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Exact scattering theory for the Landauer residual-resistivity dipole
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An exact-scattering-theory calculation for the density of electrons around localized impurities in
bulk metals for arbitrary transport current is performed within the noninteracting-Fermi-gas ap-
proximation. To first order in the transport current, one recovers the Landauer residual-resistivity
dipole plus additional Friedel oscillations. Numerical calculations for the density at arbitrary
currents are performed for the one-, two-, and three-dimensional case.

I. INTRODUCTION

The distortion of the electronic density by a localized
static impurity in a metal is a classic subject in solid-state
theory and leads to the well-known Friedel oscillations
associated with the sharpness of the Fermi distribution at
zero temperature. ' In the case of a metal with a finite
transport current density j =nev, the related question has
been addressed in a classic paper by Landauer. Lan-
dauer argued that with carriers impinging on one side of
a potential barrier there will be corresponding depletion
on the other side, resulting in a dipolar density and po-
tential distribution. This so-called residual-resistivity di-
pole ' is considered as the ultimate source of resistance
in a disordered metal and leads to a highly inhomogene-
ous distribution of density and electric field for each
specific sample which is absent in theories where an aver-
age over the impurity distribution is taken. In order to
determine the dipole strength p of the associated electro-
static potential p cos0/r (in three dimensions), Lan-
dauer argued that the auerage electric polarization field
E =4~n;p for an impurity density n,- which is small
enough that the individual scatterers may be considered
as independent must be equal to the field E =pj associat-
ed with a given current density j by Ohm's law. Since the
residual resistivity p is given by p =I /ne ~„, with
I/r„=n;UFcr„and o.„=fdA(1 —cosO)cr(8), the trans-

port cross section due to a single impurity, one obtains '

AkFU
otr for d =3,

4~e

with U the transport velocity. As emphasized by Lan-
dauer the dipole strength p is proportional to the scatter-
ing cross section and thus (at least) quadratic in the im-
purity potential. As a consequence first-order perturba-
tion theory is inadequate for a proper treatment of this
problem. Microscopic derivations of the Landauer resis-
tivity dipole usually start from calculating the change in
the electronic momentum distribution 5fk to first order
in the aueraged electric field using the Boltzmann equa-
tion. Integrating this with the probability density
~'Pk(x)~ of the impurity-scattering states then gives the
local change 5n(x) in density associated with a finite

transport current. ' Within the Thomas-Fermi approxi-
mation for screening, a given 6n (x) translates into a local
electrostatic potential of the form

5$(x) =— 5n (x),1 dp
e dn

where the thermodynamic derivative dp/dn is equal to
the inverse density of states at the Fermi energy.

Our aim in the present work is to give a very simple
pure-scattering-theory calculation of the local density
around an impurity which is valid for arbitrary large
transport current j. It contains the Landauer residual-
resistivity dipole as the linear term in an expansion in
powers of j. In addition to the smooth dipolar distribu-
tion, however, we find dynamic Friedel-type oscillations
which, except for very large distances, decay with the
same power as the dipolar term. Such oscillations have
been previously mentioned by Schaich and their impor-
tance for the so-called phase-sensitive voltage measure-
ments in a one-dimensional geometry was recently dis-
cussed by Buttiker. Here we will perform detailed nu-
merical calculations for the full densities around a local-
ized impurity in one, two, and three dimensions using
simple model potentials. Moreover, in view of the recent
direct observation of the potential distribution at grain
boundaries in a thin-metal film with a tunneling micro-
scope, we have included a calculation of the electronic
density in two dimensions with extended one-dimensional
scatterers.

II. ELECTRON DENSITY AT ARBITRARY
TRANSPORT CURRENT

A. General results

We consider a noninteracting Fermi gas with the un-
perturbed Hamiltonian Ho. Its eigenstates are Slater
determinants of one-electron plane-wave states ~k) with
single-particle energy Ek=(A'k) /2m. In the presence of a
local scattering center at the origin characterized by a
potential V(x), a complete set of one-particle eigenstates
of the full Hamiltonian R' are the outgoing scattering
states ~k, + ) [we assume, for simplicity, that there are no
bound states in V(x)]. The states ~k, + ) may be ob-
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tained by solving the corresponding stationary one-
particle Schrodinger equation in V(x) and are assumed to
be known. A situation with a finite transport current
j=nev is now set up by assuming that an incoming initial
state with plane-wave occupation numbers f (ek „&) is

scattered at the impurity. Here f(Ek)=(e " +1)
is the usual Fermi function with chemical potential p.
The momentum distribution for a current carrying situa-
tion is thus simply a shifted Fermi sphere. The corre-
sponding density is then given by

which, as we will see, gives rise to the Landauer-
residual-resistivity dipole. Numerically it turns out that
the terms in (3) which are quadratic or higher order in v

are negligible for transport velocities v smaller than about
0.05VF. In the limit of very large velocities
u ))max(v~, vT) with vT=(T/m)'~, as the thermal elec-
tron velocity the factor leak(x) taken at k=k, =mv/fi
may be removed from the integral. Then using

d k

(2~)
d k.(x)=f, f(.. .„,)l& xlk, +&I'.

(2~)
(2)

we obtain

This result is just a simple generalization of the static
Friedel expression at vanishing transport current j=o.
A detailed formal derivation in the context of the related
problem of a particle which is dragged through a Fermi
gas with fixed velocity v was recently given by two of the
present authors. ' Expanding (2) to linear order in v and
assuming zero temperature T=O for simplicity, we obtain
a correction to n (x) at v=O of the form [k = lkl, here
d )2; for one dimension see Eq. (7) below]

lim n (x)=nl%k (x)l
U »maxI Up, UT I

(4)

Obviously, in this limit the Fermi statistics no longer
plays any role. In the following we will evaluate the gen-
eral result (2) numerically at T=O for simple model po-
tentials in one, two, and three dimensions.

d

gn(x)= f „v.kl4k(x)l 5(k —k~)+O(v ),
A'k~

(3)

B. One dimension

For this case the density has been calculated explicitly
in Appendix C of Ref. 9 with the result

n (x) n= '—

kF+kv dk IF+k dkf R (k)+ f R '~ (k)cos(2kx —ak), x & —a
kF kv 2~ 0

kF+k dk kF kU dk 1/2—f R (k)+ f R ' (k)cos(2kx —ak ), x )a,
kp —k, 0

(5)

valid for u &uz. Here R (k) is the reAection probability
at the corresponding potential which we assume to be
concentrated on lxl &a while ak or al, are the phases of
the reflection amplitude for scattering from left or right.
For vanishing transport current (5) leads to static Friedel
oscillations of the form

density hn =2nRv/vF across a single scatterer corre-
sponding to a "dipole strength"

AkF Vp= R for d=1.
e

lim n(x)l, O=n+R'
( )

sin(2k~x —a „)F

which decay like 1/x. Here and in the following we have
set R (kz)=R. Also we have used that R (k=O)=1 and
( —)
0. k 0=~ quite generally. To linear order in j we find

from (5) an additional contribution (n =kz/vr)

5n(x)=n X '

VF

R +R '~ cos(2k~x —a& ), x & —a

—R —R ~ cos(2k~x —ak ), x )a . (7)

This shows that in one dimension the Landauer residual-
resistivity dipole corresponds to a jump of the average

In addition, there are oscillatory contributions propor-
tional to R ' . These terms have become relevant recent-
ly in the context of mesoscopic systems. Indeed it has
been shown by Buttiker that in a single-channel
transmission problem the root-mean-square fluctuations
of the resistance at fixed current j may be large compared
with the fundamental value h /e in the limit R ~1, pro-
vided that the voltage measurement is sensitive to the po-
tential Iluctuations associated with (7). It should be
pointed out that the exact expression (5) shows that the
oscillations asymptotically always decay like 1/x for arbi-
trary v as in the case u=0 while (7) is valid only as long as
kzlx «uz/v. A similar situation arises in dimensions
d=2 and 3 (see below) which shows that the expansion
(3) in powers of u is not uniformly convergent. For large
velocities v ))vz we use (4) to obtain
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lim n(x)=n X '

u))uF

1+R(k, )+2R' (k„)cos(2k,x —al, )

x( —a (9)

T(k, ), x )a, lim n (x)=n +
~ f& (~)~sin(2kFr +a& ) .

&2m

r ~ (2vrr) F F
(13)

asymptotic behavior of the density (2) at T=O is there-
fore given by [a& =argf(, (m)]

C. Two dimensions

Scattering theory in two dimensions has some peculiar
properties and we will follow the notation used by Adhi-
kari. ' The asymptotic behavior of the scattered wave
function with an incoming wave in the x direction is
(k=—k, &0)

1/2
Eke

ikr
0 (, (x)—e'""+ — f(,(g) — as r ~ co

r

It defines a dimensionless scattering amplitude fl, (0)
which determines the differential cross section o.(9) by
cr(0)= ~f1, (8)~ /k. In the limit kr~ ~ the incoming

plane wave can formally be written as

(10)

lim e'"" =
kr~ oo

1/2
i( kr —n /4)5( IIk x

—i(kr —m/4)5(II +II ) ]

(11)

which follows from decomposing e '" " into partial
waves' using the asymptotic behavior of the associated
Bessel functions and the Poisson summation formula.
Using this and the optical theorem

2&2vr
cr„,= Imf(, (0),

with T=1—R being the transmission probability. It is
interesting to note that after averaging the oscillatory
components and neglecting the energy dependence of
R (k) and T(k), the result (9) corresponds to the naive
picture of the density in front or behind a barrier which is
sometimes used in elementary derivations of the Lan-
dauer formula g =(e /h)T/R for the conductance of a
one-dimensional channel with transmission probability T
(see the discussion in Sec. III below).

The static Friedel oscillations are thus again proportional
to the backscattering amplitude but decay as 1/r in two
dimensions. Here we have used that f(, vanishes at k=O.
To linear order in jwe find from (3) that

V X
lim 5n(x)= —n

2&Zvr E&kFE
0„,+ Re[f(, (~)e ]

F F

AkFU
p = o.„ for d =2,

27TC
(15)

a result which is equivalent to that given by Sorbello and
Chu. In addition to the dipole contribution, however,
there is a Friedel-like oscillating term with wave vector
2kF and strength f& (vr), similar to the static result Eq.
(13) but decaying as 1/r instead of 1/r . Again, as in the
case of one dimension, the 1/r decay of the oscillating
term is restricted to kFr && UF/U and is asymptotically re-
placed by a 1/r behavior. Nevertheless for not too large
distances this term makes a noticeable contribution to the
complete density. An example for the spatial dependence
of the density in the case of a hard-disk potential of ra-
dius a which is based on a detailed numerical evaluation
of (2) with the exactly known scattering wave functions is
shown in Fig. 1. Clearly the Friedel oscillations on top of
the dipole term are rather pronounced. Moreover, there

(14)

with the usual transport cross section o,„=fd 8(1
—cos8)cr(8) at the Fermi energy and x as the unit vector
in the x direction. The first nonoscillating term in (14) is
precisely the Landauer residual-resistivity dipole in two
dimensions. Defining its strength p via

dn pv-x
5n (x)= —e

GP I"

we have

the asymptotic behavior of the square of the scattering
wave function reads

lim
~ 01, (x)

~

~ = 1—
kr~ oo

5(Q —0 )+
r

+ Re[f(, (vr )e 2'""]5(QI, +0 ) .
kr

(12)

We emphasize that (12) and the corresponding result (17)
in the three-dimensional case below can only be used in
the distribution theory sense after integrating over k, oth-
erwise terms of order 1/r should already have been in-
cluded in (10). At vanishing transport current j=O the

FIG. 1. Normalized density around a two-dimensional hard
disk with kF a = 1, v /UF =0.2, and v pointing in the positive x
direction.
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FIG. 5. The same as in Fig. 4 but with v /vz =3.

order in the transport current j is, according to (3), given
by

V X
lim 5n (x)= n—

P'~ QO
4 2
3
—7TVF r

4m. i2kFr
X o,„+ Im[fk (m)e ]F

Again as in (14) the first term gives the Landauer
residual-resistivity dipole with a strength p which is ex-
actly identical to the one which follows from the simple
consideration in (1). The oscillatory contribution decays
as l/r but asymptotically will decay like 1/r so that the
dipole is indeed the dominant term. It is interesting to
note that the Landauer residual-resistivity dipole contri-
bution 5n(x), which is linear in v but quadratic in the
scattering potential, also determines the long-distance be-
havior of the electronic backAow current 5j, which, at
T=O, has the simple form

5j(x)= u~ 5n (x)x, (20)

III. DISCUSSION

%'e have performed a simple scattering-theory calcula-
tion of the local electronic density at T=O around impur-
ities at arbitrary transport current and have provided de-
tailed numerical results for the full density at all distances
The motivation for dealing with this simple problem in
elementary quantum mechanics is due to the fact that it
has recently been possible to observe local-potential vari-
ations around defects directly with a tunneling micro-
scope. ' In order to compare the present results with
experiment, it is necessary to ensure that one is really
measuring the local potential in the vicinity of an impuri-

i.e., it is purely radial and decays as 1/r . As discussed in
Ref. 9 this contribution always dominates the dipolar
backAow obtained by using linear response in the scatter-
ing potential. " For the case of a hard-sphere potential
with radius a such that kza = 1, the full normalized densi-
ty n (x)/n in the direction of the transport current is
shown in Figs. 4 and 5 for u/u~=0. 2 and u/u~=3, re-
spectively.

ty, undisturbed by contact potentials, etc. , a point which
has been stressed by Buttiker and Landauer. ' ' In this
context it is clear that our Thomas-Fermi approximation
for screening, where the local electrochemical potential
5p(x) is simply proportional to 5n (x), misses some of the
details of the precise distribution. However, as long as
the resolution of the tunneling microscope is not
significantly smaller than the screening length, deviations
from our simple approach compared to one in which a
more refined wave-vector-dependent dielectric constant is
used should be irrelevant. Moreover, this assumption
also guarantees local charge neutrality on the scale of in-
terest and thus the equality between the electrostatic and
the electrochemical potential. ' It should also be pointed
out that we have not included inelastic effects, which
probably will smooth out finer details of the density vari-
ation. A similar effect arises from the thermal smearing
of the Fermi distribution in (2) which leads to an ex-
ponential damping of the 2kF oscillations in the form
exp[ b(T/T~)k—~r] with b a constant of order unity.
Since direct measurements of the local potential around
localized impurities are feasible with the present resolu-
tion, we believe that at least the qualitative features of the
inhomogeneous density distribution obtained here should
be observable in experiment.

Finally we would like to make a few remarks on the re-
lation between the residual-resistivity dipole and calcula-
tions of the conductance. In the Landauer approach an
incident Aux rather than an electric field is the starting
point of a calculation of the conductance and the
response is a drop in potential rather than a current. In
one dimension (7) gives an average potential drop
hp=4p(u/u~)R across a single scatterer with the
reAection coe%cient R. Thus the conductance associated
with a single localized impurity is g =ej/Ap=e /hR. In
order to obtain the Landauer result with a factor
T„,/R„, for a succession of random scatters with total
transmission T„, it is necessary to sum up repeated in-
cidences on a single scatterer in the form
R +R + =R/(1 —R) (Refs. 2 and 3) which eventu-
ally leads to localization in one dimension. In two and
three dimensions the inclusion of multiple scattering
within this approach has not been possible yet and the ar-
guments leading to (1) just give the Boltzmann value for
the resistivity p =I /ne ~„consistent with the assump-
tion of independent-scattering processes. Finally we
would like to point out that the resistivity p as a measure
of dissipation in a model with purely elastic scattering
arises naturally by viewing the Fermi gas at rest, but
dragging the impurities through it with a given velocity
v. The associated electronic friction problem ' then
leads to a dissipated power hi =gv per impurity
through the excitation of particle-hole pairs with a fric-
tion constant g =mn o.„vF. Equating the generated
power per volume n; b, i with pj leads again to the usual
Boltzmann value for p. This point of view makes clear
that the dissipated power associated with the residual
resistance leads to a continuous heating up of the elec-
trons and thus to an increase in their effective tempera-
ture' unless other degrees of freedom can absorb the en-
ergy.
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Note added. After submission of the present paper we
became aware of a related general work on the resistivity
dipole by R. Lenk, Phys. Status Solidi B 155, 627 (1989)
and also of recent publications on the specific questions
related to the experiments in Ref. 7 by J. P. Pelz and R.
H. Koch, Phys. Rev. B 41, 1212 (1990) and by C. S. Chu
and R. S. Sorbello, ibid 42., 4928 (1990).
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