
PHYSICAL REVIEW B VOLUME 43, NUMBER 1 1 JANUARY 1991

Order-parameter vibrations in the NbTe4 charge-density-wave system
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A Landau theory is used to determine the order-parameter vibrational modes in the high-

temperature incommensurate charge-density-wave phase of NbTe4. The dispersion relation is
found to exhibit a soft mode consistent with the occurrence of a continuous incommensurate-to-
incommensurate phase transition. The single-column case, which is mapped into the amenable
form of a two-component Schrodinger equation with a periodic potential, is used to construct a
three-dimensional model in terms of a lattice of coupled one-dimensional columns.

I. INTRODUCTION

Materials exhibiting charge-density waves (CDW s)
provide a rich environment with which to study mod-
ulated phases both theoretically and experimentally.
Among the structurally simplest of these materials is
the metallic, tetragonal compound niobium tetratel-
luride. Its relatively strong intracolumn interactions ef-
fect a quasi-one-dimensional system where translational
symmetry is broken by the formation of CDW's along
columns of ions. It is believed that the interplay be-
tween the columnar charge-density waves is responsible
for the observed variety of phases, ranging from a high-
temperature normal structure, through two incommen-
surate phases, down to a low-temperature commensurate
structure. ~

The behavior of NbTe4 offers, in particular, the rela-
tively unusual opportunity to study an incommensurate-
to-incommensurate phase transition. Initial theoretical
work indicates that the transition is continuous: As
the temperature is lowered, the effective coupling be-
tween columns becomes weaker and weaker until the
high-temperature incommensurate phase becomes unsta-
ble with respect to a modulation characterized by a par-
ticular wave vector, bringing about the second incom-
mensurate phase. From a dynamical viewpoint, such a
transition suggests the possibility of a soft mode. In
this article, we study the possibility of such a soft mode
at the incommensurate-to-incommensurate transition in
NbTeq, and, more generally, study order-parameter vi-
brational modes in an incommensurate charge-density-
wave system.

Our approach uses a phenomenological free energy
having the symmetries of NbTe4 (Ref. 1) and is based
on an order parameter that characterizes the displace-
ment modulation as measured from the normal-state
displacements. In its one-dimensional form, applicable
here to a charge-density wave on an isolated column
of ions, the model has been well studied in other con-
texts, particularly that of the layered transition-metal
dichalcogenides. Through the Landau model, the in-
corporation of higher harmonics —in addition to the sinu-
soidal modulation first used to describe the incommensu-

rate state —led to a better understanding of the incom-
mensurate state and the nature of incommensurate-to-
commensurate, or lock-in, transitions: As the transition
is approached, the higher harmonics deform a sinusoidal
structure into one of commensurate domains separated
by localized objects, termed discommensurations. This
picture will prove useful in our study of the collective
modes (by which we mean, as is common in the litera-
ture, order-parameter vibrations) in NbTeq.

Collective modes have been discussed in charge-
density-wave systems before, most particularly for the
dichalcogenides, for one-dimensional models, and in the
theoretically appealing limit of only considering phase
modulations of the order parameter (where the model is
exactly soluble). i4 is This work presents a dilTerent tech-
nique for calculating the modes, and specifically consid-
ers NbTe4, its three-dimensional properties, and the soft
mode. Our approach is entirely mean field and so fluctu-
ation effects are not accounted for. The one-dimensional
study serves to introduce a method akin to a Schrodinger
equation for a two-component particle in a. periodic po-
tential, which is then amenable to Bloch-state analy-
sis. A major consequence of the method, not present
in other approaches, is the manifest way in which the
band-gap structure arises as a function of the period-
icity of the commensurate domains rather tlian the pe-
riodicity of the order parameter. The two-component
formalism has been used before in charge-density-wave
systems, but this is the first that we know of within the
context of analyzing the vibrational degrees of freedom.
The method is not limited to the specific Landau energy
considered here for NbTe4 and can be applied to cer-
tain other systems with incommensurate phases as well.
Also, our one-dimensional results, obtained in a certain
incommensurate region of the phase diagram, allows an
analytic foothold with which to understand earlier nu-
merical results.

In three dimensions, we model NbTe4 by introducing
interactions between neighboring columns. The approach
introduced for the one-dimensional (1D) columnar case is
easily extended to this 30 system. The high-temperature
incommensurate phase has a phason mode whose veloc-

ity tends towards zero as the temperature is lowered.
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In addition, the frequencies of certain modes in the re-
ciprocal space basal plane tend towards zero. A con-
sideration of possible alternative transitions is made in
terms of the coupling constants of near-neighbor inter-
actions. One possibility in particular in which a certain
soft mode drives a transition into a low-temperature in-

commensurate phase compares favorably with observa-
tions. We find that our model is consistent with the
incommensurate-to-incommensurate transition and that
we expect to see a soft mode as the transition is ap-
proached.

We begin with a review of the phenomenological the-
ory of the one-dimensional model (Sec. II), then map the
problem into the two-component Schrodinger form, em-

ploy conventional Bloch-state analysis (Sec. III), and dis-
cuss the vibrational modes at the zone center and bound-
aries as measured from the static incommensurate wave
vector (Sec. IV). We step up to three dimensions (Sec.
V) by including in the free energy an intercolumn in-

teraction, which is considered weak and treated pertur-
batively. Since the effective coupling strength between
nearest-neighbor columns goes soft as the commensurate
structure is approached, further-neighbor terms are in-
troduced (Sec. VI) and these lead to a discussion as to
whether a soft-mode drives the transition to a second in-
corrunensurate phase or whether the crystal becomes un-
stable under homogeneous phason strain. We conclude
with a phenomenological inclusion of dissipative effects
and describe where in reciprocal space one expects to see
such soft modes.

II. NbTe4 AND THE PHENOMENOLOGICAL
THEORY

u(z, t) = Im[e'~'g(z, t)j. (2.1)

As the temperature is lowered from the normal to the
incommensurate phase, a modulation characterized by
the wave vector q = Q+ bl appears. For this continuous
transition, the magnitude of @ is small, and its spatial
dependence is approximately exp(iblz), where bl is ob-
served to be on the order of 3% of Q.2" From the space-
group symmetry of the column in the normal phase, the
Landau free energy for an isolated NbTe4 column is

perature is lowered, the presence of charge-density waves
alters the c-axis periodicity and the size of the basal-plane
unit cell. A high-temperature incommensurate phase
above 150 has a ~2a x ~2a basal-plane unit cell and a
low-temperature incommensurate phase between 150 and
50 K has a 2a x 2a basal-plane unit cell. Below 50 K,
a commensurate state with a trimerized distortion along
the c axis and a 2a x 2a basal-plane unit cell is stable.

For structural purposes, niobium tetratelluride acts as
a two-dimensional grid of loosely coupled columns. We
will focus on the low-frequency longitudinal distortion
modes in which the tellurium atoms follow the motion of
the niobium ions. It is then sufIicient to chronicle only
the position of the niobium atoms. We treat a column
as a one-dimensional lattice of niobium ions and will first
study the phase diagram and distortion modes for that
system. In the trimerized corrunensurate state for a single
column, the displacements of the niobium ion at a point
z may be written u(z) = a sin(Qz), where Q = 2c'/3 and
c' = 2'/c. Variations from this may be incorporated by
introducing a complex time- and space-dependent order
parameter g(z, t) that spatially varies slowly with respect
to the commensurate modulation,

The crystal structure of NbTe4 in its normal a x a x c
state above 790 Ik is shown in Fig. 1. %hen the tem—

FIG. 1. A basal-plane projection of NbTe4 in the average
structure with unit cell a x a x c (lail = la2l = a). The
shaded circles represent the Nb ions at -c and -c; the smaller
solid and open circles represent Te ion at z = 0 and c/2,
respectively. The ~2a x ~2a (dashed line) and 2a x 2a (solid
line) unit cells are outlined.

(2.2)

This one-dimensional prototypical model has also arisen
previously in a different context. ' ' The coefIicients
depend on the material and on experimental conditions,
and we assume that p ) 0 and v oc T —To, where To is
the normal-to-incommensurate phase transition temper-
ature. Although length can be scaled so that the constant
bl —1, we will frequently use bl for clarity. The tem-
perature and quartic terms are responsible for symmetry
breaking, l@l g 0, and the gradient term favors incom-
mensurate modulation. The cubic term encourages the
phase to lock in to a fixed value, thus breaking global
phase (gauge) invariance.

By varying the free energy, the minimizing solution @0
is found to obey the equation

(2.3)

The phase diagram as a function of p and v is given in
Fig. 2.i2 is The three phases are (N) normal: @ = 0; (C)
commensurate: $0 ——A, e' ~" with A, a p, v dependent
constant, and n = 0, I, 2; and (I) incommensurate:
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E~=g dzRe,* z ~ z (2.5)

where g is g~ for nearest neighbors, g2 for next-nearest
neighbors, etc.

In the following sections, we will look at the distor-
tional modes in both the one- and three-dimensional
models.

I

l

\

1

l)
L 21

III. FORMALISM FOR THE DYNAMICS
IN ONE DIMENSION

We consider the vibrations ((z, t) about the static so-
lution,

'tt'( t) = ~o(') + ~(' t) (3 I)

FIG. 2. Phase diagram for the one-dimensional charge-
density-wave system [Eq. (2.2)]. Solid lines represent first-
order transitions, and dashed lines represent second-order
transitions. The triple point (TP) lies at v = 0,
In three dimensions, an incommensurate-to-incommensurate
phase boundary (thin dashed line) arises separating a ~2a x
~2a basal-plane phase (I~s) with 2a x 2a basal-plane phase
(Ig ).

ibs ) sibtasy (2.4)

where b = b(y, v) is chosen to minimize F[g] and the P„
are real.

The incommensurate phase parameter b, which can be
thought of as the wave vector describing the periodic
array of discommensurations, changes as a function of
temperature from br at the normal-commensurate phase
boundary to zero at the incommensurate-commensurate
phase boundary, or lock-in temperature, if the latter
transition is continuous. The higher harmonics help
lower the free energy as the commensurate phase is ap-
proached, and they play an important role in the theo-
retical determination of the order of the transition.

Our approach for calculating the vibrational modes
in NbTe4 can be applied to other systems described
by a complex order parameter and a free energy fa-
voring an incommensurate state. The cubic term in
Eq. (2.2), arising here because of the space group of
NbTe4, also arises in the study of the layered dichalco-
genides. Other free energies, ~7 for example those describ-
ing ferroelectrics, ~8 replace the cubic and quartic term in

(2.2) with p„Re@~"+ lgl ", and can also be analyzed
with the formalism that we present in the next section.

The three-dimensional properties of NbTe4 are mod-
eled by the introduction of intercolumn interactions. The
lowest-order term consistent with the symmetries de-
scribing the interaction between two columns i and j is

Expanding the free energy and a kinetic term to second
order in (, we determine the Lagrangian governing the
dynamics of g(z, t) to be

l:[g] = dz —M — F[(],
(2 Ot )

(3 2)

FK] = d [ vl( &+b~)CI'+ I&l' —-'(@of'+ @lC')

+21@.l' I&I'+ —,'(@.'&'+ @"&')] (3 3)

M is the effective mass per unit length of the charge-
density wave. Since the original free energy contains
terms higher than quadratic in the order parameter, the
dynamics of g depend on the static field. For the normal
and commensurate states, go is independent of z and the
collective modes are easily found using a method similar
to that presented below.

For the incommensurate state analysis, it is useful to
introduce the rotated fields P and (, go(z) + ((z, t) =
exp(ibz) [P(z) + ((z, t)], a two-component vector

& g(z, t) )
& &'( t) ) ' (3.4)

F =
z Jdz=MH:-M

with the "Hamiltonian" operator

H [z, P(z)] = p(i V'o., + bi —b)' + v + V(z),

(3.5)

(3.6)

( 2IPI~ P~ —3e
+

(3.7)

The Hamiltonian is periodic in z with period A/3

and a corresponding 2 x 2 matrix notation. The sub-
script M indicates that the vector is in Majorana form,
self-conjugate under "charge" conjugation. If I~ is the
complex conjugation operator and o;, i = 1, 2, 3, are
the Pauli matrices, then the Majorana form implies
&&I&=M = -M. Rewriting the free energy we find
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2x/3b, is Hermitian and, since P (z) = P(—z), commutes
with O.~K. The equation of motion is

M D
2 -M(z, t) = H[z, g(z)]:"M(z, t). (3.8)

Because of the off-diagonal elements of H(z) that cou-
ple ((z, t) to ('(z, t) in Eq. (3.8), time dependence cannot
be simply chosen as $(z, t) = exp( —iut)((z). To pursue
t;his, let us first investigate the static general solutions of

M
,, =-'(z &) = H[z &(z)]=-"(z &) (3.10)

can be taken as the usual oscillatory ="(z, t)
e ' ""(z), and the Majorana form (3.4) that we seek
is obtained by projection using

( ) ~&
("( ) + i —iotas

(3.11)

Since ="(z) has the spectrum El, , and the spectrum
is not changed under the projection (3.11), order param-
eter vibrations f(z, t) will have the identical spectrum
&M~ = Ey, albeit half the degrees of freedom. In par-
ticular, the location of the zone boundaries and the size
of the band gaps for Bloch solutions are those dispersion
curves that we seek.

Two points concerning the time dependence are worth
noting. First, the phase of a Bloch state, defined as a
solution to (3.9), was chosen arbitrarily. Had one instead
chosen e' ="(z), it is easily seen that the projection (3.11)
can be written with t replaced by t —tp, 0 = ~tp. This
phase degree of freedom of the Bloch state corresponds
simply to a shift in the time coordinate. Second, time-
reversed displacement modulations are given by the two
states g" and orI~Q". This follows by substituting the
latter for the former into Eq. (3.11) and then commuting
or I~ with exp( —i~4) to find ((z, t)—

To summarize the above procedure of determining the
collective modes, one, given a static solution @o(z), ro-
tates by the phase exp(ibz) to find P{z), calculates all
solutions of Eq. (3.9), projects out using (3.11), reads
oK the component ("(z,t), and rotates back to find the
order-parameter vibrational state g(z, t) In the normal.
and commensurate phases, the rotations are not nec-

H[z ~(z)]=(z) = E=(z)

where = no longer has the restricted symmetry. Since
H is periodic, we can think of:-(z) as a two-component
"spinor" in a Schrodinger equation with a periodic po-
tential. Solutions can be chosen and labeled by a Bloch
momentum k g [—3b/2, +3b/2], and we can then write
:-"(z) = P e'~~ ~ )':-y sg . (The "band" index la-
beling different Bloch states with momentum k has been
dropped. )

Suppose the set of two-component solutions, which we
call Bloch states, can be determined. Then the time de-
pendence of the Bloch-state solution to

essary, since the order-parameters have no spatial de-
pendence. To investigate the incommensurate phase,
we assume P(z) to be known from the static field so-
lution, where numerical work has provided a good un-
derstanding of its behavior, and expand our
eigenvalue problem using Bloch states = (z) and V

f~ dz exp( —3ibmz)V(z) to find

—'M~2:-p sg =p[(k —3bm)mrs —(bi —b)]:-p sg

+ ).V~:-a-sb(n+~). (3.12)

This equation will be studied in the next section for the
incommensurate region near the normal phase and at
large p, a region which is analytically tractable and where
certain properties characteristic of the incommensurate
region are already apparent.

Before continuing, we mention the special case of the
zero-frequency solution. The degree of freedom that cor-
responds to the independence of the origin of the charge-
density wave in the incorrnnensurate state is the k = 0
phason mode, ~o the Goldstone mode of the broken trans-
lational symmetry. In our formalism above, one takes the
spatial derivative of the constraint equation (2.3), couples
it with the complex conjugate equation, and finds that
( oc g' is a solution of energy F = 0. This mode is par-
ticularly important for the later discussion of soft modes
in three dimensions.

IV. ORDER-PARAMETER VIBRATIONS
IN ONE DIMENSION

We begin with the one-dimensional study, applicable
to a single column in NbTe4, by discussing the spectrum
in the normal and commensurate regions of the phase
diagram.

In the normal phase, go ——0 and the frequencies
and collective modes are easily found. The vibrations
in the order parameter, up to a real coeKcient a, are
g"(z, t) = a exp'(kz —ut), where k is measured from Q,
have frequencies given by

M
2

= p(k —by) + v, (4.1)

and correspond to displacements u" (z, t)
=a sin[(Q+ k)z —ut]. The second-order transition at
v = 0 is evident: The lattice distortion with wave-vector
Q+ bl costs no energy to excite and a transition to the
incommensurate phase occurs.

The commensurate case, $0 ——A, exp(i2+n/3) with
A, = s4+[(s)~—(y+v)]i~~, is also straightforward. Modes
with frequencies

~r M~2 = 7(k + bi) + v + 2A,

+y (2yk)2 + (A~ —3A, )2 (4.2)

correspond to displacements (we set n = 0 for clarity)

A, sin(Qz) + a sin(Qz) cos(kz —ut)u z, t
A, sin(Qz) + a cos(Qz) sin(kz —cog).

(4 3)
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An understanding of the two branches is found by con-
sidering the variation Ku with respect to the ampli-
tude and phase of the order parameter g = Aexp(i0),
Ku = KA sin(Qz) + &0 A, cos(Qz). We then can see
that the higher-frequency branch corresponds to an am-
plitude modulation and the lower frequency branch to a
phase modulation, termed the amplitudon and phason,
respectively. In the incommensurate phase, it is custom-
ary to continue using these terms although they no longer
correspond strictly to phase and amplitude vibrations.

A. States at the zone boundary
and the single-harmonic limit

The modes can be found by solving a Schrodinger equa-
tion with a periodic potential with period 2x/3b deter-
mined by the static field solution. This implies a Brillouin
zone of size 3b and the usual band and gap structures.
We will investigate the nature of the states in the zone

I

center near Q (k = 0) in Sec. IV B, but first look at the
states at the zone boundaries.

To do this, we need the order parameter. It can be
obtained by taking the fundamental harmonic and from
(2.3) generating the sequence

@ (z) = eWz (y + e
—3ibzy + e+si6zy + )

(4 4)

AVe consider the purely sinusoidal incommensurate state,
or single-harmonic limit, and keep only the first term as
the static solution, valid for p )& 2 and —v/p(y —

2 ) «1.
The free energy in this limit is minimized when Po

———v

and b = bl. The static displacements u(z) = Po sin(Q+
bl)z are characterized by a wave vector Q + bl, which
has no particular rational ratio with respect to the wave
vector Q of the commensurate state.

For states near the zone boundary, we neglect terms of
order g—v/p in Eq. (3.12) and solve a matrix equation
for the four coupled states to find the frequencies

qMu)2 = qp[(k —3b)2+ k2] —v

+(~4p2[(k —36)2 —k2]2+ —2v+ v' + ((vp)2[(k —3b)2 —k2]' ~ (—2v+ v')2 —v )'~ )' (4.5)

which we label 1 (highest frequency) through 4 (lowest).
The behavior of the bands near k = 3b/2 is sketched in

Fig. 3 (along with interpolated results from below).
At k = 3b/2, the four frequencies and the correspond-

ing displacement fields can be found using the prescrip-
tion Eq. (3.11) and are listed in Table I. The relative am-
plitudes of the vibrations depend on temperature through
the parameter o = —v/(g —9v/4+ g—9v/4+ v2). We
find that on top of the incommensurate charge-density
wave with wave number Q+ 6 is a long-wavelength mod-
ulation, which has four standing wave modes that consist
of mixed amplitude and phase vibrations.

B. The zone center and the two-harmonic limit

In this subsection, we again demonstrate the method
of Sec. III, now for states near k = 0 and in the two-
harmonic limit. This allows us to calculate energies and
states to a nontrivial order and therefore better under-
stand the limits of the first-harmonic approximation. It
will also provide a consistency check on our method via
the known symmetry form of the phason mode. We ex-
pect the two-harmonic approximation to be qualitatively
good for much of the incommensurate phase domain as
long as one is not too close to the commensurate bound-
ary where the effects of yet higher harmonics become
significant.

In Eq. (4.4), we let P i be of order Po2, drop higher-
order terms, and find the free energy is minimized with
the following consistent set (bl = 1):

-V
2 $-v'

do=1
&V —2)

(4.6)

(4.7)

2v

Q+ 6 Q+ —6
5
2

(4 8)

FIG. 3. Dispersion relations in an extended scheme near
the normal to incommensurate phase boundary. Frequency
and states near the zone boundary are given in Table I. Gap
sizes are given in first nonzero order in g—v.

This is valid in the incommensurate domain when p —
& &&

1

—v1, a good approximation near the normal-state phase
boundary away from the triple point. Numerical results
indicate that the ratio P i/Po goes from zero at the nor-
mal to incommensurate transition to approximately 3 at
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TABLE I. Frequencies and displacements for modes at q = Q+ 26 near the normal to incom-
mensurate transition. The a1, a2, a3, a4 && 1 are arbitrary real coeKcients. See text for definition
of ~.

-in~, = -pb —v+ g'—-v+ ~'—-'v+ v21 2 9 2 I g
2 4 4 V 4

-M4P2 —-Pi5 —V —g —-V+ g'—-V+ V
1 2 9 2 g / g
2 4 V 4

-M&3 ——-7b' —V+ Q —-V —Q —-V+ V
1 2 9 2 I g I g
2 V 4 V

9 I 9—ave& = —~to —V —~ —-V —~ —-V + V

ui(z, t) = g—v[1 + ai(1 + 0) sin(nit) sin(z 6z)] sin[(Q + b)z + ai(1 —0) sin(unit) cos(-6'z)]

u2(z, t) = g—v[1 + a2(l + 0) sin(u2t) cos(z bz)] sin[(Q + 6')z + az(1 —cr) sin(cu2t) sin(~ 6'z)]

u3(z t) = Q—v[1 —as(1 —o) sin(est) sin(-6z)] sin[(Q + b)z + as(1 + 0) sin(est) cos(26z)]

u4(z, t) = g—v[1 + a4 (1 —rr) sin(cu4t) cos( z bz)] sin[(Q + 6')z —a4 (1 + a) sin(~4t) sin(~ bz)]

the commensurate transition.
To this order the Hamiltonian is H = Hp + Hi, IIO-
~Q2

2iysV'+ v + 2P(~)

0o —34- i —34oe+"' —2iyev+ v + 2/20) '

(4.9)

Zt = yt. k —p + g(crt. k) + ~v~, (4.10)

(4.11)

Using a perturbation procedure that finds energies and
states of an approximate Hamiltonian, we find, for k not
too close to the zone boundary, the eigenvalues

under a translation. The amplitudon eigenstate can sim-
ilarly be computed:

((z, t) oc cos(kz —~t)e' '
~
1+ e (4.15)

At k = 0, a heuristic argument for this result can be
given. From the- static order parameter in the two-
harmonic approximation (P i ——P /Gp), one varies the
"amplitude" Po and finds the expression (4.15). In first
order, the solutions (4.14) and (4.15) correspond to phase
and amplitude vibrations of the order parameter. The
higher-order terms scramble this strict delineation.

The phason velocity for long wavelengths, c = u/k, is
easily found from our result (4.10):

p = v+2/'oI 1—
2V)

' (4.12) (4.16)

( 2y (3b/2)2 —k2 (4.13)

Only terms to order P~o have been kept, e.g. , Po/yb
Pzo/y, and we have left the solution in terms of P's be-
cause the harmonics' dependence on system parameters
will generalize in the three-dimensional case. Presently,
p = —v, and at k = 0 we find the expected zero-energy
phason state and the amplitudon with E = 2~v~. These
and our earlier results for states near the zone bound-
ary have been combined to produce the band structure
for the phason and amplitudon branches near the wave
vector Q + b. See Fig. 3.

The displacements are found from the 8loch-form
eigenstates of (4.9) and the prescription (3.11). For the
phason branch, we find (up to a real coefficient)

((z, t) oc isin(kz —~t)e' '
~

1—4o
3v

(4.14)

&t k = 0, this result can be checked with the symme-
try argument regarding invariance of the static solution

Although the two-harmonic approximation is valid near
the normal-incommensurate phase boundary, the de-
crease in the sound velocity is expected to continue as
the temperature (v oc —$2o) decreases.

V. ORDER-PARAMETER VIBRATIONS
IN NbTe4

Our picture for the NbTe4 crystal consists of a two-
dimensional a x a grid of columns extending along the e
axis, with a longitudinal distortional mode that fixes the
tellurium ions to the motion of the niobium. To lowest
order, the columns act as independent one-dimensional
charge-density-wave systems. As a perturbation, we now
introduce intercolumn inter actions considered weaker
than intracolumn interactions.

If near-neighbor interactions dominate further-
neighbor and long-range interactions, the lowest-order
Landau term describing the interactions and obeying the
crystal symmetries is
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~/ /I

F;„t—gi) dz Re g;g; + g2) dz Re y;q,
1' ij

III

+gs) dz Re g;g~ +. (5.1)

The single, double, etc. , primes restrict the sum to
nearest-, second-nearest-, etc. , neighbor sites. We first
consider only nearest-neighb or interactions. Minimiz a-
tion of the full free-energy then gives the variational equa-
tion

n~) np )

.Pz gi e
I'~—t i(k~n, ,a+&„nba)

if n~ + n2 is even

o sfnl +n2 is odd,

the equation of motion reduces to the
eigenvalue problem

ca
~ =.(z) ) q ca H(z+ A~) p

(5.5)

four- component

7(i&+&)'go, +vgo, t —-', 0o';+llo, tl'0o, *+giQ, '@o,~ = o,

(5 2)

+l&o(z) I'A(z) + 4~iso
l

z + — = o (5 3)
2

In the two-harmonic limit we find the Fourier coefFicients
and wave vector to be Eqs. (4.6)—(4.8) with the substitu-
tions v ~ v& ——v —4gi and p ~ yz ——y + 4gi/9.

To study the three-dimensional vibrational modes, the
methodology of the single-column study easily extends;
the resulting equation of motion is

2
2' = H[z, @o;(z)]:-;(z)+ gi):-,(z). (5.4)

H is the 2 x 2 matrix operator of (3.6) that depends
on the interaction coupling constant through the static
solution @o(z) of Eq. (5.3). Introducing plane-wave states

and solutions @o; to the variational equation can also be
expanded in the same general form as the single-column
case, Eq. (2.4). The weak interaction will only slightly
distort the shape of the columnar density wave. More
significantly, it will determine the relative phases of the
columns. We can describe the stable state of the crystal
by specifying the phases L;, which determine the relative
displacements of the charge-density waves along the c
axis, go;(z+ 4;).

If g y is negative, all columns will have the same phase,
and the resulting basal plane is 2a x 2a, which does not
agree with observation. For positive gi, the columns shift
their phase so as to minimize the free energy. Expand-
ing in a harmonic approximation about small 4; gives
an effective potential between two columns. A study of
F;z(b; —b,z) finds that the minimum energy solution
arises when A; —bz is A/2 (mod A).s This results in
two interleaved sublat tices of columns, the phases of the
odd sites (ni + ns odd) shifted by half the incommensu-
rate period with respect to the phases of the even sites
(ni+ n2 even) resulting in a ~2a x ~2a structure, as has
been observed. s 7

We can then write for the static order parameter of
the ith column labeled by ni, ntz (and now drop the
column superscript when otherwise clear), go;(z)
go [z + (ni + n2)A/2], where go is the solution to

y{iV'+ 1) go(z) + v@o(z) —z4'o(z)'-

club. ; I
M '- = —2Pgi) (b.; —4 ),c)t2

2

(5 7)

where we have introduced

Re f «go(z)go (z+ A/2)

I«
I @o(z)l'

The parameter P, a function of the system parameters
v, and gy, is one at the normal-to-incommensurate

transition and decreases toward zero as the temperature
is lower ed an d second and higher harmonics increase . In
terms of P, the frequencies are

cu (k, = 0) = (2 + [cos (k a) + cos (k„a)]).M
(5.9)

Not surprisingly, the minus sign solution is found to cor-
respond to the two sublattices of columns moving to-
gether in an acoustic mode, while the plus sign is for the
sublattices moving x out of phase in an optic mode. Also,
because of the factor P, we note that as the temperature
is lowered, the frequencies of all modes go to zero.

For k, g 0, we turn to perturbation theory. A direct
expansion about g ~ ——0, the free-column case, has the
consequence that "turning on" gi also perturbs H(z),
and so the zero-order solutions an d energies also change.
This leads us rather to consider the formal expansion
about c = 0. The zeroorder energies E„o are the eigen-(o)

values of H and are not the free column solutions; in par-
ticular there is no zero-energy eigenvalue. In this present
analysis, E„~depends only on k„since the k and k&

dependence is contained entirely in c.
The form of the interaction is such that a particular

c = 0 eigenstate on one column couples only to states on

where we have used the fact that the Hamiltonian (5.4)
for the even sites is identical to that of the odd sites ex-
cept that it depends on go(z) shifted by A/2 due to the
~2a x ~2a structure. Note that because of our method
the 4x4 Hamiltonian (5.6) has period A/3. The coupling
c:—2gi[cos(k a) + cos (k&a)) isolates the k, k& depen-
dence.

An elegant approach is available at k, = 0 if we con-
sider only ph ason degrees of freedom. The not at ion is

@o;(z) = @o((ni +nz)A/2+ A;). Expanding about small
we determine the equation of motion for the phase

displacements to be
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other columns. The largest contribution to the change
in the energy of a state due to the interaction comes
from a mixing with degenerate states on the four nearest
columns. To lowest order in g~ over the energy separation
between two zero-order states (where our expansion pro-
cedure is valid), we apply degenerate perturbation theory
to Eq. (5.6). I,et:-"'(z) be an eigenstate of H(z) (for any

band, whose index we do not carry) with eigenvalue E„
for the e = 0 case. Then we find for the frequencies

= E~( ) + 2gi [cos (k a) + cos (kva)]

x
I

e '"' ~ dz="'t(z):-"'(z+ —'A)
I

. (5.10)

Ek( ) = Et. + 2g2(cos[(k + k„)a]+ cos[(k —k„)a])

+2gs[cos(2k .a) + cos(2k&a)], (5.11)

By considering the dependence of the displacements u
on the corresponding Bloch states, it is found that the
solution with the plus sign corresponds to a vibrational
mode with the columns moving in phase and the minus
sign to the columns moving out of phase.

We have seen how in the case of only nearest-neighbor
interactions that, as the temperature is lowered and we

approach the corrunensurate part of the phase diagram
(Fig. 2), the frequencies of all modes in the basal plane go
to zero. This is consistent with the observation that the
eRective restoring force between columns becomes weaker
and weaker. The following analysis applies only to the
lower part of the phase boundary where the transition
is second orderiz and our mode analysis can provide in-
formation about the transition. The conclusion that all
modes go to zero simultaneously is unphysical, although
it does indicates a possible instability of the ~2a x ~2a
phase. To break the degeneracy, second-nearest neighbor
interactions must be considered as their restoring force
becomes comparatively more important. In the case that
this is still not suFicient to completely determine an out-
come, the eRects of third-nearest neighbors must be con-
sidered, and so forth. We wish to see if there exists a
particular soft mode that drives the second-order phase
transition to the low-temperature incommensurate state
and what our model can say about the phase structure.

After adding interaction terms between second- and
third-nearest neighbors to the free energy, the earlier
methods can be used with only slight modification. [To
describe the incommensurate (and commensurate) phase,
it has been determined that both gq and g2 must be
positive. ] There is a simplification because of the fact
that for the ~2a x ~2a phase, the phases of the charge-
density-wave on the second- and third-nearest neighbors
from column i is that of column i, as opposed to m out
of phase as in the nearest-neighbor case. The variational
equation is Eq. (5.3) with v ~ v + 4(g2 + gs). The cal-
culation of the frequencies is repeated, and we again find
Eq. (5.10), now with

where Ei... an eigenvalue of H[z, go(z)], depends
on g2 and g3. For example, near the normal-to-
incommensurate phase boundary, EI, , for I-, 0 in the
two-harmonic approximation, is Eq. (4.10) with k set to
k, . Similarly, at k, = 3b/2 in the single-harmonic ap-
proximation, the four solutions are

9 ~ ~ 3 (3$ol
Et, =segz= 4m~'+v+24o+24o+ I

2 I +4'o

(5.12)

In both cases, the coefFicients Po, P i are now functions
of vz ——v —4(gi —gq —gs) and yz ——p+ 4gi/9.

In the search for a soft mode near the commensurate
transition, we restrict ourselves to the basal plane in re-
ciprocal space, since this is where such a mode would
arise. At low temperatures in the incommensurate do-
main, higher harmonics play a more important role, and
calculating E„(k,= 0) analytically is difFicult. Rather,
we use the symmetry of the k, state and expand about
small variations in the phase of the order parameter for
each column as was done for the nearest-neighbor only
case. This approach contains the following approxima-
tion. Since the interaction couples free-column states
with states of other columns, we are neglecting through
consideration of only the variation of the CDW phases
the interaction to any states other than those states on
each column with the lowest frequency. For example, the
matrix element between the lowest band solution on the
ith column and second-lowest band solution on the jth
column is neglected, as was not done, for example, when
we calculated Ek. This amounts to neglecting terms on
the order of g~ over the energy separation between the
two lowest nondegenerate states on diRerent columns. As
the temperature is lowered, v becomes larger, and so for
small intercolumn coupling g this approach is expected
to be good.

We continue as before and include terms from the
second- and third-nearest neighbor. As with the nearest-
neighbor case, the coupling constants for the second- and

2+Bi —Al 2+ 21

++1 +1 2 ++1

FIG. 4. Basal-plane projections for the two incommensu-
rate phases of NbTe4. (a) ~2a x ~2a and (b) 2a x 2a. The
quantities label relative c axis displacement of the charge-
density wave for each column. A is the period of the discom-
mensnrations, and Ai (( A/2 is a small phase shift.
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third-nearest-neighbor terms are again modified. Since
the interaction in this case is between two sites with the
same relative mean position [Fig. 4(a)], we find g2 and

g3 to be multiplied by

Re J' dz &0 (z)@0"(z)
Idz l@o(z)I'

The frequencies are subsequently found to be

(5.13)

k. +k„b
l

—4gz sin "a i+sin
~

"a
~

—4gs sin (k a) + sin (k„a) (5.14)

Consider for the moment the (possibly suKcient) case
of only the first two nearest neighbors (set gs ——0). As
the temperature drops P decreases, and we find the pos-
sibility of zero-frequency modes arising. There exists a
critical temperature v, (p), defined through

2g2
p(v~i'Yi gl, g2) =

gs
(5.15)

at which the ~2a x ~2a phase becomes unstable. The
wave vectors that label the distortions whose frequency
goes to zero are those for which k = 0 or k&

—0. This
is unphysical and one looks to higher-order couplings to
break this degeneracy.

Incorporation of third-nearest neighbors gives the dis-
persion relation (5.14). As the temperature is lowered in
this case, there are two possibilities ta consider. First,
the velocity of the state k = 0 goes to zero and sug-
gests that the crystal may become unstable under homo-
geneous phason strain. Second is the case of a soft mode
occurring at k = (ir/a, 0, 0) [or similarly k = (0, xja, 0)].
The frequencies at these wave vectors are

M ~ . 1 t9$; Ogi
(5.17)

By repeating the derivation of the frequencies, one finds
that instead of solving for ~2, one is solving for u~ +
iu/r. Therefore, if the undamped frequencies are wo,
the damped frequencies are given by

= —2—+
2r

t'11'
(2rp (5.18)

For short wavelengths k such that uo(k) ) 1/2r we still
have propagating modes. At long wavelengths, uo
(ck)2 and

an additional phase +Bi and, upon checking the rela-
tive charge-density-wave phase symmetry of the columns,
would describe a 2a x 2a incommensurate structure
[Fig. 4(b)]. The phase boundary lies at the critical tem-
perature defined in Eq. (5.15), which lies to the right
of the incommensurate-commensurate boundary by an
amount dependent on gq (Fig. 2). These conclusions
are in agreement with the free-energy analysis, s where
in addition a Landau theory for the incornrnensurate-to-
incommensurate transition has been presented, and the
new state is described in terms of the Fourier modes at
k=-wandk=-y.6 a

Our result that one of two possibilities is expected fits
well with the observation of a transition to a 2a x 2a
incommensurate phase. This indicates that, within
the context of our phenomenological model, the third-
nearest-neighbor coupling is negative. This is consis-
tent with the identical conclusion arrived at for the low-
temperature 2a x 2a commensura/e phase. ~2

While looking for these modes, one must contend with
dissipation that enters, for example, through commensu-
ration effects or impurities. We can phenomenologically
include this with the addition of a dissipation function

(Pgi —2gz —4gs)(k + k~)a~, k = 0

2
(5.16)

4(Pg, —2g, ), k = (x/a)x.

i/r—
(5.19)

Since strain couples to the coordinate of a modulation
and the frequency near k = 0 is linear in fc, the caeKcient
coupling to the phason strain parameter is Pgi —2gq —4gs.
This is to be compared with Pgi —2gz for the wave vec-
tor at the zone boundary. As the temperature is lowered,
which coeKcient goes to zero first determines which in-
stability occurs.

The sign of g3 is crucial at this stage. If g3 is positive,
the strain coefBcient goes to zero first as the tempera-
ture is lowered and the crystal becomes unstable under
homogeneaus phason strain. This would occur at a criti-
cal temperature defined through P(v, i) = (2g2+4gs)/gi.
For gs negative, a soft mode at k = (+/a, 0, 0) arises
and drives a transition from the ~2a x i/2a phase into
a new structure characterized by the wave vector of
the soft mode. The new state would have alternate
layers of columns in the x (or y) direction shifted by

3m+ 1
q =+ln, +

2
Q ) (5.20)

3m+ 1
gy =+ Ag+

2
a*, (5.21)

2l
qs = + &s+ —

I

c" + (3m+ l)b
39

(5.22)

These correspond, respectively, to a rapidly damped
mode and a diA'usive phason mode.

Ta search for the soft made, we finally nate that the
wave vectors of the zero-frequency phason modes are
those of the superlattice spots, i.e. , the Fourier compo-
nents of the term ~g, u(q)~ . This follows from the fact
that the phason is a vibration that changes only the ori-
gin of the displacement. Specifically, 2
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where, because of systematic absences due to glide
planes, n3 must be even at q = 0, q&

—0, and q = kq&.
In addition, the relative diAraction peak intensities, be-
ing proportional to ~P~~, provide information about the
magnitude of the Fourier components. ~

VI. SUMMARY

A phenomenological charge-density-wave Landau
model has been used to study the order-parameter vi-
brations in NbTe4. We have assumed that the tellurium
atoms move with the niobium in longitudinal vibrational
modes, and so the essential properties can be modeled by
the location of the niobium ions.

We first investigated the one-dimensional CDW model,
a column in NbTe4, by mapping the equation of motion
into a two-component Schrodinger equation with a peri-
odic potential and then used Bloch-state analysis to de-
termine the modes for the normal, commensurate, and,
near the normal-to-incommensurate boundary, incom-
mensurate states. The spinor notation is the first that
we know of in the context of collective modes in charge-
density-wave systems. This formalism makes manifest a
band structure centered about the incommensurate wave
vector due to the discommensurate periodicity, in agree-
ment with previous work. The expected zero-frequency
phason mode corresponds to invariance of the free-energy
with respect to a translational shift of the charge-density
wave. The modes at the zone boundary consist of a mixed
motion of amplitude and phase oscillations.

Our three-dimensional work on the collective modes of
NbTe4 is new. Our model relies on the assumption that
the relative phases of single CDW modulations determine
the crystal structure. The three-dimensional nature is de-
scribed by a weak coupling between neighboring columns
exhibiting charge-density waves. %'e find the presence of

a soft mode that drives a continuous incommensurate-to-
incommensur ate transition.

In the ~2a x ~2a incommensurate phase, as the tem-
perature is lowered and the commensurate domain is ap-
proached, the frequency of all modes in the reciprocal-
space basal plane decreases if only nearest-neighbor in-
teractions are considered. This agrees with the result8
that the restoring force between nearest neighbors be-
cornes weaker and weaker. One must then take into ac-
count second-nearest neighbors. The critical tempera-
ture at which the ~2a x ~2a phase becomes unstable is
distinct from the commensurate phase boundary and the
possibility of a second-order transition to another phase
is considered. There still remains a degeneracy, and one
must then take into account third-nearest neighbors. We
find that the ~2a x ~2a phase can become unstable with
respect to a modulation of wave vector k = (n /a, 0, 0) or
(0, vr/a, 0) and consequently a 2a x 2a basal-plane phase
if the sign of the third-nearest-neighbor coupling con-
stant is negative, or homogeneous phason strain if the
constant is positive. Since a low-temperature incommen-
surate phase with a 2a x 2a basal-plane structure has been
observed, one can then conclude that the model is consis-
tent, and that within the framework of our analysis the
sign of the third-nearest-neighbor interaction is negative,
in agreement with the analysis of the low-temperature
commensurate phase.

Finally, we have briefly described where in reciprocal
space one would hope to And these soft modes and have
phenomenologically incorporated possible dissipation ef-
fects.
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