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Magneto-optics of mnltilayers with arbitrary magnetization directions

J. Zak, * E. R. Moog, C. Liu, and S. D. Bader
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439

(Received 11 October 1990)

Equations are derived for determining magneto-optic coefficients in multilayer systems with arbi-
trary directions of their magnetizations. The equations are cast in a matrix form that is suitable for
numerical simulations. This establishes a framework for calculating the Kerr and Faraday effects
for a multilayer system in much the same way as has been applied previously to the bulk. Numeri-

0
cal Kerr results are presented for the following systems: bulk Fe, an overlayer of 50 A of Fe on Au,
and for an Fe/Au superlattice for different directions of the magnetization and different angles of
incidence.
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There has recently been much interest in the magneto-
optics of thin magnetic overlayers' and superlat-
tices, ' While magneto-optics is more than a century
old, ' it is the development of laser-based information-
storage systems' ' that has created demand for high-
performance materials. Dielectric coatings on magnetic
substrates have been successfully used to enhance the
magneto-optical signal. ' ' This has led to the theoreti-
cal analysis of layered structures. Conventionally,
both theory and experiment deal with three distinct
configurations for the direction of the magnetization M
with respect to the plane of incidence (normal unit vector
x) and plane of separation between layers (normal unit
vector z): (1) polar —xlM~~z, (2) longitudinal —xJ.Mlz,
and (3) transversal —x~~Mlz. From the point of view of
theory the choice of the above configurations leads to
considerable simplifications enabling one to derive expli-
cit expressions for the magneto-optic coefficients.
Also, the three configurations are convenient to work
with experimentally. However, there seems to be no
compelling reason why one should exclusively work with
these configurations. ' It is of interest to extend
magneto-optics to encompass arbitrary directions of the
magnetization in the difFerent layers of the system.

In this paper we derive expressions for calculating
magneto-optic coefficients for any general configuration
of the magnetization in a multilayer system. We do so by
using our recently developed universal approach to
magneto-optics. This approach is based on the medium
boundary A and propagation D matrices. The central
features of this approach are outlined in what follows.
Assume that the xy plane (see Fig. 1) represents the sepa-
ration plane between two media 1 and 2. We denote by F
and P the column vectors

where F is built from the x and y components the electric
E and magnetic H fields, and in P, E,"is the perpendicu-
lar and E~" the parallel to the plane of incidence (in Fig.
1 it is the yz plane) components of the incident wave E"
(similar notations are used for the rejected wave E'"~)

The medium boundary matrix A is then defined by the
expression

F=AP . (2)

For a nonmagnetic medium the calculation of A is very
simple. One just uses the connection between H and E
from Maxwell's equations, H=N XE (X is the refractive
index, and N is in the direction of the wave propagation),
and the geometry in Fig. 1. The result for A becomes
[Eq. (32) of Ref. 29]
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where a, =cosO (8 is the angle between N and the z axis).
The calculation of A for a magnetic medium with a gen-
eral direction of magnetization M will be described in
Sec. II. (In Ref. 29 this was done separately for the polar
and longitudinal configurations. In a later manuscript
the medium boundary matrix A was derived for a general
M in the plane of incidence. ) Having the matrix A, it be-
comes very sixnple to write down the boundary matching
conditions for a two-media problem in Fig. 1:

A iPi = A2P2 .

This is a set of four linear equations with the unknowns

um boundary matrix A solves, therefore, the problem for
a single boundary. When there is more than one bound-
ary (as in a multilayer system) we also need to know the
wave propagation inside the medium. This is given by
the medium propagation matrix D which is defined in the
following way. ' Equation (4) can also be interpreted
as determining P2(0) (the wave components at z =0 in
medium 2, see Fig. 1), when P&(0) is known. The ques-
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FIG. 1. Two media separated by the xy plane. Light is in-
cident from medium 1. The plane of incidence is the yz plane.
E, and E~ are the electric-field components relative to the plane
of incidence: s stands for perpendicular and p for parallel. k is
the wave vector of the wave.

tion is then, what is Pz(z) at any level z in medium 2?
This question is answered by the propagation matrix D2.
By definition one has

I

A;P;= g (A D A ')AfPf,
m=1

(6)

where I is the number of layers in the system.
For being able to apply formula (6) to a system with an

arbitrary configuration of magnetization M in the layers
(Fig. 2), one has to find the medium boundary A and
propagation D matrices. In our previous publications 3
and D were found for polar and longitudinal
configurations in Ref. 29 and for a general direction of M
in the plane of incidence in Ref. 30. In this work the 3
and D matrices are calculated for an arbitrary
configuration of the directions of M.

In Sec. II we outline the calculation of the medium
boundary matrix A. Section III describes the derivation
of the medium propagation matrix. Section IV presents
our numerical simulations. Section V gives a summary
and conclusions.

II. MEDIUM BOUNDARY MATRIX A

We find in this section A for an arbitrary direction of
the magnetization M with respect to the plane of in-

P2(0) =Dz(z)P2(z) .

Having the medium propagation matrix D one can solve
the scattering problem (refiection transmission) for any
multilayer system as shown in Fig. 2. The light starts out
in the initial medium i, goes through the multilayer sys-
tems, and ends up in the substrate or final medium f.
From Eqs. (4) and (5) one finds for the multilayer system
the following formula [Eqs. (43)—(46) in Ref. 29]:

FIG. 2. Multilayer system. M is the magnetization, y is the
angle of M with the z direction, and d is the thickness of the lay-
er. i and f label the initial and final media. m is the running in-

dex of the layers.

we find for the general direction of M the following ex-
pression for E (by coordinate transformation):

i cosyQ
1

1

8 =N i cosyQ—
i sing sin@Q i cosy sin—@Q

i sing sin—yQ
i cosy sinyQ

1

(9)

where Q is the magneto-optic constant.
For calculating the medium boundary matrix 2, the

connection has to be found between the vectors I' and P

cidence yz and the plane of separation xy (see Fig. 3).
We shall specify the M direction by means of the polar
angles tp and y in the xyz system (Fig. 3). Thus, for a po-
lar configuration y =0, while for a longitudinal one
y=~/2, y=~/2, and for a transversal configuration
cp=~/2, y=0. In general,

M„=M sing cosy,

M =M sinysiny,

M, =M cosy .

By assuming that in the polar configuration the dielectric
tensor is

l iQ 0
e=N iQ l —0

0 0 1



43 MAGNETO-OPTICS OF MULTILAYERS WITH ARBITRARY. . . 6425

X

MAGNETIC
LAYER

N, Q

F(") E( )4

Z

FIG. 3. Spherical coordinates for the magnetization in the
xyz system.

FIG. 4. The four eigenmodes of the electromagnetic wave in
a magnetic medium. According to our notations, waves going
from medium 1 to medium 2 are denoted by E",while those go-
ing from 2 to 1 by E". 0"', j=1,2, 3,4 are the angles between
the propagation directions of the four waves and the z direction.
N is the refractive index of the medium and Q is its magneto-
optic constant.

Snell's law for the two media in Fig. 4 will assume the
form

IEqs. (1) and (2)j. In a magnetic medium, the com-
ponents of the E vector in an eigenmode are related by
the equation [Eq. (82.12) in Ref. 32]

N sinO =IV sinO=n" 'sinO" '
1 1

(3,4) . O(3, 4) (12)

D'
+ ~

D.
(10)

n =N(1+ —,
' gg),

where g =cos(k, M ) is the cosine of the angle between the
propagation vector k and the magnetization. As is well
known and as was described in detail in Refs. 29 and
30, there are four waves propagating in a magnetic layer:
two are going into the medium E", ,E2', and two coming
out of the medium (see Fig. 4). Correspondingly, the fol-
lowing notations are used: n" ' are the refractive indices
for E'&', E2", n ' ' ' are for E3"',E4"'. Also, g; will be used
for the angle cosine of the incident wave E'~ in Eq. (11),
while g, is for the reAected wave E'"'. In Fig. 4 we show
the direction angles O' ', j =1,2, 3,4, for the four waves.

where y is in the direction of the D-wave propagation
vector k, and the + signs are for the two circularly po-
larized waves. The refraction indices for these two waves
are

sin 0' ' ' —=a' ' ' =a ( 1 + —'g Q )3' 3'

cos0" '—=a," '=a, (1+—,'g;Q),
(13)

CXy
cos0' ' '—=a,' ' '= —a, 1+— g„g

0

where 0. =sinO and a, =cosO. It is now straightforward
to find the relations between the components of the
electric-field vector E in the magnetic medium. For this
we use Eq. (10), the dielectric tensor (9), and the expres-
sions (13) for the angles of the four waves. With the same
algebra as in Refs. 29 and 30, one finds

where N
&

is the refractive index of the incidence medium
(medium 1 in Fig. 4), 0& is the angle of incidence, N is the
refractive index of the magnetic layer, and O is an auxili-
ary angle that is used throughout the paper. From Eq.
(12) we have the following expressions for the sine and
cosine directions of the four waves:

sin0" '=a" '=a 1+—'g. g)

E»' '=(+ia,'' '+ia cosyg —ia a, siny sining+a cosy sining)E„'' ',
E,'' '=(+ia" ' —ia, siny si ygn+ia a, cos Q+a, cosy sining)E" ',
E» ' '=(+ia,' I+ia cosyg+ia a, siny sin Q+a cosy sining)E'

E,' ' '=(+ia' I —ia, siny'sincpg —ia a,cosg:i:a,cosy sining)E„' ' '

(14)
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From here we can find the tangential components Ex, E, Hx, and H~ expressed via E'J', j =1,2, 3,4. Eventually, for
calculating the medium boundary matrix A, one needs to know the tangential components as functions of E, ', E"',
E,'"', Ez"' [Eq. (2)]. One can show that~9

E(1,2) (
( E(i) +.E(i))

X 2 S p

E""= '(E'"-'+ E'"')
X P $ p

where use was made of the equations (see Fig. 1)

(15)

(16)

This information leads us to the following expression for the medium boundary matrix:

0

Ay Q!y

Q (a~g; —2 sing cosy) a, +i a sing& cosy Q —— Q(a~g„—2 sing cosy) —a, + i a~sin(p cosy Q2 CXz Z

—Xg;Q
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g, Q

2
&g, Q
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where where [g; and g„are given in Eq. (18)]

g; =cos{pA + 0'.
y s1ncp s1np

g, = —costa, +a sincpsiny .
(18)

2nU=exp —i Nda,

This is the 2 matrix for an arbitrary direction of the
magnetization M [Eq. (7)]. When M is the plane of in-
cidence, 2 assumes the form in Ref. 29 and 30.

7T5- =—Nd g-,
Z

6=—Nd g

III. MEDIUM PROPAGATION MATRIX D

For a multilayer system one has to know how the
phase of the wave changes when the wave propagates
through the medium. This change is accounted for by
the medium propagation matrix. ' The latter is de-
rived in the following way. The four components E' ',

j=1,2, 3,4 vary in the medium according to the equa-
22, 29

E'J'(0) =E'i (z) exp —i n 'J a' 'z2&
X X Z (19)

where z =0 is the boundary between two media (Fig. 1),
and z is the depth into the material. For finding the
medium propagation matrix D we need to write Eq. (19)
for the I' vectors [see Eq. (5)]. This we obtain by using
Eq. (15), and for propagation through a layer of thick-
ness d, we find

The matrix D in Eq. (20) is given to first order in Q.
When M is in the plane of incidence, D in Eq. (20) goes
over into the medium propagation matrix in Refs. 29 and
30 (the g, in the present paper has an opposite sign to g„
in Ref. 30).

IV. NUMERICAL SIMULATIONS AND DISCUSSION

In this section we apply Eq. (6) with the expressions for
the medium boundary matrix A [Eq. (17)] and the medi-
um propagation matrix D [Eq. (20)] for calculating Kerr
rotations and ellipticities in the following systems: (1)
bulk Fe, (2) 50 A of Fe on a Au substrate, and (3) a 50
period Fe/Au superlattice on Au with the modulation
period 10 A Fe+10 Au. The calculations are carried
out for the He-Ne laser light A, =6328 A (h v=1.96 eV).
For this wavelength the refractive indices (%=Xi(+i%I )

for Fe and Au are

—U6;

U6; 0

U 0

0 Fe: % =287, N =3 36,
Au: N~ =0.12, %1=3.29 .

(22)

0 0

0

U-' —U-'n„ (20)
For Fe we also have to know the magneto-optic constant
Q=Qi(+iQI Q(Fe) ca.n be found from the data for the
oA'-diagonal matrix element e of the dielectric tensor
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Qii =0.376, Ql =0.0066 . (23)

P; =MPf,
where

(24)

In calculating the magneto-optic co ffi
'

tcoe cients it is more
convenient to rewrite Eq. (6) in the following form.

where t are the transmission and r the reA
ma neto-og — ptic coefficients. Our corn uter ro

e re ection
u er program is

on the subdivision of the M matrix [Eq. (25)] into
2 X 2 matrices and the use of Eqs. (26) and (27).

th
For calculating the Kerr rotatio ' d ll

'
n ~ an e ipticity P",

t'
t e following formulas are used (f d
ions:

or s an p polariza-

M=A; 'QA D A 'Af ——f= I J (25) p,'+i/,"=
"ss

(28)

In Eq. (25) G, H, I, and J are 2X2 matrices. One can
then show that

—
QJ, +i/i, =

pp

(29)

tss tsp

ps pp

=G (26)

ss sp =rG- ',
ps pp

(27)
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and bulk results are qualitatively quite similar; the Kerr
effect for the overlayer differs quite strongly from them.
For example, the p rotation in bulk (Fig. 5) and in the su-
perlattice (Fig. 7) is close to maximum for incidence an-
gles around 70, while this same rotation for the overlayer
(Fig. 6) is close to zero. A general trend for all the curves
in Figs. 5 —7 is the decrease of the Kerr signal with the in-
crease of the angle between the magnetization and the z
axis. The biggest signal is for the polar configuration and
as a rule it is an order of magnitude larger than the longi-
tudinal one. Altogether, Figs. 6 and 7 contain many new
detailed results of Kerr signals from overlayers and su-
perlattices with general magnetization directions, and it
is anticipated that these computational data will en-
courage experimental interest in these systems.
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FIG. 7. Kerr rotations and ellipticities for a 50[10-A Fe/10-
0

~ 0

AAu]/Au superlattice. It contains 50 periods of a 10-A Fe plus
0

10-A Au bilayer on a Au substrate. All other notations are as in
Fig. 5.

to the boundary, as in Figs. 1 and 2). 0' is for the polar
Kerr effect and, correspondingly, 90 is for the longitudi-
nal Kerr effect. All the results are for He-Ne laser light.

The curves in Fig. 5 for bulk Fe are in full qualitative
agreement with the published results in Ref. 35 (the latter
is for Na yellow light). When comparing the overlayer
and superlattice results (Figs. 6 and 7) with those for bulk
(Fig. 5), the following picture emerges: the superlattice

V. SUMMARY AND CONCLUSIONS

A matrix method is developed for calculating the
magneto-optic coefficients from multilayers with arbi-
trary directions of the magnetizations in individual lay-
ers. The method is based on two types of matrices —the
medium boundary 3 and medium propagation D which
are explicitly given in the paper [Eqs. (17) and (20), re-
spectively]. This enables one to calculate the Kerr and
Faraday effects for any multilayer system of magnetic
and nonmagnetic films with completely general magneti-
zation directions. We have a computer program for nu-
merical simulations of the Kerr effect from such general
multilayer systems. The results in Figs. 5 —7 were gen-
erated by this program. In these figures the magnetiza-
tion is in the plane of incidence in accordance with the
bulk results in Ref. 35. However, our method and the
computer program are also applicable to arbitrary mag-
netization directions.

In conclusion, we would like to make a remark about
our 4 X 4 matrix method and the computational algo-
rithm, ' as compared to the 2 X 2 matrix scheme that is
used in Ref. 31 ~ While our matrix method itself uses
4 X 4 matrices [Eq. (6)], the final computational algorithm
is simplified by the use of 2X2 matrices [Eqs. (26) and
(27)]. It looks, therefore, that our computational algo-
rithm is quite similar to the one used in Ref. 31.
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