 50 64 X 64 lattices.
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be the result. This demonstrates once more the impor-
tance of the concept of scale invariant distributions in or-
der to find nontrivial scaling in the breakdown processes.

Let us make the assumption that if there is a threshold
distribution that corresponds to the annealed-disorder
model with the connectedness requirement, it should be
the same as that of the annealed-disorder model without
it.!! We may argue for this by noting that the multifrac-
tal structure of the current distribution on the surface of
a crack probably is dominated by the (fractal) surface of
the crack in comparison to the effect of there being other
cracks in the network. Furthermore, it is very likely that
the entire current distribution is dominated by the mul-
tifractality of the current distribution on the surface of
the cracks—it is here we are most likely to find both the
largest and the smallest currents in the system. Since the
threshold distribution reflects the current distribution as
was argued for in Sec. V, the threshold distribution
should get its main features from what happens on the
surface of the cracks, and not be much influenced by the
interactions between the cracks.

In this case too, we have to use the extrapolated distri-
bution, with no upper limit as argued previously. The
distribution selected are thus power laws from 1 to co.
The fact that the model now explicitly introduces spatial
connectedness, is a more sensitive test to the eventual
necessity to introduce spatial correlation in the quenched
disorder mapping. We check this by direct numerical
simulations.

In Fig. 11 we show the result for the radius of gyration
versus number of broken bonds when using the
quenched-disorder algorithm of Eq. (1) with the added
constraint that the crack is to be singly connected, and
using the power-law threshold distribution gotten from
the reconstruction algorithm for =1, 2, and 3. The

slopes of the straight lines in these plots are 1.70 (np=1),
1.43 (n=2), and 1.27 (9=3). These slopes are those
determined by Amitrano for the dielectric-breakdown
model.?® The slopes measured in the dielectric-
breakdown model, and the quenched-disorder model are
indeed similar, thus suggesting that such a mapping be-
tween these two models is correct.!!

With the discussion of scale-invariant disorder in con-
nection with quenched disorder models where a singly
connected crack is demanded, we note that the concept
of scale invariant disorder is also relevant in these an-
nealed models: The annealed disorder is equivalent to a
scale-invariant quenched disorder, and the nontrivial
scaling properties that are observed are determined by
the two parameters ¢, and ¢,: tuning 7 is equivalent to
tuning ¢, and ¢, .

.,

E
2 b0
FIG. 12. Different scaling regimes of fracture of disordered
brittle material are summarized in this chart, as a function of
the two relevant parameters of the threshold distribution ¢, and
¢.. A: Disorderless regime with one single crack (it concerns
Refs. 8 and 9); B: scaling regime with diffuse damage and locali-
zation (Refs. 2 and 3); C: diffuse damage; D: strong disorder
case, E: (limit ¢, or ¢, =0) screened percolation limit (Ref. 22).
The frontier 4-B, ¢,=2 is taken from Ref. 16, whereas the
frontier 4-C, ¢, =2 comes from the argument developed in
Sec. IV of this paper.

VII. CONCLUSION

The main purpose of the present paper was to analyze
the determining factors that sets the scaling properties of
the models of fracture of disordered brittle materials. We
showed on many different examples that the behavior of
the threshold distribution solely determined the scaling
features. In addition, we were able to show that annealed
disorder models could be mapped onto quenched disorder
ones, thus extending the relevance of the recent analysis.
Finally we introduced single-crack models and showed
that again the same threshold distribution behaviors were
relevant and that annealed- and quenched-disorder mod-
els could be compared. Figure 12 summarizes the main
results obtained so far as a function of the two parame-
ters ¢y and ¢, .
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