
PHYSICAL REVIEW B VOLUME 43, NUMBER 8 15 MARCH 1991-I

All-electron and yseudoyotential force calculations using the
linearized-augmented-plane-wave method

Rici Yu
Department ofPhysics, College of William and Mary, Williamsburg, Virginia 23185

D. Singh
Complex Systems Theory Branch, XaUal Research Laboratory, 8 ashington, D.C. 20375-5000

H. Krakauer
Department ofPhysics, College of William and Mary, Williamsburg, Virginia 23185

(Received 13 November 1990)

All-electron and pseudopotential formulations for atomic forces in the linear-augmented-plane-

wave (LAPW) method within the local-density approximation are presented. Due to the fact that
the basis functions in the LAPW method (and in other linear muffin-tin-orbitals-based methods)
have discontinuous second derivatives across the muffin-tin sphere boundaries, a large surface con-
tribution to the incomplete-basis-set corrections to the Hellmann-Feynman force is shown to exist.
The formulations are applied to frozen-phonon calculations in semiconductor, transition-metal, and
noble-metal systems. The results are in excellent agreement with total-energy calculations and ex-

periment.

I. INTRODUCTION

Density-functional theory and specifically the local-
density approximation' (LDA) has been used with con-
siderable success to investigate the properties of solids,
surfaces, and molecules. A basic application of the
theory is the determination of the equilibrium atomic
configuration of a given solid-state system. The problem
is essentially one of finding the geometry with the lowest
total energy. This can be accomplished by directly calcu-
lating the total energy for different atomic geometries and
finding the equilibrium geometry using some fitting pro-
cedure. While this is certainly a valid approach, it is not
an efficient one, especially for large and complex systems.
A better approach is to calculate the atomic forces rather
than the total energy since the former provides much
more information.

Both pseudopotential and all-electron methods have
been used to solve the Kohn-Sham equations, and there is
generally very good agreement between these approaches
when they are applied to the same system. Many all-
electron methods such as the linear-augmented-plane-
wave (LAPW) (Refs. 3 and 4) and linear muffin-tin-
orbitals methods (LMTO) (Ref. 5) use dual representa-
tions for all the relevant quantities in the calculation.
Space is partitioned into two regions, nonoverlapping so-
called muffin-tin (MT) spheres centered on each atom,
and the remaining interstitial region. Within the spheres
the basis functions, charge density, and potential are ex-
panded in terms of numerical radial functions multiplied
by spherical harmonics. In the interstitial region these
quantities are all expanded in plane waves (as in the
LAPW method) or in spherical partial waves (as in the
LMTO method). While this dual representation results

in the efficient and accurate treatment of transition ele-
ments and first-row elements, which are difficult to treat
using plane-wave basis sets, as are often employed in
pseudopotential calculations, it complicates the deter-
mination of atomic forces. Indeed, virtually no realistic
force calculations using the LAPW or LMTO methods
have appeared in the literature.

The force on an atom is equal to the electrostatic force
on its nucleus, according to the Hellmann-Feynman (HF)
theorem. However, the forces so obtained in any ab ini-
tio electronic-structure calculation can be grossly inaccu-
rate. This is because the calculated charge density and
thus the electric field are necessarily approximate. On
the other hand, the change in total energy due to the shift
of the atoms, and thus the force, can be computed accu-
rately in an electronic-structure calculation. In particu-
lar, methodologies based on the density-functional theory
using the LDA (Ref. l) have provided good total-energy
results. As shown by Pulay, the HF force (the electro-
static force on the nuclei) should in general be supple-
mented with a contribution due to the use of an incom-
plete basis-function set (IBS) in practical calculations.
This contribution vanishes if the basis functions are in-
dependent of atomic positions (Aoating basis set). It is
thus unnecessary to evaluate the relatively complex IBS
correction in the plane-wave pseudopotential method, '

for example. Unfortunately, it is impractical to use only
plane-wave basis sets for systems with localized orbitals.

In this paper, we present all-electron and pseudopoten-
tial formulations for the calculation of atomic forces
within the LAPW method. We find that the IBS correc-
tion to the HF force has a contribution due to the discon-
tinuity in the second derivative of the wave functions
(and thus the kinetic-energy density) across the MT
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sphere boundaries, in addition to the contributions that
are present in other methods that employ localized basis
functions. "' In addition, there is a correction from the
core states in the all-electron formalism. We have tested
the all-electron formalism by performing frozen-phonon
calculations. We find that the core correction can be
large and may cancel most of the HF force. In spite of
this, the results of force calculations are in good agree-
ment with total-energy calculations and experiment. As
an alternative to dealing with the core electron states, the
use of pseudopotentials within the LAPW method' ' for
total-energy and force calculations is also discussed.

The rest of the paper is organized as follows. The
equations for all-electron atomic forces are derived in
Sec. II. The pseudopotential formalism for electronic
structure and/or total energy as well as force calculations
is described in Sec. III. In Sec. IV, we present the results
of frozen-phonon calculations for Si, Mo, and Ag. The
results are summarized in Sec. V.

the change in the total energy can be shown to be

5E=+s;5n;+gn;6e; —fp(r)6V, &(r)d r —F~„.5r

where

is the HF force, and is equal to the electrostatic force on
the nucleus. The first term in Eq. (6) ideally vanishes to
first order in 6w as a result of electron-number conserva-
tion. ' The atomic force on atom a is thus given by

II. ALL-ELECTRON FORCE

We shall first find the general atomic force within the
density-functional formalism. We will assume that the
charge density and potentials are self-consistent. The to-
tal energy in the LDA is given by (in atomic units)

&=gn;e; —
—,
' ff, d rd r' fp(r)p„,—(r)d r

with

Z Zp+ fp(r)E, (r)d r+ —,'g' g —rp+ R

(4)

is the efFective potential, consisting of nuclear, Hartree,
and exchange-correlation potentials. To find the force on
atom a, we displace the atom by a small amount 6~ and
calculate the change in the total energy from Eq. (1). Us-
ing Eq. (4) and the general relationship between the
exchange-correlation potential and energy density,

where z and ~ are the atomic number and position of
atom a within a particular unit cell, R is the lattice vec-
tor, n, is the occupation number of the state i at the k
point k, times the weight of the k point, p(r) is the elec-
tronic charge density, and E, and P, are eigenvalues and
eigenfunctions, respectively, and are determined for the
core and valence states with respective approximations
(see below) from the Kohn-Sham equations

HP; = [T+ V,tr(r)]g;(r) =E,g;(r),
where T is the single-particle kinetic-energy operator and

1=F~„— gn, 5E, —fp(r)6V, tr(r)d r . (8)
i

The second term represents a correction to the HF force,
whose existence was first shown explicitly by Pulay for
the Hartree-Fock method. The above equation is still
completely general within the LDA.

We now must evaluate the variation in the eigenvalues,
which depends on the method of solution of the Kohn-
Sham equation. In the all-electron LAPW method, the
orbitals are divided into core and valence states, which
are treated using different approximations. The core
states, being low lying in energy and localized around the
nucleus, should be fairly well described by neglecting the
nonspherical potential:

HMrg, -(r) = [T+V,s.(r)]g, (r) =E, l(, (r), (9)

where p, is the core charge density of atom a and we
have taken advantage of the fact that the core charge
density is spherical. The core correlation to the HF force
is thus

Fcx
core gn, 5E, —fp, (r)6V,~(r)d r

+o. i

= —fp, (r)V'V, s(r)d r .

This result agrees with the LAPW total-energy calcula-
tion if the core charge density is localized within the MT
sphere. Because the spherical potential in Eq. (9) outside
the MT sphere is extrapolated from the potential inside
it, the correction of those core states that have a substan-

where V,~ is the spherical part of the effective potential.
In this spherical-potential approximation, the eigenfunc-
tions become the spherical harmonics times radial func-
tions, which are obtained through numerical integration.
The first-order change in the eigenvalue sum for the core
states of atom a is given by

gn, 5c.;=fp, (r)[5V,fr+7'V, s(r) 5r ]d r, (10)
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tial portion of its charge density outside the MT sphere
may not be the same as numerically calculated from the
total energy. This can be avoided by treating such core
states variationally (i.e., like the valence states).

The valence-state wave functions are expanded in
terms of a set of LAPW basis functions C&o (for brevity,
we omit the labeling of k;),

5&4;IO;&=&50, 10, &+&y, l5y, & .

Similarly, the change in the potential energy is

5&&;Iv, I@;&=&5&;Iv, lg;&+&&;Iv, 15&;&

+&q, l5v„l@, & .

(18)

(19)

i/r, (r) =QC, (G)PG(r) . (12)

g(HGG —E;OGo. )C;(G') =0, (13)

where

and

HoG =&NGIHIWo & (14a)

With these variational wave functions, the Kohn-Sham
equation becomes the following secular equations:

It should be pointed out that the continuity of the wave
functions and the potential is taken into account implicit-
ly in writing down Eqs. (18) and (19). The continuity is
important as we are dealing with the movement of a MT
sphere with a sharp boundary, and an additional term re-
sults if there is a discontinuity at the boundary. This is
exactly the case with the kinetic energy in the LAPW
method, because the second derivative of the basis func-
tions (and thus of the wave functions) is in general
discontinuous. As the a atom shifts to a new position,
its MT sphere and the interstitial region around it are
redefined, and there is a finite change in the kinetic ener-
gy in the nonoverlapping regions of the old and new MT
spheres of atom a:

o (14b) (20a)

5E;= g C;*(G)(5HGG —c,;50GG )C;(G') .
G, G'

(15)

are, respectively, the Hamiltonian and overlap matrices.
Since the augmentation to the plane waves is position
dependent, the Hamiltonian and overlap matrices change
as atom e is moved. The resulting change in the eigen-
value E; can be obtained from Eq. (13) and is given by

with

D; =f [g,
"(r ) TQ; ( r ). I M T P;*(r ) TQ—; ( r ) ~ ]d S (20b)

where MT and I indicate that the kinetic energy is to be
evaluated using the MT and interstitial wave functions,
respectively. The change in the wave function again
gives rise to a volume contribution:

In view of Eq. (14), this can be rewritten in a more com-
pact form,

5T,"'=&5y, ITIq, &+&q, ITI5q, & .

Substituting Eqs. (18)—(21) in Eq. (16), we arrive at

(21)

5., =5(q, l(H —., )I1t, )

if we let

5$, (r)=QC, (G)5$G(r) .

(16)

(17)

5E; = ( 5q, I (H —E, ) I i/r; ) + ( i/j; I
( H —E, ) I 5i/(; )

+D, .5r + f i/r,*(r)i/;(r)5V, s.(r)d r . (22)

With this definition, the change in the norm of the wave
functions is given by

The IBS correction to the HF force from the valence
electrons is thus

F,Bs= — gn, 5e fp, (r)5V,a(r)d'r1
IBS

= —gm; (
(H —e;( ((;)+(((; (H —E;) )+D;

5; 5i/(;
(23)

where the index i goes over all occupied valence states. As mentioned earlier, the above expression di6'ers from that
given previously for localized basis-function methods" ' by the MT surface contribution, as defined by Eq. (20b). The
sum of the HF force and the core and IBS corrections, given respectively by Eqs. (7), (11), and (23), provide the total
atomic force on atom e.

We now proceed to find the IBS correction in terms of the basis functions, which are defined piecewise in the intersti-
tial and MT regions,

l'(k. +G)-I'
e '

, r&I
4'o(r )

pl:age (G)ui(r~ )+bP~ (G)ui(ra ) lI'im ("a)
E, m

(24)
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where 0 is the unit cell volume, R is the MT radius of atom a, and r =r —r . The coefficients a/ (G) and b/ (G) are
determined by matching the basis function and its radial derivative on the MT sphere and thus depend on r through
the phase factor exp[i(k;+G) r ]. The change in the basis functions from moving atom a is nonvanishing only inside
its MT sphere and is given by

6///G
=i(k, +G)go —7'Po,

6~
(25)

where the variations in u/ and u/ are neglected (discussed below). Substituting Eqs. (12) and (25) into Eq. (23), we finally
have

F;„=—yn; / y (G' —G)c;*(G)c;(G')&gaol(H —s;)lyG &MT

(26)

where the subscript MT means the integrations are over
the MT sphere of atom e only. Detailed expressions that
we use in our calculations are given in the Appendix.

The above IBS correction corresponds to total-energy
calculations where the radial augmentation functions are
frozen. This is different from the usual LAPW calcula-
tions, in which the radial functions are determined by the
following equations:

HMT u I Yl = cl u I Y(

HMTil/ Y/ =( /uE/+u/)Y/

(27a)

6EFA —6E
FFAC

TQ(

(28)

which we shall call the frozen augmentation correction
(FAC). Another way of calculating the FAC is suggested
by the foregoing line of derivation, which relates it to the

where HMr = T+ V,ff(r) with V,ff being the spherical
part of the effective potential. The E.&'s are energy param-
eters and are chosen to lie within the valence bands with
the corresponding angular momentum. Equation (27) en-
sures that the basis functions as given by Eq. (24) are or-
thogonal to core states ' that are localized within the
MT sphere, but it also makes them dependent upon (the
spherical part of) the effective potential. As a result,
5/t/o~6r should have additional contributions from the
changes in uj and u& and from the accompanying changes
in a/ (G) and b/ (G). However, it is impractical to cal-
culate these contributions because 5V,& is not readily ob-
tainable (one could, for instance, use the linear-response
theory to estimate 5V,&, but the effort could parallel or
even exceed that of the force calculations described here).
For a given system and a given set of energy parameters,
the size of the term can be determined by performing
total-energy calculations using relaxed and frozen aug-
mentation functions. Thus, if the change in the total en-
ergy from moving the a atom by 6~ is 6E in the usual
LAPW calculations and is 6EF~ when using the same set
of augmentation functions for both configurations, the
force due to the variation of u I and u I is given by

change in the sum of valence eigenvalues arising from
merely changing u/ and u/ (with the position of the atoms
and the potential left unchanged). Denoting the eigenval-
ue sum by S, we have

~l I /& /]~ Veff] ~[ I /~ /] ~ Veff]

A

(29)

III. PSKUDOPOTENTIAL FORMALISM

Pseudopotentials have been used in conjunction with
the LAP%' formalism' in a comparative study of pseu-
dopotentials and all-electron calculations for Si. Here we
present a general formulation' that includes the effects
of nonlocal potentials, which may not be neglected in
general. Expressions for the atomic force are also given
here.

The nonlocal part of the pseudopotentials would
significantly complicate the evaluation of the Hamiltoni-
an matrices if it were to leak into the interstitial region
and other MT spheres. It is therefore desirable to have
the nonlocality confined within the MT sphere of the
atom for which the pseudopotential is generated. This
condition is satisfied by the potentials generated using the
Kerker scheme. ' In this scheme, a pseudo-wave-
function is obtained by matching a well-behaved analyti-
cal function onto the all-electron wave function at the
chosen core radius. The resulting pseudopotentials for
different angular momentum 1 thus match exactly (at the
corresponding core radii) onto the all-electron potential
minus the core screening. The pseudopotential is then lo-
cal beyond the largest of the core radii for all angular
momentum I. The restrained nonlocality requirement is
satisfied by using core radii which are smaller than the
MT radius. %'e find it possible to generate smooth pseu-
dopotentials for the study of bulk systems using this pro-

where the primed quantities refer to the final atomic
configuration (where the a atom is moved by 5r ). We
have calculated the FAC for the test cases presented in
Sec. IV using both Eqs. (28) and (29). It is found that the
FAC is quite small if the energy parameters are appropri-
ately chosen.
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ut (r)=tv (r)+u (r),
where the two components are given by

uL(r) (A +B r ), —r ~R
tva(r) =

0 )R

(31)

(32a)

cedure. Of course "hard" pseudopotentials present no
difficulty in the LAPW method.

In order to facilitate the treatment of the electron-ion
and ion-ion interaction in the LAPW formalism, ' we
separate the pseudopotential of atom a into two parts: (i)
a point charge (ionic charge) potential, —Z;,„lr, which
replaces the potential of its nucleus in the all-electron for-
malism, and (ii) a pseudopotential that is taken to be'
(we use lower case for the potential of individual atoms
and upper case for the total crystalline pseudpotential)

Imax

u, (r)=v L(r)+u NL(r)=uL(r)+ g uP(r)P~, (30)
1=0

where P, is an operator that projects out the component
of a wave function with the angular momentum l. The
local part ut (r) is obtained by subtracting the point-
charge potential in (i) from the atomic pseudopotential
for some chosen I. The latter is subtracted from the
atomic pseudopotential for all l (up to l,„) to give the
nonlocal potentials, uP(r) As m. entioned, the nonlocal
part vanishes for r )R . Since the atomic pseudopoten-
tial for any / approaches —Z;o„lr at large r, the local
part is short ranged. Nevertheless, it does extend beyond
its own MT sphere. It is thus necessary to convert the lo-
cal part into the plane-wave representation in the intersti-
tial region and lattice harmonics representation in the
MT spheres. To do this, we first carry out the following
decomposition:

V(r)=g gu (Ir —r —Rl) (33)

in plane waves, which is subsequent1y evaluated in the
MT spheres and projected onto lattice harmonics. ' The
total pseudopotential of the crystal is given by

V, (r) = g g tv ( Ir —r —Rl )+gvP( lr —r —RI )P,
a R I

+ V(r) . (34)

The Kohn-Sham equation, Eq. (3), must now be solved
with the new Hamiltonian

H= T+ V,(r)+ V,&r(r), (35)

where V,&r is given by Eq. (4) in which the nuclear charge
Z is now replaced by the ionic charge Z;,„. The
muffin-tin part of the Hamiltonian, which is used to
determine ul and uh, is now

HMT=T+tv (r)+gvP(r)PI+ V (r)+ V,z(r),
I

(36)

where V and V,z are, respectively, the spherical part of
V and V,~. The Hamiltonian matrix elements can be
evaluated in exactly the same manner as in the all-
electron method. ' The total energy is given by Eq. (1)
since the pseudopotentials are treated as classical (exter-
nal) potentials.

The IBS correction to the atomic force can be separat-
ed into pseudopotential and nonpseudopotential contri-
butions. The nonpseudopotential terms are again given
by Eq. (26) (with H = T+ Vdr). The pseudopotential con-
tribution to the force is given by

and

+B r, r~R
v (r)= '

vt(r), r R (32b)
F;,= —,' &ql „vip, &. (37)

where A and B are determined such that u (r) and its
derivative are continuous at r =R . The function U is
now a smooth and slow-varying function. It is thus pos-
sible to expand

The contribution of the atom-centered pseudopotentials
[6rst term in Eq. (34)] comes from the change in a& (G)
and bP (G) only, while that of V is similar to Eq. (19).
Recalling Eq. (25), one obtains

Fp, = gn; i g (G—' —G)C,*(G)C;(G')&&Gl Vp. l&t&G &MT &&p; I VI@; &MT
—

&@; I VI&@;&MT+-
G, G' +a

(3g)

Adding on the nonpseudopotential contributions, we have

Ftns= —gn, i g (G' —G)C;*(G)C;(G')&gaol(H —s;)lpo &MT
i G, G'

(39)
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TABLE I. Calculated all-electron total energy (referenced to the equilibrium energy) per atom and

the x component of the HF force, the core correction, the IBS correction, and the total force on the Si
atom for small displacements associated with the I -point phonon in Si.

—0.005
0.005

hE (mRy)

2.422
1.988

FHF (Ry/aB )

0.036 53
—0.030 08

F„„, (Ry/a )

—0.000 76
0.003 62

FIBS (Ry/a B )

—0.002 72
0.001 89

F (Ry/a, )

0.033 04
—0.024 57

where

H'= T+ V,~(r)+ V(r) . (40)

Equation (39) is very similar to the all-electron formula,
Eq. (26), and can be evaluated in the same manner (see
the Appendix). The last term of Eq. (39), which is absent
from the all-electron formula, is simply

which can be conveniently integrated after symmetrizing
6V.

IV. FROZEN-PHONON CALCULATIONS

In this section, we present frozen-phonon calculations
for Si, Mo, and Ag as tests of the all-electron and pseudo-
potential formulations of atomic forces. Two comments
on the calculations are in order. The first concerns the
use of the radial mesh. To accurately calculate the elec-
tric field at the nucleus, it is necessary to use a mesh with
the innermost points lying very close to the nucleus in an
all-electron calculation. For instance, we used 340 points
with a logarithmic step size of 0.03 for Ag. In pseudopo-
tential calculations, a fewer number (150 for Ag) of radial
mesh points is sufhcient because of the smoothness of the
wave functions. Second, because the wave function,
charge density, and potential are expanded in plane
waves in the interstitial and in spherical harmonics (lat-
tice harmonics) in the MT spheres, there exist discon-

tinuities in these quantities on the MT spheres. Although
we truncate the summation over l at l,„=8, the rms
discontinuities seem to be appreciable (a fraction of a per-
cent). Increasing l,„ to 12 reduces the discontinuities by
about one order of magnitude. However, the agreement
between total-energy and force results is not significantly
improved. Thus l „=8seems to be sufhcient and is used
in all calculations.

Total energies and forces are computed for I -point
frozen optic-phonon configurations in Si using the all-
electron formalism. The LO and TO modes of diamond
structure at the I point are degenerate. The two atoms
move in opposite directions along the bond. Let the
atoms be in the positions +( —,'+x)a(1, 1, 1), where

b

a =5.43 A is the lattice constant. Five special k points'
are used for Brillouin-zone (BZ) integration, which
should be quite accurate for insulators (this is equivalent
to two special k points in the irreducible BZ for the
undistorted lattice). The MT radius was chosen to
be R =2. 1 a.u. LAP W basis functions with
~k+6~ ~K,„=7.5/R are included. This yields a basis
set of about 200 LAPW's. The valence states are treated
semirelativistically and the core states fully relativistical-
ly. The Wigner interpolation formula' is used for the
exchange-correlation potential. The calculated total en-

ergy and force for two atomic displacements are given in
Table I. As the mode is not symmetric with respect to
the sign of x, the energy and force are fitted to the follow-
ing functions (Ref. 20):

TABLE II. Comparisons of k, k „,and the frequency of the I -point optical phonon in Si calculated
from total energy and atomic force, results of a plane-wave pseudopotential calculation (Ref. 20), and

experiment.

Present work
Total energy
Force
Percentage difFerence

k (Ry/aB)

0.5586
0.5613
0.5

k„y, (Ry/aB)

0.4026
0.4030
0.1

f (THz)

15.37
15.40
0.2

Pseudopotential"
Total energy
Force
Percentage difFerence

0.5436'
0.5422'
0.3

0.357
0.355
0.6

15.16
15.14
0.1

Experiment 0.5704' 0.382 15.53'

'Determined from the corresponding frequency.
Reference 20.

'Reference 21.
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hE =—u +4k
3

F=ku+ —k, u
4

XP'z

(41)

where u =&3xa is the atomic displacement. The two
coefficients k and k, are determined from the calculated
total energies and from the calculated forces, and the
phonon frequency is then determined from the k values.
The results are compared in Table II, together with that
of the pseudopotential calculation of Yin and Cohen
and the experimental values. ' ' The agreement between
the k and k, calculated from the total energies and from
the forces in the present work is excellent, as the
discrepancy is less than 0.5%, and is comparable to the
plane-wave pseudopoential calculation. Results of both
the present all-electron calculation and the pseudopoten-
tial calculation are in good agreement with experiment.

The separate contributions to the total forces are also
given in Table I. In the present case, the core and IBS
corrections are one to two orders of magnitude smaller
than the HF force. As we mentioned earlier, the force
calculation assumes the frozen augmentation approxima-
tion. However, the FAC's are found to be very small. By
using the augmentations generated in the self-consistent
calculation for the equilibrium configuration, the total
energy for x=+0.005 is recalculated and found to be
lower by approximately 5 pRy, or only 0.2% of the
total-energy differences. This is in the opposite direction
of the discrepancy between the total-energy and force re-
sults. There is thus a numerical error of 0.7%.

Next, we perform all-electron and pseudopotential
tests regarding the H-point phonon of Mo. The frequen-
cy of this mode was first calculated using a pseudopoten-
tial approach but the result was 9%%uo smaller than the
experimental value. However, a recent paper placed
the local-density theoretical prediction at a much closer
2.7% below the experimental value, using a superlinear-
ized augmented-plane-wave method. A large number of
k points are also necessary to obtain a well-converged
phonon frequency. For our test purposes, we have
therefore chosen to compare the calculated force with the
total-energy result only. For this purpose, we use a set of
six special k points' and no artificial temperature

E =eo+e2~ + 4~ + 6 (42)

The rms error of the fit is less than 10 Ry. From Eq.
(42), one can numerically determine the force on the
atoms (this shall be referred to as the total-energy force).
These are also given in Table III. Comparison of the
total-energy force and calculated force shows a
discrepancy of about 3%. Part of the discrepancy is due
to the frozen augmentation used in the force calculations.
The phonon frequency is lowered if the augmentation
functions from the equilibrium geometry are used. The
resulting FAC, as shown in the last row of Table III, is
about 1.7% of the total-energy force. The numerical er-
ror in the force calculations is thus 1 —2 %.

For the pseudopotential calculations, we construct the
pseudopotential using the Kerker scheme' in the

broadening. Because of the extended nature of the p
semicore states, we treat the semicore states variationally
in a separate window in our all-electron calculations. Al-
though the semicore states are strictly not orthogonal to
the valence states, this procedure has often been adopted
in the LAPW study for such systems. The use of this
procedure for the 4p states enables us to avoid the core
correction problem mentioned earlier for extended core
states.

The following parameters are used in the all-electron
calculations. The lattice constant is taken to be a =3.11
A and the MT radius of Mo chosen to be 2.45 a.u. All
LAPW's up to K „=9/R are included in the basis func-
tions. The energy parameters are placed close to the Fer-
mi energy, except for the l =1 energy parameter in the
valence state window, which is set to 1.0 Ry (the Fermi
level is about 0.8 Ry) to avoid the possible appearance of
the so-called "ghost" bands. The core states are treated
relativistically and the valence states (including the
semicore states) semirelativistically. The Hedin-
Lundqvist exchange-correlation potential is employed.
Because of the anharmonicity of this mode, we calculat-
ed the total energy and force for four values of 5, the dis-
placement of Mo in units of a. The results are listed in
Table III. To compare the total energy with the calculat-
ed force, the total energies are fitted to a sixth-order poly-
nomial (only the even-powered terms are present due to
symmetry):

TABLE III. Comparison of total-energy and force results of all-electron calculation on the H-point
phonon of Mo: Total energy (referenced to the equilibrium energy), total-energy force (FTE), HF force,
core and IBS corrections, total calculated force (F„,) and its difference from the total-energy force, and
FAC as a percentage of the total-energy force for small atomic displacements.

5
~E (mRy)
FTE (Ry/a~)
FHF (Ry/ag)

F„„,(Ry/ag)
FiBs (Ry/az)
F„, (Ry/a )

(FTE tot ) /FTE
FAC /FTE

0.005
0.1424
0.009 72
0.047 35

—0.047 33
0.009 36
0.009 39
3.4%%uo

1.7%

0.010
0.5751
0.019 80
0.094 37

—0.094 05
0.018 84
0.019 15
3.3%
1.7%

0.015
1.3124
0.030 46
0.142 18

—0.141 04
0.028 50
0.029 64
2.8%
1.7%

0.020
2.3719
0.041 70
0.188 30

—0.18604
0.038 33
0.040 58
2.7%
1.7%
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FIG. 1. Ab initio pseudopotential of Mo generated using the
Kerker scheme. Vertical dashed line indicates the muffin-tin ra-

dius used in bulk calculations.

configuration (Mo)4d 5s 5p ' . The pseudopotential
generated is shown in Fig. 1. The core radii used are 2.37
(s and p) and 1.34 (d) in atomic units. In the bulk calcula-
tions, the MT radius of Mo is chosen to be R =2.4 a.u.
The l =0 potential is used here as the local pseudopoten-
tial. The equilibrium lattice constant is found to be 3.11
A, using 40 special k points in the irreducible BZ. The
calculated energy and force are given in Table IV. Again,
the total-energy forces are obtained by fitting the calcu-
lated energies to Eq. (42). The total-energy forces are
seen to be greater than the calculated forces by about
1%. The discrepancies agree surprisingly well with the
FAC. A visual comparison of the results is shown in Fig.
2.

As a further example, let us consider all-electron and
pseudopotential calculations concerning the H-point pho-
non in bcc Ag. We take the lattice constant to be 6.1

a.u. , such that the atomic volume is approximately equal
to its equilibrium value of the fcc structure. We use six
special k points and a fictitious temperature of 4 mRy for
smoothing the occupation near the Fermi level. Accord-

FIG. 2. Calculated pseudopotential total energies (relative to
its equilibrium value) (+, left scale) and force on Mo atoms
(crosses, right scale) as a function of atomic displacement in

units of lattice constant. The solid line is a polynomial fit to the
calculated total energies and the dashed line is the negative of
its derivative with respect to the atomic displacement.

ing to our tests, this mode has negligible anharmonicity.
We thus calculate the total energy and force at the small
displacement 6=0.01 and compare the results by assum-

ing quadratic variation of the energy with the displace-
ment. The results are given in Table V. The agreement
between the total-energy and force results is excellent in
both the all-electron and pseudopotential calculations.

We have also tabulated the contribution of the indivi-
dual terms to the atomic force in Tables III—V. As is
known, the core corrections in an all-electron calculation
can be large. In fact, the core corrections in Tables III
and V are almost the same size as the HF force. The to-
tal forces are smaller by as much as one order of magni-
tude. Despite this, the results show that the total force
can be computed accurately.

An important factor that constrains the accuracy of
the calculated force is the FAC. In the above examples,
the FAC's are all less than 2% of the forces. This quanti-

TABLE IV. Comparison of total-energy and force results of pseudopotential calculations on the H-

point phonon of Mo: Total energy (referenced to the equilibrium energy), total-energy force (FTE), HF
force, IBS corrections, total calculated force (F, , ) and its difference from the total-energy force, and

FAC as a percentage of the total-energy force for small atomic displacements.

6
5E (mRy)
F„(Ry/a, )

FHF «y«gg)
FIBS (Ry/'aB )

F„, (Ry/a~)
(FTE Ftot ) /FTE
FFAC /FTE

0.01
0.6104
0.020 96

—0.069 77
0.090 48
0.020 70
1.2%%uo

1.2%

0.02
2.4958
0.043 50

—0.137 55
0.180 61
0.043 05
1.0%%uo

1.1 %%uo

0.03
5.7462
0.067 03

—0.202 73
0.269 07
0.066 34
1.0%
1.0%

0.04
10.2988
0.086 49

—0.264 79
0.350 62
0.085 83
0.8%
0.9%%uo
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TABLE V. Total-energy and force results of all-electron and pseudopotential calculations on the H-
point phonon of Ag: Total energy (referenced to the equilibrium energy), total-energy force, HF force,
IBS correction, total calculated force and its difference from the total-energy force, and FAC as a per-
centage of the total-energy force for 6=0.01.

AE (mRy)
F„(Ry/a, )

FHp (Ry/ag)
F,.„(Ry/a, )

FrBs (Ry/az)
F, , (Ry/ag)
(FTE Ftot ) /FTE
Fp~c /FT

All electron

0.7837
0.012 85

—0.088 41
0.093 14
0.008 25
0.012 99

—1.1%
1.2%

Pseudopotential

0.7462
0.012 23

—0.027 01
0.0
0.039 25
0.012 24

—0.1%
1.3%

ty is, however, dependent on the choice of the energy pa-
rameters. As in LAPW total-energy calculations, the en-

ergy parameters should be placed within or at the
"center" of the bands with the corresponding angular
momentum character in order to minimize the FAC. In
the above all-electron calculations for bcc Ag, the l =2
parameter is set to 0.2 Ry. If we choose it instead to be
0.3 Ry (near the top edge of the d band), the FAC in-
creases from 1.2% to 4.2%. How the FAC depends on
the energy parameters is of course system dependent. In
the two-window calculations for Mo, the FAC changes
very little when the l =2 parameter is moved from 0.7 to
0.5 Ry.

As we have mentioned, the basic difference between the
present formulation of the atomic force and those for lo-
calized basis methods lies in the contribution from the di-
continuity in the kinetic-energy density to the IBS correc-
tion. In our calculation of the atomic force, this term is
combined with others in the IBS correction (see the Ap-
pendix). To see how important it is, we have recalculated
the all-electron forces for the three systems studied
above, without including this contribution. The results
are compared in Table VI with the total-energy force and
the force calculated with the surface discontinuity contri-
bution. It is clear that inclusion of the contribution due
to the kinetic-energy discontinuity is essential in obtain-
ing the correct atomic force.

The present force calculations are carried out by using
input potentials and output eigenvalues, wave functions,
and charge densities, and we find that the calculated
force converges at least as fast as the total energy. The
force calculation is also fairly efficient; the increase in the
computer time is at most 50% of that used in corre-
sponding total-energy calculations. Optimization of the
algorithm can be expected to further reduce the compu-
tational cost.

V. CONCLUSIONS

We have presented formulations for the calculation of
atomic forces in the LAPW method. A muffin-tin surface
contribution to the IBS correction is shown to exist.
Such a term is also present in other muffin-tin-based
methods (such as the LMTO method). We have also dis-
cussed a pseudopotential approach that utilizes the
LAPW basis functions for total-energy and force calcula-
tions. The results presented here show that the calculat-
ed force is accurate enough to be of practical use.
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Displacement

Si
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x =0.005

FTE

0.032 90
—0.024 42

Ftot
(with discontinuity)

0.033 04
—0.024 57

Ftot
(without discontinuity)

0.049 91
—0.034 94

Mo
5=0.01
5=0.02

0.019 80
0.041 70

0.019 15
0.040 58

0.029 93
0.062 24

Ag
6 =0.01 0.012 85 0.012 99 0.024 10
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1

FHF=Z g . f pi (r)
3 0 R

3

APPENDIX: DETAILS OF FORCE CALCULATIONS
V" (R )+ V[rY, (r)],

o.

(A3)

V„(r )=QVf'(r )Y, (r ) .
1, m

The HF force is given by

(Al)

FHF=Z V V„(r )l, 0

The HF force is readily obtained from the I = 1 com-
ponents of the electrostatic potential around the atom a.
Let the potential around the atom be

where pi are the l = 1 components of the charge density
in the spherical harmonics expansion. It is clear from
Eq. (A3) that the HF force is sensitive to the charge den-
sity near the nuclei. Thus, an accurate charge-density
profile near the nuclei is necessary. Because the core
charge density is spherical, the core correction, Eq. (11),
is similarly given by

1

fp(r~)v[ V; (r ) Y, (r )]d r . (A4)
m= —1

1

=Z g lim
m= 1r 0

V [r Y, (r )]. (A2)

The integrals in (A4) are special cases of the integral

I= fV[f(r)Yi* (r)]g(r) Yi, ,(r)d r, (A5)

Alternatively, it can be calculated directly from the elec-
trostatic potential on and the charge density in the MT
sphere, using the analytical formula' for the electrostatic
potential within the MT sphere,

which can be evaluated by applying the Wigner-Eckart
theorem and is nonvanishing only if l —l' =+1 and
lm —m'l 1. We now simplify Eq. (26) for the IBS
correction. First consider the two terms involving the
gradient of the wave functions. Using the nonrelativistic
Hamiltonian, we find

&Vitj, l(H — )slP;& M+T&g;l(H —e;)lVP;&MT= f V[ij'j,*(——,'V —8;)@,]d r+ f V,harv(g, *g;)d r

—
—,
'V' —8, W, lM,aS.+ f V„V(4,*4, )a'r .

Combining (A6) with the kinetic-energy discontinuity term D, [Eq. (20b)] yields

&vq;lHlq; & +&y, lHlvq; & D; = f q,—*( ,'v —E.;)—q;—I as + f v, v(y,*y;)a r.
The second term in (A7), after summing over all occupied valence states i, is simply

gn; f V,frV(f,*g; )d r= f V, Vsp, d r,

(A6)

which is an integral of the type (A5) if the charge density and potential are expressed in terms of spherical harmonics.
Using the plane-wave expansion of the wave functions in the intersitial, the surface integral in (A7) becomes

tt) P,*. ( ——,'V —E;)f; lrdS =g gC,*(G')C, (G)[—,'(G+k;) —E;]fPo Pods
Cx' G

(A9)

By substituting the MT representation for the basis functions, we can decouple G and G in Eq. (9). With the
definitions

A/ =gC;(G)aP (G), B(' =gC;(G)bP (G) (A10)

and

EI i' =g[—,'(G+k, } —
E, ]C,-(G)al (G),

E I' =g[—,'(G+k;) —E;]C;(G)bp (G),
(A 1 1 }

the surface integral reads

( —
—,
'V~ —E,. )g,. lIdS . = g [At. u, .(R )+B/ ui(R )]*g[E 'i' ui(R )+E i' ui(R

)]/YES*

Yi dS . (A12)
I', m' 1, m

The last integral is evaluated in a way similar to (A5). The summation over lm and 1'm' is simplified by the selection
rules mentioned above. Finally, to evaluate the first term in Eq. (26), we separate the Hamiltonian into MT and non-
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MT (nonspherical potential) terms,

H HMT+ V,~

Using Eqs. (24) and (27), we find

((aG (~MT —8; )lPG & =&Iat (G)[at (G')(&t —
&; )+bi (G')]+bi (G)bt (G')(st —E; )Nt )

l, m

(A13)

(A14)

where we have used the orthogonality relation
R

ulu 2

0

and
R

Nl= ulr dr .
0

The force due to the MT Hamiltonian in the first term of Eq. (26) is therefore

—ign; g (G' —G)C;*(G)C;(G')(tt l(H —E;)l((i ~ )
i G, G'

(A15)

(A16)

=gn, +1m[ A/~ [22/~(Et —8;)+Bt'm ]"+Bt [2B/m (Et Ei )—Nt+ ~/m ] ], (A17)
i l, m

where Im means taking the imaginary part and

At =gGC;(G)at (G), BI =QGC, (G)bt (G) .
G G

As the nonspherical potential is in the form

V,g (r)=+V (r)QCL, M YL, ~(r),

(A18)

(A19)

its contribution to the first term in Eq. (26) is calculated as follows:

—t'Xn; X «' —G)C;(G)*C;(G')&&Gl V.~ l&G &MT
I G, G'

=2+n, g g Qlm CL M Y,
*

YL M Y, dQ f (A/ .u, +B/ u, )*V (A', u, +B', u, )r dr
V V

i l, m l', m' v, M

where the angular integral (Gaunt integral) vanishes unless ll' —l ~ L ~ l'+I and m'=M+ m.

(A20)
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