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Hydrodynamic theory of intrasubband plasmons in quasi-one-dimensional systems
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We use a simple hydrodynamic model to develop a theory of intrasubband plasmons in (quasi-)
one-dimensional systems. The derivation gives insights into the relative motion of charge within
different subbands, and the results allow easy estimates of the coupling of these modes to either
internal or external charges. We compare the hydrodynamic model predictions with those of a mi-

croscopic theory, the quantum-mechanical random-phase approximation, both at a formal and at a
numerical level. The phenomenological parameters can be chosen so that hydrodynamics repro-
duces the microscopic results in the long-wavelength limit.

I. INTRODUCTION

Advances in microfabrication techniques of semicon-
ductors have given experimental access to systems of re-
duced dimensionality. For instance, the confinement of
electrons to quasi-one-dimensional (Q1D) wires is now
commonly achieved. ' Among the many interesting prop-
erties that can be studied in such systems, this paper will
focus on intrasubband plasmons in Q1D wires. These
modes in various contexts have often been treated
theoretically, but to our knowledge there is as yet no
direct experimental evidence of their existence in the new
semiconductor systems. One of our aims in this and fur-
ther work, ' is to elucidate their physical nature and ex-
perimental signature.

The theoretical description of collective modes in QlD
systems has to date followed a common path based on
considering the linear response to external perturbations.
One derives within a mean-field approximation an
effective dielectric function (or matrix) to describe the
response. The singularities in the response function
occur by definition at the collective modes and are locat-
ed by finding the zeros in the dielectric function, or more
generally in the determinant of the dielectric function
matrix. This approach allows the most general evalua-
tion of the modes' dispersion relations, but seldom gives
insight into the motion of charges within or the perturb-
ing fields produced by a single mode.

We develop in this paper a phenomenological theory of
Q1D intrasubband plasmons which provides such in-
sights via simple calculations. The equations of this
theory are set up in Sec. II and their formal solution is
given. Various limiting cases and features which can be
described without detailed calculations are pointed out.
In Sec. III we use our theory to describe the linear
response. By comparing our results with the formal re-
sults of the more microscopic theories we can clarify the
specific approximations that underlie our approach.
Such comparisons are made quantitative in the model
calculations reported in Sec. IV. Our theory is shown to
provide a tractable, transparent, and reliable description
of the important physics over a limited but important

range of the phase space of intrasubband collective modes
in Q1D wires.

This conclusion must be tempered, however, by the ac-
knowledgement that it is being drawn by a comparison
with an approximate microscopic theory, specifically the
quantum-mechanical random-phase approximation. Ex-
change and correlation effects that are omitted by the
latter are also missing from our phenomenological model.
Furthermore, all the theories considered here allow for
neither electron localization nor Peierls distortion along
the length of the wires, and these omissions must eventu-
ally become severe in the low-frequency limit.

II. HYDRODYNAMIC MODEL

We set up our theory initially for a single wire running
along the x axis. The electrons' motion is presumed to be
free down the length of the wire, but to be confined in
various quantum states transverse to the wire. Thus a
single-particle eigenstate is written as

where L is the quantization length of the wire, X=(y, z)
describes the coordinates transverse to the wire, and the
quantum numbers are k for longitudinal motion and o.
for transverse motion. The separable eigenstate of (1) has
an additive eigenenergy:

AkE(k, a)= +s
2m

A basic approximation for the theories considered in this
paper is to neglect the possibility of jumps between states
with different values of a, i.e., to ignore intersubband
transitions. This is reasonable in the limit of low excita-
tion energies, which, as we will show in Sec. IV, is the
only regime where our hydrodynamic theory is reliable.

A microscopic theory incorporating this constraint is
easy to write (see Sec. III), but we first want to develop a
still simpler theory based on hydrodynamic equations.
Such an approach has a long history of useful applica-
tions in systems of higher dimensionality, but we are
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not aware of any previous development of it for (quasi-)
one-dimensional systems. Instead of the microscopic
wave functions, one bases this theory on more macro-
scopic quantities that are described in terms of a few
"collective-coordinate" variables. The analogue of (1) is
to write the density as

n(x)=g n (x), (3)

where

n (x)=n (x)N (X) . (4)

asI . aj.+ =0, (5)

where 5p =e6n with e (0 an electron's charge, and j
the 1D current density. Second, there is a (linearized)
equation of motion:

Here the summation over a runs (as it shall henceforth)
only over the s subbands that are partially occupied, i.e.,
over those a that satisfy c & E~, where EF is the Fermi
energy. The N (X)= ~% (X)~ and satisfy

f d XN (X)=1. They describe the transverse distribu-
tion of charge within a given subband. The density along
x is given by n (x)=n +5n (x), which we separate into
an equilibrium value, n, and a deviation 5n (x).

The hydrodynamic model consists of a set of phenome-
nological equations that allow the calculation of 5n (x, t )

and some related functions. First, there is the equation of
continuity:

, ag.j (x, t)=n e (9)

Together, (8) and (9) guarantee that (5) is satisfied. Next,
eliminate j between (5) and (6) to find

n e M
+/3 5

at2 ~ Ox2
(10)

Then, since we are looking for an eigenmode, we write

( t) g (q)e+i(qx cot)—

and note that the 10 transform of the Coulomb potential
1S26

dx e '" =2%0 q X (12)

where I( o is a modified Bessel function of zeroth order.
Incorporating (8), (11),and (12) into (10) yields

(0i' —/il'q')g (q)=g V (q)0i' g (q), (13)

where co =n e q /m and

V .(q)= fd'X fd'X'N (X)

X2K0(Iq I IX —X'I )N. (X') (14)

is the dimensionless, real-valued, symmetric matrix
describing the Coulomb coupling between electrons in
difFerent subbands.

If we define y (q)=(n )'~ g (q), we obtain an eigen-
value equation for co,

~j n e, ~~p
E —P

Bt m Bx
0i y (q)=g r (q)y (q),

a'
(15)

which attributes the acceleration of electrons to direct
electrical forces and to density gradients. The spatial
dispersion parameters /3 have the units of speed, and
their values will be chosen later. The E in (6) is the
component of the total electric field directed along the
wire and averaged over the cross section of the wire:
E (x)= fd XN (X)x.E(x). The full x.E is found (in

the electrostatic limit) from x E= —B4/Bx, with the sca-
lar potential given by

4"'(x)=N'"'(x)+ f d x', 5 (x')
[x—x'/

(7)

where we have separated the total N into external and in-
duced parts and 5p =g 5p . Equations (5)—(7) and re-
lated definitions form a closed set and specify our hydro-
dynamic model. The key approximation lies in (6); its
mathematical and physical content will be gradually re-
vealed through the rest of the paper.

We begin by finding the eigenmode solutions of (5)—(7).
To this end, set N'"' to zero and introduce the displace-
ment (or strain) field g (x, t), which is related to 5n (x, t)
by

~ a
5n (x, t)= n-

x

We can also express the current density in terms of g:

in which the kernel,

I (q)=P q 5 ++0i V (q)+co ~,

q)„(q)=+8„'y (q)=+B „y (q), (17)

and has eigenmode frequency A„(q). Working back
through the algebra, one can also say that for the pth
plasmon mode the Fourier amplitude of the displacement
field in the ath subband is

1
0 i /2 ~P ~P(n )

(18)

We will solve numerically in Sec. IV a model that has
s =2 occupied subbands. To give some analytic insight
here, we simplify (13) by assuming that the N are identi-
cal so all elements in the matrix V, (q) have the same
value, V, (q) )0. Then (13) becomes an eigenvalue equa-
tion with a separable kernel and the eigenvalue cu obeys

is Hermitian and, hence, is diagonalized by an orthogonal
matrix:

n25„„,= y a„-.'r. ..a.,„, , (16)
a, a'

with B"=B '. The collective coordinate of the pth
coupled plasmon mode (for p = 1, . . . , s) is defined by



6592 BERNARDO S. MENDOZA AND W. L. SCHAICH 43

2

1/V, (q) =g =F(co2),
~2 P2q2

(19)

whose solutions are easily visualized by graphical means.
In Fig. 1 we schematically illustrate a case with s =5 oc-
cupied subbands. The one solution whose co is greater
than all the f3 q we call the Q1D plasmon. It is always
present and everyone's theory has it. The other solutions
are "trapped" between successive values of 13 q and are
only present if s ~2. These additional modes were first
discovered theoretically by Lee, Ulloa, and Lee, who
called them slender acoustic plasmons. They have re-
ceived less attention ' ' ' because they require
multiple-subband occupancy, but they are a novel feature
of Q1D systems since there alone do they avoid Landau
damping. The analogue of (18) for a system with
V .~V, is

g'"'(q) ~ [Q (q) —P q ]

20

which has all the qualitative features described by Lee,
Ulloa, and Lee. Specifically, for the Q1D plasmon mode
all the g 's have the same sign, while for the remaining
s —1 modes the sign of g depends (only) on whether
Q„(q) is bigger or smaller than P q. The in-phase motion
of the subband plasmons in the Q1D plasmon mode im-
plies that it will more strongly interact with perturbing
charges or fields than will the other modes whose sub-
band motions are partially out of phase.

To make this last claim quantitative we return to the
formal development of the hydrodynamic model. We
want to move from a classical mechanical equation of
motion, such as (13), to a quantum-mechanical Hamil-

tonian description. ' Begin by considering the classical
Hamiltonian

H= f d x—,'mg N (X)n
Bg t)g'

t) t t)x

2

5n (x)5n .(x')
+ d'x d'x' g2 ~x —x

'r

= f dx-,'myn'. t)g t)g

Bt t)x

2

+ f dx fdx'g 5n (x)V .(x,x')5n (x'),
a, n'

(21)

where

V (x,x')= f d Xf d X'N (X), N (X') .
x x

(22)

Applying Hamilton's equations of motion [using (8)]
yields

r

+e n g f dx' V (x,x'), (x')n

(23)

If we assume a solution of the form (11), (23) reduces
quickly to (13), so the H of (21) is an equivalent represen-
tation of the hydrodynamic model.

We next quantize this Hamiltonian. If we replace
g' (x, t) with

[1/(n )'~ ]g 8 rj„(q, t),

10—

I ~

I

I ~

we obtain (with overdots denoting time derivatives)

H= g g [g„(q)rl„( q)+Q„(q)rI„(—q)g ( q)], —
)M

(24)

which is of harmonic oscillator form and can be quan-
tized by writing

1/2

g„(q)=
2mLQ„(q)

[a (q)+a„( —q)) (25)

—10
10

Fi~ (meV)

I I I I

15
and imposing the commutation relations

„{q), t.(q')]=5„„.5, [~„(q), „,(q')]=0 .

Then (24) becomes

(26)

FIG. 1. Superimposed plots of the left- and right-hand sides
of Eq. (19) vs frequency at q =10 cm '. System parameters are
from Ref. 27 and incorporate an I*and a background Eo. The
vertical dashed lines are the asymptotes of the divergences; their
locations are set by co=P q for cr=1,2, 3,4, 5. The horizontal
line is c,o/V, (q) and the circles are the solutions of Eq. (19).

H=g g A'Q„(q)[a„(q)a„(q)+ —,
' ],

q p

(27)

where the caret is a reminder that H is now an operator.
Working back through the algebra, we can also write the
electron density as an operator:
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M(x, t)=g ( iq—)e'~"g N (X)(n )'

x Ta.
2mLQ„(q)

1/2 2

2~e (n /d) q in two dimensions,
m

4~e (n /A )
in three dimensions,

(35)

(~' P'.q')4—
, l(q) = y V.. ll. (,q,)~'.4. 1(q,»

a', I'
(29)

X [a„(q,t )+a„(—q, t )], (28)

which can be used to determine how the plasmons scatter
single electrons either inside or outside the wire.

We will demonstrate the utility of (28) in the next sec-
tion, but to end this section we briefly describe how our
analysis may be generalized if more than one wire is
present. We assume the wires are identical and parallel
and that there is no tunneling of electrons between them.
Then the only change in (13) is the appearance of indices
to indicate which wire is meant:

which are the standard bulk plasmons in two and three
dimensions. The opposite order of limits, q =0 and
Q ~0, gives zero, which shows the strong anisotropy of
the wire array even in the long-wavelength limit.

III. LINEAR RKSPQNSK

We now consider how a single-wire system responds to
a weak external perturbation. Formally the Fourier com-
ponent of the induced density may be written as

(6n(,x co)) = f d x'X( x, x'; co)
V'"'( x', co), (36)

where

V (( (q)= f. d Xf d X'N (X X()—
~2~.(lql IX—X' )

XN (X' —X( ), (30)

and there are several theoretical paths to the susceptibili-
ty X. Perhaps the easiest, given (28), is to use the Kubo
formula,

X(x,x';co)= . f dre' '(([ M( x, t), M( x', 0)])),
-0

and X& is the location of the 1th wire in the (y, z) plane. If
the array of wires is periodic, we can assume

(31)

(37)

where the square brackets denote a commutator and the
double angular brackets denote a thermal average. A
simple reduction leads to

which converts (29) to

(co' —P" )g (q)=g V (q)co'g (q),

where
—.g.(x, —x(, )

V (q)=pe ' ' V, , (q)
I'

(q) .

(32)

(33)

X(x,x', co) =—g e'~' 'g N (X)X (q, co)N (X')1

q a, a'

with

q'(n'. n'. )'"/m
Xa, a (q~~) —X +ay~a p

co —Q„(q )

(38)

(39)

Note that Eq. (32) has the same form as (13). If the wires
are well separated and lql is not small, V (q) will be
dominated by the I'=i contribution in (33), which is the
V (q) of (14). The formal solution of (32), the infer-
ence and quantization of an effective Hamiltonian, and
the expression of the density operator in terms of
plasmon modes can be done in the same fashion as for the
single-wire case. ' Our only detailed comment concerns
the lql ~0 limit, where the elements of V, (q) all tend
to a common, divergent function V, (q). In view of (19)
this limit leads to the largest eigenvalue being at
co =V, (q)g co as lql~0. It is interesting to note the
specific limiting form as lql —+0 of

Clearly the response is singular when the driving frequen-
cy co matches an eigenvalue of the plasmons. Indeed,
within the hydrodynamic model developed here, those
are the only frequencies where energy absorption is possi-
ble.

To contrast this result with the predictions of a micro-
scopic theory, we review the random-phase approxima-
tion (RPA) for X. This is derived in a two-step process.
One first calculates the susceptibility, g, produced by in-
dependent particles. For wave functions of the form (1)
and with no intersubband transitions allowed, we find
that X ( x, x', co ) can be expressed as in (38), where

(q, co) =X (q, co)5 ~ with

2m/d lql in two dimensions,
V, (q)~ '

4'/A lql in three dimensions,
(34)

X'.(q ~)=
L

=2
k

(k'=k+q)
2(sk —Ek, ) —(A'co)

where d is the wire spacing in two dimensions and 2 is
the unit-cell area of the wire array in three dimensions.
Using (34) yields, for zero transverse wave vector and
q~0,

where ek =A' k /2m and fk is the Fermi occupation
function. The outside factor of 2 is due to the sum over
spin. Evaluation of g at zero or finite' temperature is
straightforward.
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=y'( V'"'+ V(5n ) )

=X'(1+VX) I""' . (41)

Thus y is to be found from the solution of the integral
equation

In the second step one invokes a mean-field argument
to write (schematically)

( 5 ) —+yext —+0@tot—+0( yext+ yind )

We assume the probe electron moves in the y =0 plane
(where the wire also lies) and refiects "specularly" from
the wire at t =0. The probe's velocity is described by
v(t)=(v„, O, v, sgnt). To match the model in Sec. IV, the
wire is presumed to have negligible thickness along z, so
the transverse states are only nontrivial functions of y.
Incorporating these assumptions into (46) and forming its
time Fourier transform, we find, at z =0 and averaged
over a transverse state, that

x=x'+x'~x . (42) Ct'"'(x, co)=—g e'q"f (q, co, v),
q

(47)

co /e
x"."(q ~)=

2 /32q 2 (44)

Thus, to the extent that (44) mimics (40), our hydro-
dynamic theory will be reliable. To aid this comparison
we choose the /3 's so that at zero temperature the two

g 's agree as u —+0 and as co~ ~. This is accomplished
by setting /3 equal to the Fermi velocity of electrons in
the o.th subband:

' 1/2
2

(E~ —E )

Only in one dimension can a single choice of /3 repro-
duce both the high- and low-frequency limits of g .

However, the choice of the P does not restore the con-
tinuum of single-particle excitations missing in (44). To
show the consequences of this omission we examine a
simple electron-energy-loss spectrum (EELS) in which an
external electron is bounced off a single wire. This is to
be thought of as a gedanken experiment; allowance for
the many additional complications of a real experiment is
given elsewhere. ' We will calculate the EELS assuming
long-range dipole coupling and a fixed trajectory for the
probe electron. As with g, there are several possible
theoretical approaches and all of them need an expression
for the external potential produced by the probe. Using
(12) this may be written as

q&ext(x t )
e y iq(x —x(t))
L

X2KO(~q~ [[y y(t)] +[z —z(t)]2I'~ ) . —
(46)

In a RPA theory the coupling function V is simply the
Coulomb potential energy between two charges. The se-
parable form of g leads to an easy solution of (42). We
find that g can also be written as in (38) with

X.,'. (q, ~) =X'.(1 —e'V 7').,.', (43)

where the matrices are indexed by the (occupied) a's and
V (q) is given by (14).

A hydrodynamic calculation of y can be done along
the same lines. The second step will be formally identi-
cal, so we only need the hydrodynamic g . This function
is readily found from the basic hydrodynamic equations.
(5)—(7); we simply do not separate 4"'. The answer again
has the form (38), but now with g ' .(q, co)

(q, co)5 ., where 1/2fin'
H'(co)=e'g giqf (q, co, v)QB „ 2mLQ„q

X [a„(—q)+a„(q)]
=g gM „(co)[a„(—q)+a„(q)] . (5O)

Combining (27) and (50), we have the so-called driven bo-
son model, whose solution is well known. ' The probabil-
ity at zero temperature of a single loss event over the
course of the trajectory can be expressed as

P, = f dco f dq P, (q, co), (51)
0 QO

where

Pi(q, co)= g ~M „(co)~ 5(co —0 (q)) .
L

2~6
(52)

Allowance for finite temperature and for multiple losses
and gains is also easily done in this model, ' but we
stop at this level in order to compare with a linear-
response estimate.

The latter is found from the dielectric theory of
EELS. This proceeds by first finding the induced charge
density due to @"'. With the same assumptions as for
the driven boson model, we obtain, from (36) and (38),

(5p(x, co)) =—g pe'q X (y)5(z)p (q, co, v),1

q a

where

(53)

p (q, co, v)=e gy (q, co)f .(q, co, v) . (54)

One next calculates the work done against the probe

with

f (q, cov) =f d yN (y) f dt e

X2KO[lql(y +v, t')' ] (48)

is the quantity that perturbs electrons in the ath sub-
band.

The simplest way to find its effect in the hydrodynamic
model is to combine (46) and (28) into a time-dependent
perturbation

H '(t)=e f d x M(x, O)tIx'"'(x, t), (49)

which at frequency co appears as
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charge by the field produced by the induced charge densi-
ty:

40

W= — dt v t .F'" t

where

(55)
30

F'" (t)= —eV@'" (x) „ (56)

The connection to the loss probability in (51) comes from
writing

20
3

W= f dcofico j dq P&(q, co) . (57) 10

2

X —Im y (q, co)

Xf (q, co, v), (58)

where Im denotes "imaginary part of." A numerical
comparison of (52) and (58) will be developed in the next
section.

After some straightforward algebra we can identify, as
the linear-response estimate of P, ,

2

P&(q, co)= g f (q, co, v)
2~%

2
q (10 cm ')

FIG. 2. Dispersion of the intrasubband plasmons for a sys-
tern with two partially occupied subbands. The microscopic
RPA results are the solid lines, while the hydrodynamic predic-
tions are the dashed lines. Also shown as the vertically striped
area is the region of allowed single-particle excitations; the gap
through the middle of it is crucial for the existence of the lower
plasmon mode. See text for specific parameter choices.

IV. MODEL CALCULATION

X (X)=—5(z)sin y+—2 2 cx& a
a a 2

(59)

In order to illustrate quantitatively the strengths and
weaknesses of our hydrodynamic model, we set up a de-
tailed calculation using typical parameter values. The
potential well confining the electrons to the wire is
presumed to have a rectangular cross section of extent

0
a =400 A in the y direction and much narrower in the z
direction. The barrier shape is that of an infinite square
well, so

come meaningless. We did not plot the microscopic RPA
modes over their full q range of existence because they
move indistinguishably close to the continuum boun-
daries. The upper mode never actually touches the
boundary, but the lower one does make contact and
stops at the end of the gap in the single-particle continu-
um, which occurs here at q =7.4 X 10 cm ' and
Ace=50. 6 meV. Of course, the hydrodynamic model
misses these subtle behaviors at large q.

To compare the different solutions further, we also
consider their estimates of the gedanken EELS derived in

where a=1, 2, etc. With InSb in mind, we replace the
free-electron mass m with m *=0.014m and screen fac-
tors of e to e /go, where co= 17.7. The transverse
bound-state energies, measured from the bottom of the
well, are then

1.5
I

1.0—
A' (a~/a )

2m
(60)

and we choose the Fermi energy so two subbands are par-
tially occupied and contain a total 1D density of
n =1.6X10 cm '=n, +n2. This requires EI; =89
meV, while the subband parameters are E =16.8 (67.3)
meV, n =1.03 (0.57) X 10 cm ', and /3 =13.5
(7.9) X 10 cm/s for a = 1 (2).

Figure 2 compares the hydrodynamic and microscopic
predictions of the two plasmon modes that can exist in
this system. In the small-q limit the agreement is excel-
lent, by design. At larger q, specifically as the microscop-
ic dispersion curves bend upward to avoid the single-
particle continuum, the hydrodynamic predictions move
directly into these regions of Landau damping and be-

0.5

0.0
4 6

q (10' cm ')
10

FICz. 3. Coupling function 6 vs wave vector q. The solid
lines are microscopic RPA results and the dashed lines are hy-
drodynamic predictions. The stronger 6's correspond to the
upper modes in Fig. 1 and the weaker 6's to the lower.
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X g 6' )(q,p)5(co —Q„(q ) ), (61)

with

e q /cp
P(H)(q p )

— g(no )1/2B 2

2m *Q„(q)
(62)

versus

e /Cpp(RPA) ( ) f2(
2~4'

Xg b, ( '(q, p)5(co —Q„(q)), (63)

with

g(RPA)( q
Bg

tt)=A (q)
(64)

where

(65)

The 6' 's describe the residues of the poles in 1/g; we
are ignoring the smooth contribution of single-particle
excitations to (58). To avoid choosing a particular v, we

Sec. III, or, more precisely, the strength of the 5-function
peaks in the EEL spectrum. This comparison can be
simplified if one neglects the (weak) ct dependence of the
f (q, co, v) in (48). Then the quantities to contrast are

e /Eo2

PI"'(q, ~)= f'(q, ~, v)

compare in Fig. 3 the hydrodynamic and microscopic
RPA predictions of A. Again, the agreement is excellent
in the low-q range, but serious discrepancies develop for
the same q where the mode dispersions differ. The range
of q plotted is greater than in Fig. 2 to show how at high
frequencies the microscpic coupling to plasmons becomes
negligible because most of the absorption strength is go-
ing into the single-particle continuum. Indeed, the
difference at a fixed q between the hydrodynamic 6 and
the microscopic one is a measure of the importance of
such excitations. As for the EELS, the comparison be-
tween the two theories is better than Fig. 3 would suggest
because f ~

varies roughly as q, so the P, 's are largest
in the low-q region, where there is a common prediction
of A.

A final point to note about Fig. 3 is the larger size of 6
for the upper mode than for the lower. This feature is
easy to understand in the hydrodynamic model as being
due to the relative phase of the charge motion in the
different subbands. From the general discussion in Sec.
II, we expect and find that B,„/B2„ is positive for the
upper mode and negative for the lower, thus rationalizing
the di6'erent magnitudes of 6' ' calculated from (62). A
similar qualitative argument has been made before in a
microscopic theory, ' but it could not be used for quanti-
tative estimates. Such a possibility is one of the special
advantages of the hydrodynamic model.
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