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Using an all-electron, self-consistent, full potential, linear muon-tin-orbitals method within
the local-density approximation of density-functional theory, we have studied the structural
properties and the elastic constants of Mo and MoSi2. The Mo and MoSi2 ground-state proper-
ties, lattice parameters, cohesive energy, and (for Mo) elastic constants are found to be in good
agreement with the experimental results. Diferent structures in the angle-integrated photo-
emission spectrum of MoSi2 can be satisfactorily explained in terms of various features present
in the calculated total density of states. Since there have been no previous theoretical or exper-
imental determinations, our calculations provide the first available information on the elastic
constants of MoSi2. For both Mo and MoSi2 we have calculated the stress tensors for the ex-
perimental structures and have minimized their elastic energies. We have found that the la. ttice
parameters and the ground-state total energies of Mo and MoSi2 obtained from both the elastic
energy and the total-energy minimizations are about the same, and that the lattice parameters
are close to their experimental values.

I. INTRODUCTION

Transition-metal silicides (TMS) have important ap-
plications in the microelectronics industry. They can be
used in integrated circuits for Schottky barriers, Ohmic
contacts, and low-resistance gates and interconnections.
They are also, in general, chemically stable and re-
sistant to corrosion. Some TMS have high electrical
conductance; others can be used as interface diAusion
b arriers.

The low resistivity and the high-temperature stability
of the silicides has motivated many studies of their
electronic and structural properties. Spectroscopic
techniques have been used intensively to understand
the nature of the chemical bonds in the TMS com-
pounds. Several difIerent local-density methods have
also been used to investigate the band structures of TMS,
especially MoSi2 and WSi2. The latter have been stud-
ied in several papers by Kleinman and co-workers,
who used a full relativistic as well as a semirelativis-
tic self-consistent norm-conserving pseudopotential ap-
proach. They focused mainly on the transition-metal-
silicon and silicon-silicon chemical bonding. They also
analyzed and compared the cohesive energy for MoSi2
and WSi2. The larger cohesive energy of WSi2 relative
to that of MoSi2 was attributed to the more diffuse na-
ture of the W 5d electrons, which allowed the forma-
tion of stronger covalent bonds. The electronic structure
and the ground state of MoSi2 have also been calculated
by the linear muon-tin-orbitals method in the atomic-
sphere approximation (I,MTO-ASA). ~2 rs It was found
that the spin-orbit coupling had little efIect on its band

structure and that the addition of an "Ewald correction"
to the total energy improved the ground-state properties.

Besides its imp or tant microelectronics applications,
MoSi2 is also an important technological material be-
cause of its high-temperature (1000'C —1700 'C) ductil-
ity and oxidation resistance. This ductility means that
components made from MoSi2 will be much more reliable
and significantly less susceptible to catastrophic frac-
ture than structural ceramics, which are the only com-
petitive materials in this temperature range. Potential
applications include advanced furnace heating elements
and high-temp erature turbine blade comp onents. Before
this material can realize its true potential, however, two
fundamental problems must be solved. First, its excel-
lent oxidation resistance between 1000 ' C—1700 ' C breaks
down with a completely destructive oxidation between
300'C —600'C. This phenomenon has been called " the
"MoSi2 pest. " Second, while MoSi2 has excellent ductil-
ity at high temperatures, it is very brittle at room tem-
perature; for ease of fabrication and for practicality it
is very important to find ways to significantly lower the
room-temperature brittle-to-ductile transition tempera-
ture. At a minimum, to develop new strategies for doing
this requires understanding the basic mechanical proper-
ties of the pure single cryst, al.

Because it is

dificult

to grow single crys tais lar ge
enough for elastic constant measurements, in this pa-
per we have attempted a theoretical investigation of the
ground state and the elastic constants of MoSi2, In order
to test our method, we have also studied the ground state
and the elastic constants of Mo, since there are many ex.—

perimental and theoretical results to compare with for
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this material.
Our local-density-approximation (LDA) 2@ density-

functional calculations used an all-electron, full-

potential, linear muKn-tin-orbitals method (FP-LMTO),
which was recently developed by one of us. This method
is fast and accurate, and has been successfully used to ob-
tain the structural and dynamical properties of silicon,
as well as the structural properties of the first-row tran-
sition metals. 2

The remainder of the paper is organized as follows: In
Sec. II we introduce our method of calculation, in Sec. III
we present and discuss our results, and Sec. IV contains
our summary and conclusions.

II. METHOD OF CALCULATION

A. Total energy calculation.

The standard LMTO method in the atomic-sphere
approximation (ASA) uses Hankel functions with van-

ishing kinetic energy (K = 0) and neglects the non-

spherical parts of the electron density. It can only usu-

ally accurately describe isotropic deformations, such as
hydrostatic-pressure variations of the total energy. Be-
cause a nonisotropic deformation is very sensitive to the
nonspherical part of the charge density and the poten-
tial, as well as to systematic errors due to overlap of the
atomic spheres, it is necessary to go beyond ASA and
use a full-potential method to describe elastic proper-
ties, phonon displacements, or, for molecular-dynamics,
density-functional calculations.

Many full-potential methods are now available, but,
unfortunately, they are often very computationally ex-
pensive. If one starts from a "muKn-tin" geometry,
where the space is divided into nonoverlapping atomic
spheres and an interstitial region, then one can easily
construct mufFin-tin orbitals, which are Hankel functions
outside the muffin-tin spheres and are augmented by the
numerical solution of the Schrodinger wave function in-

side the mufFin-tin spheres. Using this basis set, which
was introduced by Andersen, one of us has recently
developed a full-potential method which, for well-packed
systems, is as accurate as existing full-potential methods,
but at least 1—2 orders of magnitude faster. To calculate
the total energy for any arbitrary strain we shall make
use of this method. Inside the spheres, spherical har-
monic components of the charge density are included ex-
plicitly for E up to 4. The interstitial density is obtained
by matching a linear combination of atom-centered Han-
kel functions with E & 4 and with two diA'erent kinetic
energies to the values and slopes of the sphere densi-
ties. The "tails" with E ) 4 of the Hankel functions
extend into the spheres so that the final density is con-
tinuous and smooth, and includes angular momentum
terms to infinite 8 in the spheres. This representation of
the charge density is very useful because Poisson's equa-
tion can be solved analytically for the interstitial region
and by straightforward numerical integration inside the
spheres. To evaluate the matrix elements of the intersti-

tial potential, the product of two Hankel functions, which
represent LMTO envelope functions, is fitted in the in-
terstitial by a linear combination of Hankel functions in
the same way as the charge density. More details about
the method can be found elsewhere.

In this calculation the full-potential LMTO (FP-
LMTO) uses a triple-z set with fixed K values. The elec-
tronic structures of Mo and MoSi2 are obtained using a
two-energy-panel calculation; one panel is used to calcu-
late the valence electrons and one to calculate the Mo
4p electron states, which extend beyond the Mo mufFin-

tin spheres. Thus, the Mo 4p electrons are treated as
bands in the same way as the valence electrons. In di-

agonalizing the Hamiltonian for these "semicore" Mo 4p
electrons we have used only an sp basis set and six spe-
cial k points. ~ More k points shows no significant eA'ect

on the band structure or total energy. The core electrons
are not treated in the frozen-core approximation, but are
allowed to relax; the core-electron charge density is re-
calculated at each iteration in the self-consistency loop.
The Von Barth and Hedin exchange-correlation energy
and potential were used and the relativistic effects were
neglected. The Brillouin zone integration used a Gaus-
sian sampling with 30 equally spaced k points in the
irreducible part of the tetragonal Brillouin zone (IBZ).
When a strain is introduced in the crystal, the number
of irreducible k points is recalculated for the symmetry of
the distorted crystal. In all calculations of ground-state
properties of Mo and MoSi2 we have used fixed muKn-tin
radii of 2.45 a.u. for Mo and 2.25 a.u. for Si.

The cohesive energy of MoSi2 has also been calculated.
The total energy for isolated Mo and Si atoms has been
obtained by means of a spin-polarized LDA method. The
electronic configuration corresponding to Hund's rule was
found to give the minimal total energy.

The equation of state (pressure versus volume) of
MoSi2 and the bulk modulus for both Mo and MoSi2 were
calculated from a least-squares fit of the total energy as
a function of unit-cell volume to the Birch-Murnaghan
equation of state.

B. Elastic constants

The self-consistent first-principles FP-LMTO is used
here to predict for the first time the elastic constants of
MoSi2. The stress tensor and the elastic constants can
be defined in diA'erent ways and it is useful to define our
notation. In the following we shall briefly list the relevant
formulas needed to obtain the elastic constants of body-
centered tetragonal MoSi2 (crystal structure type Cllb),
which has a D4h7 (I4/mmm) space group, and of body-
centered-cubic Mo. We consider strains with and without
volume conservation, because volume-conserving strains
alone do not provide enough constraints to determine all
six elastic constants of MoSiq. We shall consider only
small lattice distortions in order to remain within the
elastic domain of the crystal.

After a uniform deformation of the solid, a Bravais-
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eij: cij + Eji(1 6ij ) (3)

The internal energy of a crystal under strain e can be
expanded in powers of the strain tensor with respect to
the initial internal energy E(V) of the unstrained crystal:

E(V, e) = E(V) + V7;~e;~ + VC,,pie;~ei, i/2+
(4)

where 7;&
—[(1/V)OE/Oe;i], I is the stress tensor, C;& 11 ——

[(1/V)(02E/ge;z De~i)], ~ are the second-order adiabatic
elastic constants, and U is the volume of a unit, cell before
the crystal is strained. Here the subscript e' indicates
that all other e „are kept constant while differentiating
with respect to e;& or e@~ . Using the symmetry properties
of r, C, and e, and the standard notation zz = 1, yy = 2,
zz = 3, yz = 4, zx = 5, yz = 6, we can rewrite Eq. (4)

32

E(U, e) = E(V) + Vi;e; + VCz e, e& /2+

where the summation indices now range from 1 to 6 in-
stead of over z, y, and z. Note that the strain tensor r
is zero (the first derivative of the energy is zero), if the
crystal is at equilibrium. In our calculations we always
use the experimental geometry as the starting point for
the elastic energy expansion. Because this is not usu-
ally identical with the structure that minimizes the total
energy, we will typically have nonzero r's present.

For a tetragonal crystal there are only six indepen-
dent elastic constants: Ci 1 —C22 C33 C44 —C$5 CQQ,

Ci2, and C~3 ——C23. All of the rest are either zero or
follow from the general condition C;& ——C&,-. For the
more symmetric cubic crystal there are only three non-
zero independent elastic constants: Cii —C22 —C33,
C12 —C13 —C23 and C44 ——Css ——Cbs.

In order to calculate the stress tensor 7; and the elastic
constants C,~, we have calculated the local-density total
energy as a function of different deformations of Mo and
MoSi2', we have used the experimental structures as the
points of expansion. For small deformations the total
energy can be fit to the expansion, Eq. (5), with the ap-
propriate values of e, for each specified deformation. For
both MoSig and Mo we have used enough independent
distortions in arder to determine the relevant strains and
elastic constants. Note that the change of volume in-
volved in each deformation is given by

(U —Uo) /Vo = i + ez + es

lattice point that is at H. in the undistorted lattice will
be moved to R,', such that

(1)
where R; and R,' are the rectangular components of the
lattice vectors R and B.', respectively, i = z, y, or z, and
where the matrix n is given by

(2)
Note that we are using the Einstein summation con-
vention in this paper, where repeated indices are to be
summed over. The strain tensor e is defined to be

Pure shears are those deformations that have no vol-
ume change. Note also that a crystal under a uniform
pressure p has a strain tensor given by r~ ——7.2

—r3 — p
and r@ ——r5 ——r6 —0.

Out of the many difFerent possible choices we have
found it convenient to use the following six independent
deformations for MoSiz [cases (a)—(f)]:

case a
case (b):
case c

case (d):
case e

case (f):

eq ———2e~ ———2e3 ——e,
2e~ ——2e~ ———e3 ———e,
ei ——ez ———es/2 = es /6 = e/4,
ey

es=E)
e4 —2E' .

In each case the other components of the strain tensor
are equal to zero. For Mo, since there are only three
independent elastic constants, we have used the following
three independent deformations:

CaSe (a): 2e 1
—2e2 ——es ——c,i

CaSe (b): es —c
1

case (c): es —2e .

B = ~s(C11+ Ciz + 2C13 + C33/2),

and for Mo

3(C11 + 2C12)

In the case of MoSi2, the calculation of r also includes
the strains obtained from cases (a), (d), and (f) by ex-
changing the z and y directions. Thus, we obtain a sys-
tem of ten linear equations for r and seven linear equa-
tions for C;&. Since these systems of linear equations
are overdetermined, we have solved them by using a lin-
ear least-squares algorithm based on a singular-value de-
composition technique. For Mo, we have also included
the strains obtained by interchanging z, y, and z. This
led to nine different linear equations for the stress ten-
sor. This procedure guarantees that the stress tensors of
Mo and MoSiz have their correct cubic (ri ——rz ——73~

74 —Ts —Ts) and tetragonal (71 —
rz& 74 —rs) symme-

tries; it also considerably reduces the numerical noise in
the determination of r.

For each of the above cases we have used five different
values of e: e = 0, +0.02, +0.04. The difference in the
internal energy in Eq. (5) is then fitted to polynomials of
order 2, 3, and 4 for each case in order to extract a lin-

ear term in e with a prefactor involving combinations of
the v; and a squared term in e with a prefactor involving
combinations of the C;&. To check the consistency of our
results for MoSiz we have also used another shear strain
es —2e, which allows Css to be obtained separately. The
bulk modulus (at fixed c/a) has also been used as an ad-
ditional check. , since B = V02E/BV2 = (1/V)cI E/Oe ,

2

where e = (V —Vo)/Uo. For MoSiz we then find
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III. RESULTS AND DISCUSSION

A. Mo

(9)

Our fit to Mo is ai ——0.22439x10, a2 ———0.10474x10,
a3 —0.12989 x 10, and a~ ——0.17772 x 10"; this gives

E(V) in mRy/(unit cell) when V is in a.u.s/(unit cell).
The cohesive energy may be determined by subtract-

ing the atomic total energies from the solid-state total
energy. We have used the same exchange-correlation en-

ergy of Von Barth and Hedin for both the solid and
the atomic calculations. The minimum of the total en-

ergy for the Mo free atom (in the 4d 5s electronic con-
figuration) was found to be EM = —7946.0891 Ry. Our
calculated cohesive energy for Mo of 6.862 eV is in fairly

TABLE I. Calculated structural properties of bcc Mo
compared to some experimental and theoretical results. The
bulk modulus Bo was obtained by taking the derivative of a
third-order polynomial least-squares fit to the total energy as
a function of volume.

Expt.
KKR'
NL-PP'
LCAO'
PP-LCAO
LAPW~
NC-PP"
Corr. ASA'
LMTO-ASA'
LMTO-ASA"
Present work

a (a.u. )

5.949
5.89
5.956
5.99
5.841
5.917
5.858
5.86
5.977

Bp (Mbar)

2.608
2.51
3.05
2.57
2.78
2.91
2.705
2.92
2.753

5.97+0.01 2.55+0.02

E„i, (ev/atom)

6.82
6.732
6.678
6.28
7.14
7.782
7.782

6.880
6.862

Reference 35.
Reference 34.

'Reference 15.
Reference 16.
Reference 17.
Reference 19.

~ Reference 21.
"Reference 11.
' Reference 13.
' Reference 22.
"Reference 23.

Various theoretical methods have been used to
study the structural properties of Mo. In Table I we have
listed results obtained with the Korringa-Kohn-Rostoker
(KKR) method, is the nonlocal pseudopotential (NL-
PP) method, ts the linear combination of atomic orbitals
(LCAO) method, the pseudopotential linear combi-
nation of atomic orbitals (PP-LCAO) method, is the
general potential linear augmented-plane wave (LAPW)
method, the full relativistic norm-conserving pseudopo-
tential (NC-PP) method, ii and the LMTO-ASA. is 22 2s

The results of our calculations for the structural proper-
ties of bulk Mo are also displayed in Table I. The total
energy data are shown in I"ig. 1. The solid line is a least-
squares fit to the Birch-Murnaghan equation of state,
which has the form

.0

0
98 102 106 110

Volume (a.u. )

FIG. 1. Total energy of bcc Mo vs volume per unit cell.
The total energy at equilibrium was chosen as the zero of
energy. The solid curve is a least-squares 6t to a Birch-
Murnaghan equation of state (see text).

good agreement with the experimental value of 6.82 eV.
This is unusually good, because the LDA predicts an ex-
cess binding of about 1 eV per atom for most systems.
We have checked that our bulk total energy changes by
less than 0.05 eV if the basis is increased, more k points
are used for valence and semicore panels, and the Gaus-
sian broadening is reduced. A factor influencing the un-
expectedly good agreement with the experimental cohe-
sive energy is that cancellation of energy terms is sig-
nificant, because a large spin-polarization contribution

(—6.85 eV) enters into the free-atom energy. An impor-
tant diAerence between our calculation and the general-
potential LAPW calculation is their use of the scalar-
relativistic approximation, whereas our calculations were
nonrelativistic. We have therefore done an additional
scalar-relativistic calculation, which gave E, h

—7.39 eV,
which is in better agreement with the LAPW results.
The remaining discrepancy of 0.39 eV could be due to a
more approximate treatment of the semicore states used
in the LAPW calculations. For Mo, we have found
that the total energy depends quite sensitively on the
treatment of the 4p semicore states. In our calculations
these states are treated accurately as band states. We
point out that previous nonrelativistic calculations U~ing

the KKR method 5 and the LMTO-ASA method with
nonspherical terms included and the 4p semicore states
also treated as band states, have obtained values of
6.732 and 6.880 eV, respectively, for the cohesive energy.

The calculated lattice parameter a and bulk modu-
lus Bo compare favorably with experiment, the corre-
sponding discrepancies being 0.3'%%uo and 3%%, respectively.
All the methods listed in Table I seem to accurately de-
scribe these quantities for Mo. In order to estimate the
error bars on the lattice parameter and the bulk mod-
ulus, we have compared the results obtained by using
n = 3, 4, and 5 in Eq. (9). This gives a=5.961, 5.982,
and 5.970 a.u. and Bo—2.512, 2.554, and 2.571 Mbar.
The lattice constant and the bulk modulus are then ob-
tained by averaging these values; the upper and lower
bounds are obtained by averaging the absolute values
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of the deviations from the main values. We then find
a = 5.97 + 0.01 a.u. and Bo ——2.55+ 0.02 Mbar. For all
the other moduli we have used this same type of anal-
ysis to determine t, he numerical noise. For the stress
tensor and the elastic constants polynomials of diAerent
orders are used for the least-squares fit as mentioned in
the method of calculation.

Contour plots of the self-consistent valence charge den-
sity of Mo in the (001) and (110) plane are shown in

Fig. 2. There is a formation of metallic bonds be-
tween the nearest-neighbor atoms with a minimum in the
charge density between 50 and 60 millielectrons/a. u. and
about 40 millielectrons/a, .u. between the second neigh-
bors. The total charge density seems to be spherical near
the atomic sites.

Before attempting elastic constant calculations for
MoSi2, for which there is no experimental data, we have
tested our method on Mo. Using the method described in
Sec. II, we have obtained the three elastic constants of bcc
Mo. The results are presented in Table II together with
the previous Ewald-corrected LMTO-ASA calculation, ~s

which includes "mu%n-tin" corrections, and the experi-
mental results. As can be seen from Table II, our re-

TABLE II. Calculated elastic constants of bcc Mo in units
of 10 dyn/cm compared to the experimental results of
Ref. 36 and the Ewald-corrected LMTO-ASA calculation of
Ref. 13.

Expt.
Corr. ASA
Present work

4.50
5.6

4.40+0.03

1.729
1.51

1.62+0.02

1.25

1.39+0.02

suits are in good agreement with the experimental re-
sults, the discrepancies being 2'%, 6%, and 11% for Cqq,
Cqq, and C44, respectively. The larger discrepancy for
C44 may be because it involves a complicated distortion
of the lattice. The Ewald-corrected LMTO-ASA gets
Cqq and Cqq within 24%%uo and 13%%uo, respectively, of the
corresponding experimental values. However, no value
is given for C4q in Ref. 13, so it is not clear whether
the success of the corrected ASA approach is valid more
generally. We have also calculated the stress tensor and
found that ry —Tg —7s ——0.40+0.01 mRy/(a. u. ) and
~4 ——~s —rs ——0 mRy/(a. u. ) . This stress tensor will be
used later for the minimization of the elastic energy of
Mo.

In order to understand qualitatively why C~i is always
larger than C~4 for a cubic crystal, one can use the follow-

ing argument: If one distorts the crystal in such a way
that only C44 is involved, all the e s are zero except,
for example, e4 ——e. Then the bond lengths between a.

Mo atom and its nearest neighbors in the (110) plane
are stretched by ea/(2~3) and those in the (110) com-
pressed by the same amount and vice versa if e is negative
(a is the lattice parameter). The second neighbors are all
stretched by e2a/8. If one distorts the crystal so that only
Cqt is involved, then all the e s are zero except, for ex-
ample, e~ ——e. The first neighbors will be all stretched or
compressed by ea/(2~3) and the second neighbors along
the [100] direction will all be stretched or compressed by
ea. It is then obvious that the charge density in the lat-
ter case will be more distorted along the bonds than in
the former case and consequently the total energy will
increase much more in the latter case than in the former.
Since the elastic constants are deAned to be the second
derivative of the total energy with respect to the strain,
it is then clear that Cqq is much larger than C44.

B. MoSi

FIG. 2. Contour plots of constant charge density of Mo:
(a) (001) plane, (b) (110) plane, in steps of 10 millielectrons
per cubic bohr. Only the banding regions of the charge den-
sity contours are labeled. The steps between the inner con-
tours are also 10 millielectrons per cubic bahr.

The total density of states (DOS) and the partial DOS
for Mo and Si (obtained from a Gaussian sampling with
a Gaussian smearing of 0.34 eV), which are shown in

Fig. 3, are in good agreement with the calculation of
Bhat tacharyya, Bylander, and Ekleinman. The total
DOS also compare well with the angle-integrated photo-
emission data of Weaver, Moruzzi, and Schmidt (WMS).
Thus, the strong peak with a 5-eV width observed by
&MS at approximately 2 eV below the Fermi level can
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FIG. 3. Total and projected density of states (DOS) for
Mo and Si in units of states per eV per unit cell. The Fermi
level is at the zero of energy. The total DOS is the upper curve
of the upper figure. The shaded area of the upper figure is
the Mo contribution to the total DOS and the lower figure is
the Si contribution.

be explained as being due mainly to the Mo 4d states
with a very small Si 3p contribution, whereas the shoul-
der observed near 6 eV below E~ is explained in terms
of our peak at 6 eV, which is a mixture of Mo 4d and
Si 3p hybridized bands. The structures observed near 8
and 12 ev below E~ are mainly Si 3s states. The Fermi
level falls in a deep minimum of the DOS, separating the
bonding and the antibonding bands. This "quasigap" of
the DOS near E~ indicates that there is a strong cova-
lent contribution to the bonding and that the crystalline
structure is very stable.

The results of our calculations for the structural prop-
erties of MoSiq are displayed in Table III together with

FIG. 4. Total energy of tetragonal MoSi2 vs volume per
unit cell. The total energy at equilibrium was chosen as the
zero of energy. The solid curve is a least-squares fit to a
Birch-Murnaghan equation of state (see text).

the available theoretical and experimental results.
In these calculations we have first fixed a at the exper-
imental value of 6.05 a.u. and then have varied c. The
minimum-energy structure was found for t" = 14.80 +
0.01 a.u. and hence a theoretical value for c/a = 2.446;
this ratio compares favorably with the experimental ratio
of 2.456. We then calculated the total energy as a func-
tion of volume with the ratio c/a kept equal to its theoret, —

ical value. This curve is presented in I"ig. 4 with the equi-
librium total energy ta.ken to be the zero of energy. The
solid curve in the figure is a least-squares fit to a three-
term Birch-Murnaghan equation of state with the fitted
parameters: ai ——0.11252 x 10, a2 ———0.935 10 x 10,
and as ——0.19423 x 10; this gives E(V) in mRy/(unit
cell) when V is in a.u.s/(unit cell). The minimum of
the total-energy occurs at a = 6.02 6 0.01 a.u. , which
is in good agreement (0.5% deviation) with the 6.05-a.u.
experimental value. The parameter e was found to be
14.74 + 0.01 a.u. , which is about 0.8% lower than the
experimental value. The theoretical volume per unit
cell is thus 2% smaller than the experimental volume.
We have determined the bulk modulus by a least-squares
fit of the total energy to polynomials of order 2, 3, and
4 in the volume; we obtained a value of 2.22 + 0.03

TABLE III. Calculated structural properties of body-centered tetragonal MoSi2 compared to
the existing experimental and theoretical results. The bulk modulus Bo was obtained by taking the
derivative of a third-order polynomial least-squares fit to the total energy as a function of volume.

Expt.
NC-PP
Corr. ASA'
Present work

a (a.u)

6.050

c (a.u)

14.858

6.027 14.779
6.02+0.01 14.74+0.01

2.38
2.22 +0.03 19.148

Bo (Mbar) E„h (eV/molecule) Hy (eV/molecule)

16.90 1.36'
19.694 1.78

Reference 38.
Reference 39.

'Reference 36.
Reference 11.

'Reference 13.



6506 M. ALOUANI, R. C. ALBERS, AND M. METHFESSEL 43

250

200

150

100
0)
t

0)
t

CL

50

—50

—100 I I I I I

245 250 255 260 265 270 275
Volume (a.u. ')

FIG. 5. Calculated pressure vs unit cell volume for tetrag-
onal MoSiz with the c/a ratio fixed at the theoretical value.
This curve was obtained by taking the first derivative (with
respect to unit cell volume) of the Birch-Murnaghan equation
state (see text).

Mbar. The bulk modulus that was obtained by a least-
squares fit to a Birch-Murnaghan equation of state was
2.27 + 0.03 Mbar, which is 0.05 Mbar higher. We antic-
ipate that the former value is more accurate and consis-
tent with the calculation of the elastic constants of MoSi~
than the latter. Indeed, the bulk modulus obtained from
Eq. (7) and our values for the elastic constants (see be-
low) give a value of 2.06 + 0.04 Mbar, which is closer
to the polynomial-method value. The experimental bulk
modulus is unknown, so our calculated value remains a
prediction. Nevertheless our bulk modulus is compara-
ble with the Ewald-corrected LMTO-ASA result, which
is shown in Table III.

The cohesive energy of MoSi2 compares favorably with
the experimental value, the discrepancy being about
9.8%. Our calculated cohesive energy diff'ers from the
NC-PP calculation by less than 3%. Using our calcu-
lated cohesive energy for Mo and that for Si obtained by
Methfessel, Rodriguez, and Andersen, we have calcu-
lated the heat of formation IIf of MoSi2. Our calculated
IIf was 0.51 eV higher than the experimental value,
but only 0.09 eV higher than the NC-PP value. The
discrepancy with experiment is probably caused by the
error in evaluating the cohesive energies, which involves
the subtraction of large numbers calculated by diferent
methods.

We have also calculated the equation of state (the pres-
sure versus volume) by taking the volume derivative of
the fitted total energy; the result is shown in Fig. 5. Since
there is no experimental or calculated equation of state
for MoSi~, our calculation should be a helpful point of
reference for experimentalists.

The charge-density contours of MoSi2 in the (001),
(100), and (110) planes are depicted in Fig. 6. A three-
dimensional plot of the charge density in the (100) plane
is also shown in Fig. 7. Our calculated charge density is in

good agreement with that calculated by Bhattacharyya,
Bylander, and Kleinman, s who used the NC-PP method,
except that ours is almost spherical around the Mo atoms
(see, e.g. , Fig. 7). There are eight Si nearest neighbors
of Mo at a distance of 4.94 a.u. away, which lie in two
square arrays, which are centered above and below the
Mo atoms. The two Si second-neighbor atoms (along the
z axis), just above and below the Mo atom, are located
almost at the same distance from Mo (4.95 a.u. away).
As shown in I"ig. 6, the charge density seems to have a
local axis of symmetry of order 6 perpendicular to the
(110) plane. The bonds between Mo and the ten Si near-
est neighbors have almost the same strength. The Si
atom has four Si nearest neighbors 4.94 a.u. away in a
square array, which is centered either just above it or just
below it (depending on whether the Si atom is the one
above or below a Mo atom), and one Si second-neighbor
atom located 4.94 a.u. along the z axis. In the oppo-
site direction is a Mo atom at the same distance in the
experimental geometry.

In the MoSi2 structure the Si atom has the position
(0,0,+uc). The variable u is a free parameter in the
structure. In general, a complete calculation of the equi-
librium geometry would simultaneously relax u, a, and c.
However, in practice, such a complete total energy mini-
mization would require a large computational eA'ort. To
determine the stable value of u we have instead calculated
the total energy as a function of u for two different sets
of a and c: (1) their experimental values, and (2) their
theoretically predicted values (cf. the last set of entries
in Table III). In both cases a minimum in the total en-

ergy was found for u = 3, which suggests that this value
for u is independent of a and c in our calculations (at
least in a range near the experimental values for a and
c). Our value for u, which is the same as the experimen-
tal value, is slightly difFerent from that given by the
NC-PP calculations, which predicted the Si atoms
to be at (0, 0, +0.337e).

The strain tensors defined in Sec. II were used to obtain
the stress tensor 7 and the elastic constants C,z of MoSi2.
The diAerence in the I DA total energies for each kind of
strain is depicted in Fig. 8. The solid curves are least-
squares fits to the data using a third-order polynomial.
Note that the shift in the curves is due to the linear term.
The coe%cients of the fitted polynomials are compared
with the linear equations given by the second and the
third terms of Eq. (5) for the appropriate type of strain.
The results for the stress tensor and the elastic constants
are displayed in Tables IV and V, respectively. The same
type of arguments given in Sec. II A for Mo can be used to
show that C~~ and C33 are, respectively, larger than C44
and C66, but provide no guidance on the relative sizes of
C44 and C66. In our calculation they are almost equal.
The charge-density contours in the (001) and (100) plane
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suggest that the bonds between Mo and its Si nearest
neighbors are stronger than between two diferent Mo in
the (001) plane. This could explain why Cqs is larger
than Ct t.

Because we have no experimental values to compare
with, we have used the empirical formula of Vine, Brown,
and Marcus to check the reasonableness of our elastic
constants. This formula relates the melting temperature
to the elastic constants for tetragonal metals and inter-

metallics:

= 354+ 4.5(2Ctt + Css)/3,

where T„, is in K, Cqt and Css in GPa. When our cal-
culated elastic constants are substituted into this ex-
pression, we find a melting temperature for MoSi2 of
2361 6 6 Ik, which is in fairly good agreement with the
measured melting temperature of 2293 K.

ao

(b

FIG. G. Contour plots of constant charge density of MoSi2, in. steps of 10 millielectrons per. cubic Bohr for the (a) (001) plane,

(b) (100) plane, and (c) (110) plane. The larger atoms (e.g. , in the center of each figure) are the Alo atoins; the stnaller. atoms
are the Si atoms. Only the bonding regions of the charge density contours are labeled. The steps between t, he inner contours
a.re also 10 millielectrons per cubic bohr.
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that we have cut the charge density at 0.2 electrons/bohr in
order to better visualize the bonding regions.

The ground-state crystalline structure of Mo and
MoSiq can also be determined from the calculated stress
tensor and elastic constants by minimizing the elastic
ener iven in Eq. (5) with respect to the strain ten-energy given in q. w

sor. The minimization procedure gives the following lin-
ear equations for the strain tensor:
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Because the elastic theory is only valid for small dis-
tortions (otherwise we would need to keep more terms
in the expansion of the total energy as a function of
strain the solution to this equation is only valid if the

redicted minimum is near the startmg pomt, which, inpre ice m
our case, is the experimental structure. Using e
tic constants o o givent f M given in Table II and the calculate
stress tensor, we have found the equilibrium lattice pa-
rameter to eb 5.98 + 0.01 a.u. which is very close to)

the value 5.97+ 0.01 a.u. predicted by the total energy
minimization. or o i2,F M Si when the stress tensor an
elastic constants given in Tables IV and V were used,
the solution of Eq. (11) gave a = 6.00 6 0.01 a.u. and
c = 14.85 + 0.01 a.u. Although the low-temperature
crystalline structure of MoSi2 is unknown, these values

0 8F and 0.1% smaller than the experimental val-
38ues obtained at room temperature. From ~q. & j, ie

total energy obtained by minimizing the elastic energy
is about 0.7 mRy below that of the experimental lattice
structure. By way of comparison, gthe round-stat, e total
energy obtaine y ireeb

'
d b d' ' t LDA calculation shows a min-

imum that is about 0.4 mRy lower in energy than that
for the experimental structure. ~veraO rail the diAerences in
total energy o aine u

'bt '
d using these two diAerent met, cods

are near the limit which the calculations can reliably dis-

geometry is consistent with the structure predicted by
both methods, within the accuracy of our calculations.

FIG. 8. Difference rn total energy o Moo MoSi2 vs strain. a)—
(f) represent different kinds of strains (see text).

IV. CONCLUSION

We have used a recently developed FP-LMTO method
to solve the LDA equations in order to study the struc-
tural and elastic properties of Mo and MoSi2. The struc-
tural proper ies ant d the elastic constants of Mo were
found t, o be in fairly good agreement with the experi-
mental results. An argument using bond stret, ching be-
tween the nearest-neighbor atoms was given to explain
qualitat, ively the reason for Cqq being larger than Cqq.

Most of the features present in the angle-integrated pho-
toemission spectra have been satisfactorily explained in
terms of the various peaks of our calculated DOS. We
have found that the lattice constants and the cohesive
energy reproduce fairly well the available experimental
results. ' However, since there have been no calcu-
a lons OI' expl.

t' perimental determination of the elastic con-
stants, our calculations for these quantities are an

rediction. We have tested the accuracy of these e astic
constants by using them in an empirica ormormula to calcu-

i . ood a reementlate the melting temperature of Mo i2., goo ag
with the experimental results is obtainened. The same ar-

3bod -centered tetragonal MoSi2 in units of mRy a.u.TABLE IV. Calculated stress tensor 7 of body-cen ere e r

71

0.308+0.004

72

0.308+0.004 0.079+0.001 0.0 0.0 0.0
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TABLE V. Calculated elastic constants of body-centered tetragonal MoSi2 in units of
10 dyn/cm .

4.01+0.01 1.02+0.06 0.78+0.06 5.36+0.02 2.08+0.01 1.98+0.02

gument used for Mo involving bond stretching explains
qualitatively why Cqr and C33 have to be larger than C44
and Css, in agreement with our findings. We have also
explained qualitatively the reason for Css being larger
than Cqt in terms of bond strength between Mo and the
nearest-neighbor Si atoms and between the Mo atoms in
the (001) plane.

The stress tensor and the elastic constants were also
used to predict the ground-state crystalline structures
for both Mo and MoSi~. We have minimized the elastic
energy with respect to the strain tensor and have found
that the geometries of Mo and MoSiq predicted this way

were fairly consistent with the structures predicted by
minimizing the total energy, within the accuracy of our
calculations.
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