PHYSICAL REVIEW B

VOLUME 43, NUMBER 8

15 MARCH 1991-1

Effects of interface defects on polaron states in GaAs-Ga,_, Al, As quantum wells

Hong Sun and Shi-Wei Gu
Chinese Center of Advanced Science and Technology (World Laboratory), Beijing 100080,
The People’s Republic of China;

International Center for Material Physics, Academie Sinica, Shenyang 110015, The People’s Republic of China;
and Department of Physics and Institute of Condensed Matter Physics, Jiao Tong University, Shanghai 200030,

The People’s Republic of China
(Received 2 March 1990; revised manuscript received 10 October 1990)

Effects of interface defects on polaron states in GaAs-Ga;_, Al, As quantum wells (QW’s) are in-
vestigated theoretically by introducing a coordinate transformation that transforms QW’s with de-
fect interfaces to those with planar interfaces with an effective potential associated with the inter-
face defects. The interface defects are idealized as an infinite track or a cylindrical hollow protrud-
ing into the barrier material on one of the interfaces. Polaron ground-state energies are calculated
variationally as functions of the defect lateral sizes. For GaAs-Ga,_,Al,As QW’s with well width
d less than 150 A, the changes in polaron ground-state energies due to interface defects are expected
to lead to sizable effects on optical experiments, such as broadening of the luminescence, absorption,
and excitation spectra of GaAs-Ga,;_,Al,As QW’s, but our calculation predicts smaller spectrum
broadenings than those predicated by a previous theory for the same interface disorder. Changes in
polaron self-energies and polaron effective masses caused by interface defects are negligible for ma-
terials with weak electron—LO-phonon interactions, such as GaAs for which the Frohlich coupling

constant a is less than 0.1.
qualitatively.

I. INTRODUCTION

Modern material growth techniques such as
molecular-beam epitaxy (MBE) and metal organic chemi-
cal vapor deposition have made possible the realization of
high-quality semiconductor layer structures, e.g., quan-
tum wells (QW’s) and superlattices (SL’s). Electron
motions in these systems are quantized in directions per-
pendicular to the interfaces, while their in-plane motions
are still free-electron-like.! This quasi-two-dimensional
(2D) behavior in electron motions is also seen in other
electronic systems such as semiconductor heterostruc-
tures or metal-oxide-semiconductor (MOS) inversion lay-
ers. Electron-optical-phonon interactions, e.g., the pola-
ron effects, in these systems are enhanced relative to
those in the bulk systems.” In recent years the problem
of surface or interface polarons has received renewed in-
terest both experimentally and theoretically because

unusual polaron effects are observed in these quasi-2D
systems. Line splitting of cyclotron resonance’® (CR) and
oscillations of the cyclotron effective mass* in hetero-
structures in the quantum limit have been reported.
Strong narrowing and a positional shift of CR in Si MOS
structures in the quantum limit have been observed.’
And pronounced current oscillations in the experiment of
Hickmott ef al.® in 2D systems has been predicted
theoretically due to a strong oscillation in the 2D elec-
tron density of states induced by strong
electron—optical-phonon interactions in 2D systems.’

In realistic quasi-2D systems, such as QW’s, SL’s, het-
erostructures, and MOS structures, it is almost impossi-
ble to produce ideally planar interfaces due to environ-
mental fluctuations and mechanical controlling inaccura-
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cy in the growth process. Experimental studies have
shown that the interface roughness in Si-SiO, interfaces
in Si MOS structures are about several monolayers in
height, rangmg from 5 to 10 A, and with about 50- A
perlOdICIty, while the electron wave-function extensmn
perpendicular to the interfaces are about 50 A for Si
MOS structure inversion layers.’ The interface rough-
ness is not negligibly small compared with the electron
extension perpendicular to the interfaces. The interface
roughness in MBE-grown QW’s or SL’s is considerably
less than that in MOS structures. In high-quality samples
the mean interface defect depth is about one monolayer
(=2.86A in GaAs) and its lateral extension is about 300
A.'° With improved growth techniques (growth inter-
ruption), the interface roughness of QW’s can be further
reduced.'"!'? But the interface roughness still produces
sizable effects on optical experiments in thin QW’s or
SL’s with the well width d ranging from 50 to 150 A.
The main effects so far observed due to the interface
roughness are the following: (i) Exciton-line width
broadening in the excitation spectrum of the lumines-
cence line in GaAs-Ga,_,Al,As QW’s;!>!* (ii) red shift
(Stokes shift) of the photoluminescence spectrum with
respect to the excitation spectrum maximum in GaAs-
Ga,;_,Al _As QW’s, due to exciton trapping on interface
defects;!> 19 (iii) the shift of the energy position of the in-
tensity maximum of the excitonic transition as the delay
time increased in the time-resolved photoluminescence of
the excitonic transition of GaAs-Ga,_,Al,As QW’s;!’
and (iv) the temperature dependence of the exciton popu-
lation in the emission spectra of GaAs single QW’s.'®

On the theoretical side, effects of interface defects on
exciton trapping in QW’s have been studied theoretically
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by Bastard et al.'> They modeled QW’s with rough in-
terfaces by QW’s with planar interfaces and added an
empirical potential energy associated with interface de-
fects to the Hamiltonian. Schwarz and Ting!° and Leo®
have recently investigated effects of fluctuations in the
well width on electron transport in a semiconductor SL
when an electric field is applied perpendicular to the
wells. However, effects of interface defects on the pola-
ron in-plane motions in quasi-2D systems have not been
studied previously. In this paper, we present a theoreti-
cal investigation on effects of interface defects on polaron
states in GaAs-Ga;_,Al, As QW’s. Our purpose is two-
fold. First, following the basic theory presented in this
paper, we plan to investigate whether rough interfaces
will produce any sizable effects on experiments associated
with polaron properties in quasi-2D systems. For in-
stance, we are interested in knowing whether the trap-
ping of polarons on interface defects will cause detectable
changes in cyclotron resonance, etc. Second, we intend
to set up a theory to study effects of rough interfaces on
excitons in QW’s which starts from the commonly ac-
cepted Hamiltonian without introducing an additional
empirical potential energy. In fact, we shall derive an
effective potential associated with the interface defects
from the theory presented in this paper. To simplify the
calculation, we are going to study effects of interface de-
fects on polaron states in GaAs-Ga;_, Al ,As QW’s with
an idealized defect—an infinite track or a cylindrical hol-
low protruding into the barrier material on one of the
QW interfaces.

II. POLARONS IN QW’s
WITH DEFECT INTERFACES

A. Polaron Hamiltonian

The QW with defect interfaces we are considering con-
sists of two lattice-matched semiconductors, e.g., GaAs
and Al ,Ga,_,As with rather similar lattice dielectric
properties, which enables us to make the approximation
that the electron in the QW interacts only with the bulk
LO phonons of GaAs. The second approximation we
made is that the QW interfaces represent infinitely high
potential barriers, which for QW’s with well width
d>50A is a good approximation. The electron is
confined within the QW and its wave function vanishes
on the interfaces. Within the above approximations, the

polaron Hamiltonian for the QW reads®!?
# +
H 1=_‘ V2+2 ‘fl(OLOakak
Ppo! zme r “~
+3 (Ve *Ta] +H.c.) (1)
k

The eigenenergy E of the polaron states is given by the
equation

H,,.y=E¢ )

with the polaron wave function 1 satisfying the boundary
condition
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where m, is the electron band mass, al creates a bulk LO
phonon with wave vector k and frequency g,
z=f(x,y) gives the interface defect which is assumed to
be on the interface at z =0, d is the width of the QW, and

ZvﬁwLoez 1 1 172

V.=—i 4
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is the electron—LO-phonon interaction constant with ¥
(Vo— ) the volume of the QW system (the well plus the
cladding materials), and €, and €, the high-frequency
and static dielectric constants of the QW material, re-
spectively.

In solving the polaron problem of H, (1) with the
boundary condition (3), the obstacle to overcome is that
it is difficult to find a trial wave function that satisfies the
boundary condition on the defect interface. We avoid
this obstacle by introducing a coordinate transformation
that transforms the QW with defect interfaces to that
with planar interfaces. Though the transformation will
complicate H ,, (1), this is usually easy to handle in nu-
merical calculations.

B. Coordinate transformation

The defect on the QW interface we are considering is
idealized as an infinite track along the y axis as shown in
Fig. 1(a) or a cylindrical hollow centered on the Z axis as

A
E:X + iz
d ho
X
2L, }
(@)
W .
N=u+1w
d
i
(b)

FIG. 1. (a) A section the x-z plane of the QW with an infinite
track along the y axis and protruding into the barrier material
on one of the QW interfaces. (b) A section on the u-w plane of
the QW in (a) after the coordinate transformation introduced in
the text.
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TABLE 1. The corresponding transforming points used to determine the coordinate transformation
from £ to n planes, with 2L, and A, the width and height of the track [see Fig. 1(a)], respectively. L

and h are determined from L, and 4, in the text.

Original points
in the £=x +iz plane
A B C

Transformed points
in the »=u +iw plane
B’ C’

—L, —Lo—ihg Lo—ih,

—L L L+h

shown in Fig. 4(a) protruding into the barrier material.
Because of the geometric symmetry, we can consider the
system on any x-z plane with y fixed for the infinite-track
defect or on any p-Z plane with @ fixed for the cylindrical
hollow defect. The profiles of the defective interfaces
look the same on these two section planes. So in what
follows, we consider only the infinite-track defect. The
coordinate transformation derived here can also be used
for the cylindrical-hollow defect.

If we consider the x-z plane in Fig. 1(a) as a complex
plane £=x +iz, the coordinate transformation that trans-

J

forms the QW with an infinite track on one of its inter-
faces in complex plane £=x +iy to the QW with planar
interfaces in complex plane n=u +iv [as shown in Fig.

b)] can be obtained by a Schwarz transformation,”
which transforms the region within the QW in Fig. 1(a)
to the upper half-space, followed by a logarithmic trans-
formation, which transforms the upper half-space to the
region within the QW with planar interfaces as shown in
Fig. 1(b). In Table I, we list the corresponding trans-
forming points used to determine the transformation,
which is given by

172

xp(mn/d) t—exp[—m(L+h)/d] t—exp[m(L +h)/d]
A" dt—L 5
5= fexp[ mL+h)/d] t—exp[—wL /d] t—exp[wL /d] 0 5)
with the constant 4 determined by the condition that when n= —L, we must have £= —L,—ih,, where L and h are

determined by requiring that as [Ren| — o, Eq. (5) should reduce to £=1, as can be seen from Figs. 1(a) and 1(b).

For the case where exp(

—2wLy/d)<<1 (thatis, Lo =d),

to first order in hy we have

h ; _
§=77-—0 s%nh[(#/2d)(77 L)] 6)
T sinh[(7/2d )(n+L)]
or
2 ) _
x=u—+8x(u, w)=u——"In s%nz(ﬂ'w/2d)+s¥nh2[(7r/2d)(u L)] (6a)
2 sin“(7w /2d ) +sinh?*[ (7 /2d )(u +L)]
w—ﬁg arctan |tan | =% |coth |—= | |u —L]
T 2d 2d
TW T
arctan |tan °d coth 2d Hu1+L] , for ‘u >L
z=w+8z(u,w)= (6b)
w—-h—o 7—arctan |tan | == |coth | == | |u ——L]
2d 2d
W
arctan |tan d coth >d u +L] , for |(u|<L ,
[
with | —d. 2| o, for |u|>L
Lo [ ke | 1(e/mLy)inthy /2d) Zlw=a=4> Zlw=0T ) —p, for |u| <L (8)
T 2 | 770 1+hy/d
7 The transformation (6) transforms the QW with an

From Egs. (6a) and 6(b) it is easy to show that

infinite track on one of its interfaces in £ plane to that
with planar interfaces in the 7 plane (see Fig. 1).
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C. Ground-state energy of polarons in a QW
with an infinite track on one of its interfaces

A section on the x-z plane of a QW with an infinite
track along the axis y and protruding into the barrier ma-
terial on one of its interfaces is shown in Fig. 1(a). The
following coordinate transformation:

x=u-+&x(u,w), (9a)
y=v, (9b)
z=w+8z(u,w) , (9c)

transforms the QW with the defective interface in space
(x,y,z) to the QW with planar interfaces in space
(u,v,w), where Egs. (9a) and (9c) are given by Egs. (6a)
and (6b). A section on the u-w plane of the transformed
QW is shown in Fig. 1(b). In space (u,v,w), the bound-
ary condition (3) satisfied by the polaron wave function
becomes

¢ w=d:0’ ¢'

To first order in the track height 4, the eigenvalue equa-
tion (2) for the polaron ground-state energy E, becomes

bo=0. (10)

Heﬂ'd’ =Eg 1/} n
with
_ # d? 32
A== o, |20 w2
# J?

O _
2 [l-i-Zi(u,w)]av2 E,;"8(u,w)

e

+3 [1+8(u,w) o oatay
k

+3 [V (u,wlexp( —ik-R)af +H.c.], (12)
K

where the position vector R=(u,v,w), E;* is the polaron

ground state energy for a QW with planar interfaces and

width d,

Vilu,w)=V, [1+8(u,w)]
Xexp{—i[k,bx(u,w)+k,8z(u,w)]} , (13)

and

S(u,w)
h

HNo | sinh[(7/2d)(u +L)]cosh[(7/2d)(u+L)]
d sin® (7w /2d ) +sinh?[ (7 /2d)(u +L)]

__ sinh[(7/2d)(u —L)]cosh[(7/2d)(u —L)]
sin?(mw /2d )+sinh?[(7/2d)(u —L)]

(14)
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If the track height &, goes to zero, from Egs. (12)-(14)
together with the boundary condition (10), H. (12)
reduces to the polaron Hamiltonian for a QW with pla-
nar interfaces. The third term in H 4 (12) is obviously an
effective potential associated with the defect on the inter-
face. It is easy to show that this effective potential goes
to zero when |u|—c and it shows a potential well
within the track in which the polaron will be trapped.
Physically, this trapping is simple to understand. If we
ignore the polaron effect, the first subband energy of the
quantized electron motion perpendicular to the QW in-
terfaces is Eq=(#*/2m,)(7/d)* for a QW with width d
and its interfaces representing infinitely high potential
barriers. The electronic energy at places where the QW
is wide is lower than where the QW is thin. This causes
polaron trapping on parts of the QW where the interfaces
protrude into the barrier material making the QW locally
wide. For small defect (h,/d <<1), the energy change
caused by the defect is much smaller than the level spac-
ing of the energy subbands of the quantized electron
motion perpendicular to the interface, and so we assume
that the electron motion remains in the first subband.
The effective polaron Hamiltonian describing the polaron
in-plane motion is obtained as follows. We first apply a
unitary transformation U, to H 4 (12), with

U,=exp [—iY [k P+k,8x(u,w)] (15)
K

where k| and P are the in-plane components of k and R.
Then we average the transformed H . over the electron
distribution perpendicular to the interfaces, which is a
technique often used in the polaron theory of quasi-2D
systems.>?? Because we have assumed that the electron
motion remains in the first subband, the electron distribu-
tion perpendicular to the interfaces may be taken as

W

@olw)=V"2/d sin , (16)

which ensures that the boundary condition (10) is
satisfied. A second unitary transformation U, is applied
to the averaged H .4, with

U,=exp (3 lalgy—a,gi1] » (17)
k

where

_ {@olw)| Viexp{ —ik,[w+8z(u,w)]}|po(w))
[1+8(u) 1 fio o +#k] /2m,)

gxlu)=

H

(18)

And finally in the low-temperature limit, we decouple the
electron—LO-phonon interaction by taking average of the
transformed H . over the LO-phonon ground state W,.
The effective polaron Hamiltonian describing the polaron
in-plane motion reads
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#* 272 k2|7 (x)|? d?
- - =/ 112 272 3 7 T Ver(x)
2m, m, 4 [1+8(x) PlAo o+ (#kE /2m,)] | dx
V. (x))? _ V. (x)]?
+E0 2 ] k x) | l k } (19)

© [1+8(x) Aoy o+ (#kT /2m,)]

with Vg(x)=—E,(hy/d)8(x),

5(x)=6(x+L) | 1—exp —2—;—1x+1;|
2
—O(x —L)|1—exp —7|x—Ll
and
Vi (x)={@o(2)| Vyexp{ —ik,[z +8z(x,2)]} |po(2)) ,
where ©(x) is the unit-step function and

E,=(#/2m})(w/d)>.

For notational convenience we have redenoted
(u,v,w,) as (x,y,z). But one must keep in mind that we
are working in the transformed space. In obtaining H pol
(19), we have neglected the term 82/dv? (or 3%/8y?) for
the ground state, which is assumed to be independent of v
(or y), as can be seen from the geometric symmetry of the
QW [Fig. 1(a)].

The last two terms in f-Ipo] (19) are the polaron self-
energy due to the electron—-LO-phonon interaction. To
estimate the changes caused by the interface defect in the
polaron self-energy, we calculate the self-energy at
[x|— o and x=0. As |x|— o, from Egs. (6a) and (6b)
we have 8x =0 and 6z=0. Substituting these into Eq.
(19), we obtain that the polaron self-energy [the last two
terms in H, (19)] equals that of a QW with planar inter-
faces and width d. At x=0, we have 6x=0 and
6z=(hy/d)w—h, (for d/L,=1). The polaron self-
energy equals that of a QW with planar interfaces and
width d +h,. The change in polaron self-energy caused
by the interface defect is about aygfiw;(hy/d). For
weak-coupling materials, such as GaAs, the Frolich cou-
pling constant ayq <0.1, and when the QW is thin
(d <100 A), fioy o =E,. The change in polaron self-
energy is a negligible high-order perturbation. The same
is true for the polaron renormalization mass due to the
electron—LO-phonon interaction [the second term of the
kinetic energy in P—Ipol (19)]. The change in polaron re-
normalization mass caused by the interface defect is
about m,ayo(hy/d). To the first order in hy/d, we can
set iy equal to zero in the calculation of the polaron self-
energy and mass renormalization. H pol (19) can be fur-
ther simplified to

2 2
H = A d

ol
P 2my} dx?

+Ve(x)+EJ (19"

with

X 272 s

[
m,

EO_E _—.
o 1+7TaLo/8

) aLOﬁwLO? mS= (20)

In the calculation of the polaron self-energy and polaron
effective mass due to the electron—-LO-phonon interac-
tion in H_pol (19"), we have assumed that the polaron is a
strict 2D polaron.? This approximation does not affect
our discussions on effects of interface defects on polaron
states, because as discussed above the effects of interface
defects on the electron—-LO-phonon interaction can be
neglected for weak-coupling materials. Examining ﬁpol
(19’) we find that when the terms of order O(a;phy/d)
and higher are neglected, which is valid for weak-
coupling materials, apart from an energy shift in E; and
a small mass renormalization in m} [see Eq. (20)], the
problem of effects of interface defects of a QW on polaron
state, such as its ground-state energy and the localization
of the polaron motion in the plane parallel to the inter-
face, can be treated as that for an electron in presence of
interface defects.

The effective potential V4 associated with the surface
defect (an infinite track) in HPO] (19) is shown in Fig. 2
(solid line) for a GaAs-Ga,_,Al, As QW with an infinite
track on one of its interfaces, where the w1dth of the QW
d =170 A, the height of the track hy=5.72 A (about two

Vers(2) (meV)

0

— 20

b
100 200
a(\)

FIG. 2. Effective potential (solid line) associated with the sur-
face defect—an infinite track as shown in Fig.1(a) in a GaAs-
Ga;_,Al, As QW with the well width d =70 A the track height
hy=5.72 A, and the track width 2L =200 A. The potential is
an even function of x. The dashed line is the square potential
well used in the text to determine the polaron trial wave func-
tion.
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monolayers) and the width of the track 2L =200 A [see
Fig. 1(a)]. V. is an even function of x, e.g.,
Vgl —x)=V 4(x) and resembles a square potential well.

We calculate the ground-state energy of the trapped
polaron variationally with the trial wave function taken
as the ground-state wave function of a square potential
well shown in Fig. 2 (dashed line). For a given potential
depth ¥V, the ground-state wave function is determined.
So we introduce y=V,/E, as a variational parameter.
The trial wave function ¢(y,x ) reads®*

C cos(Byx), for |x|<L (21)
P2X)= 1€ cos(BoL Yexpl —By(|x| —L)] for |x|>L ,

where C is the
By=ly(w/dV—B3)'"",
equation:

tan(BoL )=f,/By (22)

with  By<min{w/2L, [y(7w/d)*]'’?} to ensure
@(y,x) (21) is the ground-state wave function.

The shift 3E, in the ground-state energy of the polaron
caused by the interface defect relative to the ground-state
energy E; of a QW with planar interfaces is obtained by
minimizing the averaged H ,; (19') with respect to v,

SEmein[((p(y,x)|17p01—-E;|¢)(y,x))] . (23)
¥

normalization constant,
and f3, satisfies the following

that

The numerical results of 8Eg as functions of the track
half width L, are given in Fig. 3 (solid lines) with the

3Eg (meV)

Lo(A)

FIG. 3. Shift 8E, in the ground-state energy of the polaron,
relative to that of a QW with planar interfaces, in a GaAs-
Ga,;_,Al,As QW with an infinite track on its interfaces. The
results are given as functions of the track half width L, with the
well width d=70 A and the track height h,=2.86 and 5.72 A.
The dashed lines correspond to 8E, with Ly— oo.
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track height h,=2.86 A (one monolayer) and 5.72 A
(two monolayers) for a GaAs-Ga,;_ Al As QW with a
width d =70 A [see Fig. 1(a)]. The experimental parame-
ters are taken as a;,=0.071, #w; ,=36.8 meV, and
m,=0.66m,, which give E;=116.3 meV and Eg‘—' 112.2
meV. The dashed lines in Fig. 3 correspond to 8E, with
Ly— .

D. Ground-state energy of polarons in a QW with a cylindrical
hollow on one of its interfaces

Though the cylindrical hollow is still an idealized inter-
face defect, it is more realistic than the infinite track, for
it is finite in all directions parallel to the interface. The
coordinate transformation we need is obtained as follows.
First, we introduce a coordinate space (p,$,z), with
—0<Pp<e0,0<p<m, and — o <Z < 0. Itisrelated to
coordinate space (x,y,z) by

X =pcosp , (24a)
y=psing , (24b)
z=Z (24c¢)

Space (p,9,Z) is not the cylindrical coordinate system,
for p can be negative. Because of the cylindrical symme-
try of the hollow, its profile looks the same on any section
plane with @ fixed. A section on the g-Z plane of a QW

~

'

C=p+iz
d ho
>
20, r
(a)
%
A A
n=p+iz
d
l A
P
)

FIG. 4. (a) A section on the p-Z plane of the QW with a cylin-
drical hollow centered on the Z axis and protruding into the bar-
rier material on one of the QW interfaces. (b) A section on the
p-Z plane of the QW in (a) after the coordinate transformation
introduced in the text.
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with a cylindrical hollow centered on the 2 axis and pro-
truding into the barrier material on one of its interfaces is
shown in Fig. 4(a). If we consider this section plane as a
complex plane £ =p+ iz, the QW with the defect interface
in complex plane £ can be transformed to the QW with
plane interfaces in complex plane 7=p+iZ [as shown in
Fig. 4(b)] by the coordinate transformation (6) we have
obtained in Sec. IIB. So we introduce the following
transformation:

p=p+8p(p,2) , (25a)
=9, (25b)
7=2+82(p,%2) , (25¢)

with Egs. (25a) and (25¢) given by Egs. (6a) and (6b). Fi-
nally, we introduce the cylindrical coordinate space
(p,p,z) given by

J

h
Veﬂr(p)=—E0—di [19(p+ﬁ) 1—exp —%Tﬁlpﬂ-ﬁl
d 21
+__ —_= = —
2 exp 3 lp+pl | —exp
where
_ 1+(hg/mpo)in(hg /2d)
P=po 1+ (hy/d)

In obtaining H pol (27), we have neglected high-order per-
turbations such as terms containing (k,/d)?* and
arolhy/d), etc. We have also neglected the term 3% /3¢?
in ﬁpol for the ground state, which is assumed to be in-
dependent of ¢, as can be seen from the geometric sym-
metry of the QW [Fig. 4(a)].

The effective potential V4 associated with the surface
defect (a cylindrical hollow) in H pol (27) is shown in Fig.
5 (solid line) for a GaAs-Ga,_,Al, As QW with a cylin-
drical hollow on one of its interfaces, where the width of
the QW d=70 A, the height of the hollow 2 =5.72 A
(about two monolayers) and the radius of the hollow
p=100 A [see Fig. 4(a)]. V.4 resembles a 2D square po-
tential well. The trial wave function @(y,p) of the pola-
ron ground state is taken as the ground-state wave func-
tion of a 2D square potential well shown in Fig. 5 (dashed
line).

CJo(Byp) for p<p
oly,p)= (29)

Jo(Byp)
—— K y(Bp) for p>p
Ko(Bp) o\P1pP P=pP

where J,, and K, are the Bessel functions of the first kind
and modified Bessel function of the second kind, respec-
tively; C is the normalization constant, ¥y =V /E, is the
variational parameter, B,=[y(w/d)*—pB3]'/%, and B,
satisfies the following equation:
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p=p for p>0, p=—p for p<0; (26a)
p=¢ for p>0, o=+ for p<0; (26b)
z=% for p>0, z=2% for p<0. (26¢)

The coordinate transformations (24)—(26) are what we
need to transform the QW with the defective interfaces
[Fig. 4(a)] to the QW with plane interfaces [Fig. 4(b)].
Substituting these transformation into the polaron Ham-
iltonian H,, (1)-(3), and following the same manipula-
tions as in Sec. II C, we obtain the effective polaron Ham-
iltonian describing the polaron in-plane motion

— #*
Hpol

d>  d
- d—p2+;1% +Velp)+ES, (27

with m} and EJ being the same as those defined in Eq.
(20) and

Hx —p) |1—exp ——%}lp—ﬁ[ ]
21 _
= lp—pl ] (28)
{
J1(ByP) K, (Bp)
0 1 Boﬁ =h1 : Blf (30)
Jo(Bowp) Ko(Bip)
with

Bo <min{2.4048 /p, [y (7 /d )*]'/?
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!
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FIG. 5. Effective potential (solid line) associated with the sur-
face defect—a cylindrical hollow as shown in Fig. 4(a) in a
GaAs-Ga,;_,Al,As QW with the well width d =70 A, the hol-
low height #o=5.72 A, and the hollow radius =100 A. The
dashed line is the 2D square potential well used in the text to
determine the polaron trial wave function.
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to ensure that @(y,x) (29) is the ground-state wave func-
tion.

The shift 8E, in the ground-state energy of the polaron
caused by the interface defect relative to the ground-state
energy Eg of a QW with planar interfaces is obtained by

~EQle(y,p))] . (31)

The numerical results of 8E, as functions of the hollow
radius pg is given 1n Fig. 6 (sohd lines) with the hollow
height h,=2.86 A (one monolayer) and 5.72 A (two
monolayers). Other parameters are the same as those
defined in Fig. 3. The dashed lines in Fig. 6 correspond
to 8E, with py—> co.

8E, =min[{p(y,p)| H

III. DISCUSSION

As discussed in Sec. II C, polarons in QW’s with defec-
tive interfaces will be trapped at places where the QW in-
terfaces protrude into the barrier materials making the
QW’s locally wide. This is also shown clearly in the
effective potential V.4 associated with the interface de-
fects in Fig. 2 and 5 (solid lines). Because V4 is inversely
proportional to the mass of the particle (the electron) [see
Eqgs. (19) and (28)], the effective Hamiltonian Hpol—EgO
[see Egs. (19') and (27)], which determines the in-plane
spatial distribution of the particle, is also inversely pro-
portional to the mass of the particle. This implies that
the wave function of the in-plane distribution of the par-
ticle is independent of its mass, that is, in one QW both
the electron and hole will be trapped at the same place.
This in-plane confinement of the electron and hole will
increase the exciton binding energy just like the
confinement of the electron and hole within the QW in-

(meV)

|
c

3L,

FIG. 6. Shift E, in the ground-state energy of the polaron,
relative to that of a QW with planar interfaces, in a GaAs-
Ga,_,Al,As QW with a cylindrical hollow on its interfaces.
The results are given as functions of the hollow radius p, with
the well width d=70 A and the hollow height h,=2.86 and
5.72 A. The dashed lines correspond to 8E, with py— 0.
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creases the exciton binding energy comparing with that
in bulk materials.

The numerical calculations show that the change 8E,
in the polaron energy caused by the interface defects is a
function of p,/d and depends on the well width d
through multiplication constants E,=(#>/2m*(7/d )
and h,/d. If we give the numerical results
SEg/[(ho/d JE,] as a function of p,/d, for QW’s with
different well width the curves in Figs. 3 and 6 (solid
lines) change little as long as p,/d is the same. It is seen
clearly from Fig. 6 (solid lines) that the change 8E, in the
polaron energy caused by the interface defects depends
strongly on the lateral size of the defect when p,/d <4.
For instance, when p,/d <2, 8E, is less than half of its
maximum

*2h,

,hZ
0—-_=
3E, Tm* 7

e

d

which is the limit value of 8E, when py— c. In explain-
ing a systematic increase of the linewidth of lumines-
cence, absorption, and excitation spectra of undoped
GaAs-Ga,_, Al, As multiquantum-well structures with
decreasing layer thickness, Weisbuch et al,'>!* have at-
tributed this broadening to the islandlike structure of the
QW interfaces. Their calculation agrees very well with
the experiment for the well width d in the 80-150 A
range with a simple assumption that an interface defect
with a height A, will shift the electron energy by

®2h,
d

hZ
2m}

SE.=

d
with well width fluctuations 4, being about one or two
monolayers. From the theory of Weisbuch et al. 13,14 and
together with our numerical results in Fig. 6 (solid lines),
we have the following two different conclusions: (i) If the
well-width fluctuations are about one or two monolayers
as suggested by Weisbuch et al.,'>!* for their calculation
to be correct, we must assume that the average radius pf
the interface defects pg is larger than 4d (d =80-150 A)
to have 8E, —8E] [see Fig. 6 (solid lines)], that is, the
average lateral size of interface defects 2p, is larger than
1000 10\, and (ii) if the lateral size of inteorface defects is
about several hundred angstroms (~400 A) as suggested
by Weisbuch e al.!® and other authors,>'® we have that
the ratio p,/d=200/d=2 (d=280-150 A) and
8E,~0.58E, [see Fig. 6 (solid lines)]. To observe the
spectrum broadenings in the experiment of Weibuech
et al.,'>'* the well width fluctuations must be larger than
one or two monolayers. At present, we are not able to
decide which conclusion is correct, for we lack informa-
tion on the detailed statistics of the shapes and heights of
the interface defects. But one thing is certain: our calcu-
lation predicts smaller effect on the electronic states (such
as broadenings of the luminescence, absorption, and exci-
tation spectra) than that predicted by the theory of Weis-
buch et al.'>' for the same QW interface disorder.

As discussed in Sec. IIC, for materials with weak
electron-phonon interaction, such as GaAs, where
ap o <0.1, the changes in the polaron self-energy and po-
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laron effective mass caused by interface defects are negli-
gible. But for materials with strong electron-phonon cou-
pling (a;o>1), and when the width of the QW is not
very thin so that (#2/2m})(7/d )* <#w; o, the change in
the polaron self-energy caused by interface defects is not
negligible. The polaron self-energy depends on the posi-
tion of the electron. This position dependent polaron
self-energy is another effective potential acting upon the
polaron in determining the in-plane motion of the pola-
ron. Because the polaron self-energy at places where the
QW is thin is lower than that where the QW is wide,? this
effective potential partially cancels the effective potential
V.4 we derived in Sec. II, since it shows potential barriers
at places where V. shows potential wells. It might be
possible that this cancellation is so overwhelming that the
polaron would be trapped at places where interface de-
fects make the QW locally thin.

In studying exciton trappings on QW interface defects,
it is important to know how excitons are trapped. A
correct picture of the exciton trapping is very helpful in
giving correct estimations of ground-state energies of
trapped excitons in experiments and determining the
choice of the exciton trial wave functions in numerical
calculations. One can view the trapping of excitons on
interface defects with aid of the following two pictures:
(i) The electron and hole are trapped on interface defects
individually, and then they form the exciton by the
Coulombic interaction, and (ii) the electron and hole
form the exciton first, and then the exciton as a whole, or
its mass center, is trapped on interface defects. Which
picture is more favorable is determined by which one
gives a lower exciton energy. With the present theory,
we estimate the exciton energy with the following ap-
proximations: First, we assume that the Coulombic in-
teraction energies E ., are the same for the two pictures.
Second, we assume that the exciton can be treated as a
point. Its mass center moves in a 2D effective potential
which is the superposition of the electron and hole
effective potentials given by Eq. (28). The latter approxi-
mation is valid for the case where the radius of the inter-
face defect p, is larger than the exciton radius, which is
about 150 A in bulk GaAs. With the above approxima-
tions, we obtain the exciton energy for picture (i):

2

. hz 7T ﬁz T h
E = e 4 m? 4 +EcouT8E;+3E,
(32)
and for picture (ii)
2 2
_ # T #? T c
Ea= 2m} d 2mp; d FEcou+E, (33)

where 8E{'" is the energy of the electron (hole) in-plane
motion determined by the effective Hamiltonian (27), and
8E; is the energy of the in-plane motion of the exciton
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FIG. 7. The dashed line is the energy of the electron and hole
in-plane motions in a GaAs-Ga,_, Al, As QW described in Fig.
6 when the electron and hole are trapped individually on the in-
terface defect. The solid line is the energy of the in-plane
motion of the exciton mass center in the same QW with the ex-
citon treated as a point. The results are given as functions of
the radius p, of the interface defect.

mass center. In Fig. 7, we give the numerical results of
8E; +8E, " (dashed line) and 8E; (solid line) as functions
of po for a QW with a cyhndrlcal hollow on one of its in-
terfaces, where the well width d =70 A and the height of
the hollow h,=2.86 A. Obviously, the exciton will be
trapped as a whole on interface defects, as suggested by
some authors.'>!® The results for p, <200 A in Fig. 7 is
not very meaningful, because when py <200 A, the radii
of the defect and the exciton are about the same order of
magnitude. Excitons can no longer be treated as points.
Rigorous calculations including the Coulombic interac-
tion between electrons and holes are needed to determine
how excitons are trapped on interface defects.

Bastard et al,'® have made a theoretical investigation
on effects of interface defects on excitons in QW’s. They
modeled QW’s with defective interfaces by QW’s with
planar interfaces and added an empirical potential energy
associated with the interface defects to the Hamiltonian.
The choice of the empirical potential energy is to some
extent arbitrary. So the results obtained from the theory
only qualitatively explained the effects of defective inter-
faces on excitons in QW’s. Another approximation made
by Bastard et al.'® in their theory is the neglect of
changes in Coulombic potential between the electron and
hole when modeling QW’s with defective interfaces by
QW’s with planar interfaces. While the theoretical calcu-
lations of Bastard et al.?> have shown that the Coulom-
bic energy of excitons in GaAs-Ga;_, Al, As QW’s shows
a strong dependence on the well Wldth when the well
width d <150 A. These approximations are not neces-
sary in the theory we presented. The potential energy as-
sociated with the interface defects are derived uniquely
from the theory. And if we substitute the coordinate
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transformations derived in Sec. II into the Coulombic po-
tential of the electron and hole, an additional term associ-
ated with the interface defects will appear. We think that
it will be worthwhile reexamining the effects of interface
defects on exciton in QW’s using the theory we presented
in this paper.
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