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Local properties in the electronic structure of disordered binary alloys
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The electronic density of states (DOS) of disordered binary alloys is studied for a tight-binding
model Hamiltonian, using a local approach based on a continued-fraction representation for the
Green function. In addition to a single-site probability, a short-range-order parameter is introduced
to monitor nearest-neighbor correlations. Our method employs a termination that allows for local
fluctuations of both species of atoms, according to the configuration produced. The final DOS is ob-
tained as a weighted average over all the local spectra generated in the way described above. We
probe our approach in the one-dimensional case, and excellent agreement with Monte Carlo simula-

tions is found.

I. INTRODUCTION

The problem of disordered binary alloys, although ex-
actly soluble in one dimension,! still poses many chal-
lenges to theorists in two and three dimensions. The ex-
act methods developed for one-dimensional alloys are
peculiar for their particular topology, and cannot be
straightforwardly extended to higher dimensions.
Efficient approximate schemes are then of great interest,
specially if they also apply to higher-dimensional systems.

The coherent-potential approximation? (CPA) has been
for many years the most widely used single-site method.
Similarly to any mean-field theory, the qualitative trends
are correctly described, but the bands and density of
states obtained lack local properties and show no struc-
ture whatsoever.® In spite of the above fact, the idea of
replacing the alloy by an effective medium (which self-
consistently simulates the global properties of the sys-
tem), has inspired a number of interesting contributions. *

In this paper we adopt a different point of view: we
propose a non-self-consistent local approach based on the
continued-fraction method.®> The growth of a cluster is
followed, counting the different possible configurations
along with their probability of appearance. Site occupa-
tion is monitored by means of a long-range-order parame-
ter that only depends on the concentration of both
species (atoms A and B). In addition, a short-range-
order parameter, which takes into account nearest-
neighbor correlations, describes the alloy tendency to
segregation or ordering (Cowley order parameter)." We
have assumed Markovian short-range order, i.e., the
probability distribution for configurations is completely
determined by pair probabilities’” parametrized by the
Cowley parameter. This method is similar in spirit to
Monte Carlo simulations, but not extremely large systems
are needed and local properties are asymptotically exact.

Since the cluster size is limited by CPU time and
memory, the continued fraction has to be terminated.
This is a sensible step in the whole calculation, and
different approaches can be devised to overcome this
problem.® Physically, through the termination, one re-
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places the real cluster environment by an effective medi-
um, where the cluster is embedded. In our approach, the
continued-fraction termination is given in terms of those
for pure-A or pure-B systems. Relative weights are as-
cribed according to the fraction of atoms of each com-
ponent in the cluster configuration under study. This pro-
cedure has to be contrasted with those where the ter-
mination is based on the virtual-crystal (VC) approach,
with relative weights proportional to the global alloy con-
centrations.® In our treatment we assume that, for most
probable configurations, a sufficiently large cluster is al-
ready a representative portion of the whole system.
Within this sampling one assigns a larger weight to most
probable configurations, and a smoother matching is at-
tained using the above counting. Our method allows for
exact solutions in cases such as segregation and the split-
off limit. Monte Carlo computations for the disordered
linear chain need large systems (of the order of 10* atoms)
to get results of the same accuracy. Comparisons be-
tween both methods, as will be seen in the following sec-
tions, show excellent agreement in the global features as
well as in the structures of the density of states. The
computational work, for the method proposed in this pa-
per, is iterative and can be efficiently implemented in
small-size computers, with reasonable computer time.
The above fact encourages extensions to systems of
higher dimensions. Limiting cases, such as ordering,
segregation, and band splitting, are correctly described
within our approach.

In the following section we briefly discuss the model
and the method of calculation. Numerical examples are
then presented, and general conclusions are left for the
final section.

II. MODEL AND METHOD OF CALCULATION

The problem of order-disorder transitions in binary al-
loys is equivalent to an Ising model where the spin con-
centrations are kept constant.!® If we label the atomic
species as 4 and B, the site probabilities of finding an
atom A or B are given by the concentrations c ;, and cg,
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respectively. In addition, correlations between nearest
neighbors are monitored by pair probabilities p ,,, pgg,
D 4p» and pg 4, which exhaust all possible pairs. Normali-
zation requires

DPaatPpgtPapTPpsa=1,
PaatpPap=cy

PeptPpa=Cp

which implies that we are left with only one free parame-
ter. The usual choice is the so-called Cowley parameter, ®
which is defined as
0:1_%(PAB+PBA) ()
CaCn

and is limited to the range —1 =<0 =1. Special cases of
interest are the following. (i) Ordering for ¢ , =cz=0.5,
and o =—1. This is equivalent to the antiferromagnetic
Neéel state. (ii) Segregation for o =1. The corresponding
analog is the case of ferromagnetic domains. (iii) Ran-
dom alloy, for which all pairs probabilites are the same.
If ¢ ;,=cp=0.5, then 0 =0. It corresponds to the disor-
dered paramagnetic case.

To study the electronic properties, we model our sys-
tem through a tight-binding Hamiltonian with diagonal
disorder:

H=T &li)l+ 3 Vi), )
i i#j
where the diagonal element ¢; is € ; or €5, and V;; =V for
all pairs of nearest neighbors. In (2), the states { lji Y}, are
Wannier orbitals centered at the ith site of the lattice.

Within this representation, matrix elements of the Green
function are given by

9/ E)y=Cil(E—=F)""i), (3)
and the local DOS at the origin (site 0) is

n(E)= —%Imgm(E +i0™)

=—$Im(0|(E +iot—=#"hHlo) . )

In formulas (4), 0" stands for a small positive imaginary
part of the energy, which warrants the correct analytic
properties of the retarded Green function. This small
term transforms the imaginary part of the poles from &
functions to Lorentzians, thus giving a dispersion to the
DOS. The matrix element G, may also be represented as
a continued fraction according to standard techniques:’

Sl E)= , (5)

b3
E_al—E—aZ— .

where the a and b coefficients are obtained through the
recursive chain model of Haydock:’

b, In+1}=H|n}—a,ln}—b,|ln—1} . (6)
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The initial state |0} is just |0), the Wannier state at the
origin. All the other states are generated recursively by
means of Eq. (6), and the Hamiltonian is three-diagonal
in the base {|v}},. For a tight-binding Hamiltonian with
nearest-neighbor hopping, the latter basis involves suc-
cessive shells of neighbors, in such a way that carrying
the recursive process to the nth order means to study a
cluster of (2n +1) atoms for the one-dimensional case. It
is worth mentioning that our procedure follows strictly
Haydock’s method, and that all states are generated
through the complete Hamiltonian itself, as it is usually
done when dealing with a chain model. We have not at-
tempted to use the modified method developed by
Jacobs,® where a different orthonormalized basis is ob-
tained by applying, in mixed form, the diagonal and off-
diagonal parts of the Hamiltonian.

For a pure system all the coefficients in the continued
fraction (5) are constant, and the Green function can be
obtained self-consistently solving an equation of second
degree. A localized impurity, or a finite cluster, can be
characterized by a finite number of different coefficients
and an infinite tail corresponding to a constant chain.
We can think of a disordered chain in a similar form,
looking at the different configurations of a finite cluster
(as big as one can calculate), and simulating an infinite
tail where the cluster is attached. In our case, as men-
tioned in the Introduction, we terminate the continued
fraction by matching a termination of the form

T=f,T,+fsTy, (7)

where f 4, and f are the fractions of atoms A or B present
in the cluster under study. The quantities T, and T are
the termination for a pure A- or B-like system, respec-
tively. One can calculate the probability of the oc-
currence of a given cluster, using the concepts summa-
rized at the beginning of this section. The average Green
function is obtained here as a weighted sum over all indi-
vidual cluster Green functions, and is independent of the
choice of the origin. Our procedure allows for statistical
fluctuations in the termination, since we count the
respective fractions of atoms at any instance. As will be
seen in the following section, this method appears as ex-
tremely promising when compared to Monte Carlo simu-
lations. We will also compare our procedure with a
virtual-crystal-like termination for the Green function

T=c,T,‘cgTy, (8)

where ¢ 4, and cp are the concentrations. While this latter
approach seems to work with the same efficiency in the
random case, it fails in reproducing situations near segre-
gation and near the complete split-off limit, even for ex-
tremely large clusters.

III. EXAMPLES CALCULATED

We essentially study two cases: one with overlapping
bands, and the other with bands sufficiently apart to see
band splitting. Different values of the Cowley parameter
o were investigated, in the whole range —1 =<0 <1. De-
pending on the concentration, o may assume different
limiting values, as it is apparent from formula (1). We
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have compared all our results with Monte Carlo simula-
tions based on Dean’s method!' for a disordered alloy
with 10* atoms. In our approach we attain up to the
n =8 iterative process, which means that we study all the
configurations of a cluster of 2n +1=17 atoms. The pro-
cess itself may be substantially reduced if one cuts
configurations with a small probability of occurrence.
This procedure will be adopted for higher-dimensional
systems in future works.

We also study the resolution of our results with the
imaginary part of the energy, 8¢, and with the number of
points in the energy interval. Normalizing the energy in
units of ¥, the hopping constant, we found that e =10"*
was an optimum value, in the sense that no important
structures were concealed, and the computer time was
kept within reasonable limits.

The number of points in the energy interval was also
tested, showing no marked differences when we increased
this number from 200 to 800. Taking this fact into ac-
count, we employ 400 points as a bona fide value for all
examples. For the one-dimensional case it is known that
all states are localized, '? even for small disorder, and ulti-
mately one should obtain a density of states that is a set
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FIG. 1. DOS for the random case (o =0), with equal concen-
trations ¢ , =cp =0.5. Energy is given in units of ¥, the hopping
matrix element. Individual band centroids are located at
€ 4=—1 and ez =1, with band overlapping in the whole range
—1=<e=1. The calculations shown in the figure have been car-
ried down to the n=38 iterative process with 400 points in the
energy interval. The figure displays the ascending sequence for
n=2, 4, 6, and 8 iterations, and all the cases are compared with
the Monte Carlo simulation (upper part).
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of 8 functions with a support of zero measure. In prac-
tice, for numerical computations, one never realizes the
above condition, since 8 functions are transformed into
peaks of finite width when a small imaginary part of the
energy is introduced.

Figure 1 is a sequence showing how the iterative pro-
cess works, and the final result is compared with a Monte
Carlo calculation. We see there that the essential
features of the DOS are already present at the stage of
n =4 (a cluster of nine atoms and eight exact moments).
This example corresponds to the random case (o =0),
with concentration ¢ ,=0.5. A remarkable correspon-
dence can be established with all the structures (peaks,
singularities, antiresonances, bandwidth, etc.) obtained
through Monte Carlo simulations.

In Fig. 2, we keep the concentrations fixed and vary
the Cowley parameter over the whole range permitted,
from tendency to ordering (o= —1), to segregation
(0 =1), passing through the random case (o =0). For
oc=—1, the alloy 1is ordered, the sequence
++- ABABABAB - - - being the only possible
configuration. In this case we see the appearance of a gap
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FIG. 2. This sequence shows changes in the DOS when the
correlation parameter o is varied. Figures are obtained with
n=8 and ¢, =cz=0.5, while c =—1, —0.5, 0, 0.5, and 1 in as-
cending order. For the ordered case (0 = —1), the extra period-
icity obtained when we double the unit cell yields a gap at the
center of the band. This region begins to be populated when we
vary o in the direction to the segregated alloy (upper part of
figure).
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FIG. 3. Split-off regime displaying both majority and minority subbands for concentrations ¢ , =0.3 and ¢z =0.7, for a random al-
loy (0=0). The band centroid for the minority subband is kept fixed, while the other centroid is slid apart with values ;3 =3, 9, 49,

and 99, when going up in the figure.

due to the extra periodicity of the lattice. In contrast, for
o =1, we obtain simple superposition of two pure band
structures, which corresponds to the segregated alloy.
Big changes are developed when the correlation parame-
ter o is varied. These examples may correspond to real
cases with different atomic species, or to samples
prepared by using different methods, such as quenching
or heat treatment.

Up to now, all the cases depicted correspond to over-
lapping bands, with single-site energies at —1 and 1, in
units of V. In Fig. 3, we display a different sequence,
where the concentrations and the short-range-order pa-
rameter are fixed, but we vary the relative position of
band centroids. The lower case corresponds to tangent
bands, one centered at e= —1 and the other at e=3, and
the upper one to the complete split-off case, when one of
the bands has been taken to infinity (for the calculation
we use €53 =99). This type of picture, with neat peaks
corresponding to one-atom clusters and two-atom clus-
ters for the minority band, will be extremely difficult to
reproduce using a nonlocal approach.

Finally, we would like to compare our method with the
one that employs a virtual-crystal termination given by
(8). In Fig. 4 we display the random case for equal con-
centrations, at stages n=2,4. There are marked
differences for the three-atom cluster (absence of any
structure in the VC case), but both DOS’s are extremely
similar already at the stage n=4. For larger clusters no
differences can be detected. We encounter a different sit-
uation near segregation or near the split-off limit. In Fig.
5 we show the complete sequence up to n=38 (17-atom
cluster) using the virtual-crystal termination for the
segregated limit with equal concentrations. All the cases
are compared with the exact result, which is shown in the
uppermost graph. Spurious structures are still seen, even

in the n=28 case. In contrast, we note that our method
already reproduces the exact result at the stage n=2. In
Fig. 6, we compare both methods for the split-off example
of Fig. 3. While our approach clearly yields the atomic
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FIG. 4. Comparison between our method (dotted line) and
the VC approach (solid line), for the stages n=2 and 4, for the
example depicted in Fig. 1 (c=0and ¢, =cg).
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FIG. 5. Complete sequence for the segregated case using the
VC termination. For comparison, we are also showing the exact
result in the uppermost part of the figure (it has been obtained
using our method with n=2). The VC termination simulates a
medium with mean alloy properties, thus producing a mismatch
at the surface of the cluster.
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limit with very small resonances, the VC termination
presents spurious states in the middle of the energy inter-
val. Those states, as well as the structures of Fig. 5, are
produced by the mismatching with the termination.

On the other hand, modified CPA calculations to in-
clude local effects lead to highly nonlinear self-consistent
equations, with the introduction of several coherent po-
tentials (White and Economou, Ref. 4). The numerical
methods are then much more involved than those used in
our simple approach.

IV. CONCLUSIONS

A local treatment for the DOS of disordered alloys has
been presented. Our method employs Haydock’s scheme,
where the Green function is represented by an infinite
continued fraction, which in actual numerical computa-
tions is cut to a certain order. The DOS, for a finite con-
tinued fraction, is a sequence of weighted 8 functions. A
termination is necessary, through the introduction of an
effective self-energy, which also assures some analytical
properties of the Green function. We can also give a
physical interpretation of the above procedure.

(i) The study of a finite cluster yields a finite continued
fraction for the Green function. In Haydock’s iterative
procedure, one includes in a hierarchical way the role of
successive shells of neighbors. Our basis is generated by
means of formula (6), through the action of the complete
Hamiltonian (2), the latter being strictly three-diagonal in
the above representation. Our results show that, for a
sufficiently large cluster (=6 or 8) the finite basis thus
generated is close to completeness, and a smooth match-
ing with the termination can be achieved. We do not
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FIG. 6. The split-off limit for the same example of Fig. 3 (0 =0 and ¢, =0.3), with the VC calculation shown in the upper part.

VC termination generates spurious states between both atomic levels.
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need to recur to more elaborate procedures for eliminat-
ing spurious states produced at the surface of small clus-
ters. For a given configuration and up to the eighth itera-
tive process, we warrant 16 exact moments for the DOS.
Since the total DOS is obtained as a weighted superposi-
tion over configurations, we expect the same number of
exact moments in the final result.

(ii) A termination with an effective self-energy simu-
lates an effective medium where the above cluster is con-
nected. The medium should contain an average amount
of information of the disordered alloy. Obviously, this
latter procedure is not unique. We are proposing here a
method that allows for local fluctuations in cluster statis-
tics.

Particularly important cases, such as ordering, segrega-
tion, and the complete split-off bands, can be obtained
within our scheme in a direct manner. Our method is
especially well suited for dealing with the latter, when the
separation between bands is much bigger than the band-
width. In this case, the transfer of electrons from atoms
of one type to the other appears as an extremely improb-
able event, since the energy involved in the process is
very high (atoms of the other type form perfect barriers).
The DOS displays a series of peaks typical of localization
phenomena,'* which are related to small clusters of alike
atoms surrounded by atoms of the other species (in the

6479

random case, for equal concentrations, the picture is sym-
metric for both types of atoms). We also obtain other
peaks that do not correspond to localized clusters of
atoms, but represent scattering resonances introduced by
tunneling through the high, but not infinite barriers. '
The latter effect disappears for the minority band, as long
as the concentration decreases. This picture is difficult to
be reproduced if a nonlocal approach is adopted.

Concerning localization, more interesting phenomena
are displayed by the two-dimensional case, where clusters
can percolate along well-defined directions and be local-
ized for others. A richer taxonomy of extended and lo-
calized states permitted by the new topology is thus ob-
tained. 3
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