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Ground-state properties of lanthanum: Treatment of extended-core states

David Singh
Nava/ Research Laboratory, 8'ashington, D.C. 20375-5000

(Received 27 September 1990; revised manuscript received 19 November 1990)

Three related techniques for performing accurate electronic-structure and total-energy calcula-
tions for systems with extended, so-called semicore, states are described. Total-energy calculations
performed using the three methods are reported for fcc lanthanum. The convergence properties
and relative accuracies of the three techniques are discussed. They are found to yield results in

good agreement with each other and consistent with the available experimental data when well-

converged calculations are performed. Highly accurate calculations are reported for the bcc phase,
using one of these techniques, and a prediction of the bcc-fcc energy difference is reported.

INTRODUCTION

The general or full-potential linearized-augmented-
plane-wave (LAPW) method' has been used extensively
for density-functional-based electronic-structure and
total-energy calculations in solids. The method is among
the most accurate generally applicable techniques for this
purpose. However, it is not without certain shortcom-
ings. These derive primarily from the linearization, and
as such are common to other linearized methods such as
the widely used linearized-muffin-tin-orbital (LMTO)
method. Among these shortcomings, perhaps the most
serious is the difficulty in accurately treating systems with
extended, so-called semicore, states. ' Examples of such
systems are found among materials containing rare-earth
or early transition-metal atoms.

In the LAPW method space is partitioned into two re-
gions, the region inside nonoverlapping atom centered
spheres and the remaining interstitial region. The basis
functions, charge densities, and potentials are represented
differently in the two regions. For the charge densities
and potentials, plane-wave expansions are used in the in-
terstitial region and unrestricted lattice harmonic expan-
sions are used in the spheres. These expansions are com-
pletely general. Thus the errors resulting from them can
be made arbitrarily small. The basis functions are given
by
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where I refers to the interstitial region and MT to the re-
gion inside a sphere. The radial functions u&(r) are solu-
tions of the radial Schrodinger equation in the spherically
averaged crystal potential at the linearization energy, E&,
while the u&(r) are the derivatives with respect to EI.
The a and b coefficients are chosen to make the basis
functions continuous and differentiable at the sphere
boundaries. Provided that the EI are chosen close to the
band energy of interest, this is a very good basis. More-
over, it can be shown that the radial functions (and hence
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the LAPW basis functions) are orthogonal inside the
spheres to any core state whose wave function vanishes
on the sphere boundary. For atoms with semicore states,
which extend beyond the sphere radius, the orthogonality
of the basis functions to the semicore states is only ap-
proximate. As discussed in Refs. 2 and 3, in such systems
pathological dependencies of the energies on the lineari-
zation energy may be encountered. This problem does
not occur for EI near the energy of the semicore state and
a well-converged description of that state may be ob-
tained with this choice. Such a choice also ensures that
the valence bands will be orthogonal to the semicore lev-
el. This is an unsatisfactory option, however, since any
valence bands with the same l character as the semicore
level will be poorly described, because the LAPW basis is
a good one only for eigenvalues near E&. As E& is raised
towards the valence bands the basis will become poorer
for the semicore state and consequently its eigenvalue(s)
will increase. As some point its energy will overlap the
valence-band energies (in this case the state is referred to
as a ghost state), consequently preventing total-energy
calculations from being performed. As EI is further
increased the orthogonality of the valence band to the
semicore state will be increasingly degraded. This will be
manifested in a lowering of the calculated eigenvalues
and total energies below the correct values.

In the present paper three related techniques for cir-
cumventing the above difficulties are described. A series
of calculations for fcc lanthanum are reported and, using
these, the three approaches are compared.

The reason for my choice of lanthanum as a test ma-
terial is twofold. First of all, as may be expected from its
high compressibility and extended Ss and Sp semicore
states, total-energy calculations for lanthanum show con-
siderable sensitivity to the treatment of the semicore
states. ' Using the general potential LAPW method, Lu,
Singh, and Krakauer found that the calculated bulk
modulus changed by a factor of 2 when the Sp state was
treated as a normal core state, while Temmerman and
Sterne, using an LMTO method, found that the calculat-
ed static lattice parameter changed by S.6% when the Sp
state was "frozen. " Thus it is apparent that an accurate
treatment of these states is essential in calculating the
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structural properties of lanthanum. The second reason
for our choice of lanthanum derives from its physical in-
terest. This derives in part from lanthanum's role as a
useful reference material for the 4f materials and in part
from its unusual properties. For example, lanthanum is
superconducting with a large pressure dependence of T,
and has two structural phase transitions as a function of
temperature. In a recent general potential LAPW study
in which the static properties of fcc and bcc lanthanum
were calculated, the difference between the experimental
and calculated lattice parameters was larger than that
found in most other materials and the bcc-fcc energy
difference was apparently in disagreement with experi-
ment. As part of this study, new calculations with more
accurate treatments of the semicore states are reported
and the discrepancy in the lattice parameters is resolved.

METHODS

As mentioned, three techniques for correcting the
deficiencies of the LAPW method are used in this study.
All of these were implemented as additions to an existing
general potential LAPW code and as such retain many of
the features of that method. Most importantly, all the
calculations reported here were performed fully self-
consistently without shape approximations in the charge
densities or potentials. One of these methods (a super-
linearized APW method, which will be denoted
SLAPW-4 here) has been previously described and used
in a calculation of the H-point phonon frequency in
molybdenum. This method works by generalizing the
LAPW basis functions so as to incorporate sufficient vari-
ational freedom that both the valence and semicore states
may be accurately treated in a single energy window (or
panel). In particular, the SLAPW-4 technique involves a
change of augmentation, so that the plane waves are
matched onto a single u&(r) and u&(r) exactly as in the
LAPW method for all l except those for which there are
semicore states (l=0 and I in the case of lanthanum).
For those 1 for which there are semicore states, two u&(r)
and the corresponding two u&(r) functions are used with
the two E& being set in the valence band and the semicore
"band, " respectively. The four matching coefficients are
determined by requiring continuity of the basis function
and three derivatives at the sphere boundary. Because
only a single window is used, orthogonality of the sem-
icore and valence bands is assured.

While for a sufficiently large number of plane waves an
SLAPW-4 calculation has at least as much variational
freedom as a two window LAPW calculation, this is not
the case for smaller numbers of plane waves. In particu-
lar, in order to achieve the same level of convergence as
in the LAPW method a significantly larger number of
basis functions is required. This is a result of the addi-
tional matching conditions and can be understood as fol-
lows. Consider the case of a state localized inside a
sphere. In this case, with an LAPW basis the linear com-
bination of plane waves making up the interstitial part of
the wave function will have to reproduce the correct ratio
of the derivative of the wave function to its value at the
sphere boundary. With the SLAPW-4 basis second and

third derivatives also need to be reproduced in order to
obtain a converged result. This is a much more demand-
ing condition. Thus it was of interest to investigate
whether a more efficient basis with sufficient variational
freedom to accurately include both semicore and valence
states in a single energy window could be formed by re-
laxing the matching requirements of the SLAPW-4 basis.

The most obvious change to the SLAPW-4 basis is to
remove the second u&(r) function and with it one match-
ing condition. In this approach (denoted SLAPW-3 in
the following), the usual u&(r) and u~(r) functions, evalu-
ated with E& in the valence-band region, are supplement-
ed by a second u&(r) for the l of the semicore states. The
three coefficients are determined by requiring continuity
of the basis functions and two derivatives. While it is
clear that this basis has at least as much variational free-
dom as an LAPW basis for the valence bands, it is less
clear that it will be adequate for the semicore states. This
is because it is unclear whether in practice a suitable
linear combination of a u&(r) and u&(r) evaluated at E& in
the valence region (typically l Ry or more above the sem-
icore states) can provide the extra variational freedom
which semicore u&(r) provides in a two window LAPW
calculation. One of the purposes of the present study is
to investigate this issue. Other modifications of the
LAPW augmentation are certainly possible. Some of
them have been studied by other workers in order to im-
prove the accuracy of calculations for valence states in
systems without the semicore problem discussed
above.

Both the SLAPW-3 and SLAPW-4 basis sets, described
above, incorporate the extra variational freedom inside
the spheres which is needed to describe semicore states at
the expense of requiring the plane waves to "work" hard-
er. That is, the matching conditions are more stringent
and as a result they may be expected to be less efficient
than the LAPW method in the sense that a larger basis
set will be required to achieve a given level of conver-
gence. In the hope of circumventing this reduction in
efficiency, a third basis set has been tried. This is a
mixed-basis approach, consisting of the usual LAPW
basis functions and localized orbitals of the I character of
the semicore states. The localized orbitals consist of sym-
metrized linear combinations of the two u&(r) and the
u&(r) as in the SLAPW-3 basis with the particular linear
combin"tion chosen so that the localized orbital goes to
zero with zero derivative at the sphere boundary. The
symmetrization is performed for the following reason. In
an LAPW basis the Hamiltonian and overlap matrices
are real for systems whose space groups contain inversion
symmetry. In practical calculations this fact is exploited
yielding a substantial reduction in the amount of compu-
tation required. This property (real matrices) is retained
only if appropriate linear combinations of local functions
(i.e. , involving structure factors) are used as basis func-
tions. The symmetrized basis functions are linear com-
binations of the original local orbitals and span the same
space. Therefore the symmetrization has no effect on the
variational freedom. In systems which do not have inver-
sion symmetry the matrices are Hermitian and in this
case the above symmetrization is not needed.



6390 DAVID SINGH

Because this basis, denoted LAPW+ LO in the follow-
ing, and the SLAPW-3 basis use the same functions in-
side the spheres they will have the same variational free-
dom for suKciently large basis sets. Of course for small
numbers of plane waves both basis sets are poor. In the
LAPW+ LO case a minimal basis would yield wave func-
tions composed of restricted linear combinations of radial
functions which go smoothly to zero at the sphere bound-
ary. The SLAPW-3 basis will also involve restricted
linear combinations of radial functions which in this case
match smoothly onto specific plane waves. The question
then is how quickly these basis sets improve as the num-
ber of augmented plane waves is increased. In this re-
gard, we note that in contrast to the SLAPW-3 basis, the
LAPW+LO basis involves the same matching conditions
as the usual LAPW basis, i.e., continuity of the basis
functions and one derivative, and thus may be expected to
converge with respect to basis-set size at the same rate as
a standard LAPW basis. (N. B., the extra functions do
not represent a significant increase, e.g. , treating the Ss
and Sp semicore states in lanthanum requires four local
orbitals per atom as compared to 60—100 augmented
plane waves. ) This is confirmed by the results below
which demonstrate the LAPW+ LO basis does indeed
converge more rapidly than the SLAPW-3 basis.

If the converged LAPW+LO basis (or equivalently a
converged SLAPW-3 basis which as noted contains the
same radial functions) was found to provide insufficient
variational freedom for treating the semicore states in
some system, the LAPW+LO approach could be gen-
eralized to yield the same variational freedom as con-
verged calculations with the SLAPW-4 basis, by doubling
the number of local orbitals. Specifically, additional lo-
calized orbitals consisting of linear combinations of the
valence u&(r) and two u&(r) functions would be added.
However, since, as will be shown below, the SLAP W-3
basis seems to be adequate for lanthanum, this was not
tried.

gence study (see below) it was determined that well-
converged total energies for lanthanum were attainable
using a cutoA' of RMTE „=10.0 for the SLAPW-3 and
SLAPW-4 methods and RMzK „=9.0 for the
LAPW+ LO method.

Total-energy calculations were performed for fcc and
bcc lanthanum using several Brillouin zone samplings.
These included sets of up to 408 special k points. Based
on these tests, it was determined that well-converged re-
sults could be obtained using 182 special k points for the
fcc structure and 240 for the bcc structure. Accordingly,
these sets were used with the plane-wave cutoffs, dis-
cussed above, for the calculations of the ground-state
properties.

RESULTS

As mentioned, in order to study the relative conver-
gence of the three basis sets discussed above, self-
consistent calculations of the total energy of fcc lantha-
num at a lattice parameter of 9.8 a.u. were performed as a
function of the basis-set size. Within a general potential
method, comparison of total energies from self-consistent
calculations is a good test of the variational freedom of a
basis set. This follows because the self-consistent solution
of the Kohn-Sham equations is variational, i.e., the solu-
tion yields an extremum of the total-energy functional.
(Comparison of individual eigenvalues in a fixed potential
is also of interest, but can be misleading because under
certain circumstances degrading a basis can result in a
lowering of some eigenvalues. Specifically, this some-
times occurs for valence eigenvalues when the representa-
tion of semicore states is degraded. ) The results of this
test are shown in Fig. 1 and Table I. The lowest eigenval-

COMPUTATIONAL PARAMETERS
—'t .90

As mentioned, the three methods, used in the present
work, have much in common with the general potential
LAPW method. As in that method, space is divided into
atom centered spheres and an interstitial region. In the
present study a sphere radius RMT=3. 3 a.u. was used.
The calculations for the valence and semicore states were
performed self-consistently in a scalar relativistic approx-
imation. It seems likely that the largest remaining source
of error in the present treatment of the semicore states re-
sults from the neglect of spin orbit for the lanthanum 5p
states. The core states were also treated self-consistently
but in this case fully relativistically in an atomic approxi-
mation. In the present work the Hedin-Lundqvist form
of the exchange-correlation potential was used. The re-
quired Brillouin zone integrations were performed using
60 special k points' for the study of the relative conver-
gence with respect to basis-set size of the three methods.
These tests were perfomed for the fcc structure at a lat-
tice parameter of 9.8 a.u. with plane-wave cutoffs rang-
ing from RMTK „=7.0 to 11.0. Based on this conver-
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FICx. 1. Convergence of the SLAP W-3, SLAP W-4, and
LAPW+LO basis sets {see text) with respect to plane-wave
cutoff, RMTK, „. Shown are self-consistent total energies E for
fcc lanthanum at a lattice constant of 9.8 a.u.
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RMTK~, „ SLAP W-4
E+16980 Ry
SLAP W-3 LAPW+ LO

TABLE I. Calculated total energy E as a function of
RMTK, „ for fcc lanthanum at a lattice parameter of 9.8 a.u.

Technique a (A) B (GPa) B'

TABLE III. Ground-state properties of fcc lanthanum. B is
the bulk modulus, B' its pressure derivative, and a the equilibri-
um lattice parameter.

7.0
8.0
9.0

10.0
11.0

—1.894 59
—2.076 97
—2.098 88
—2. 102 97
—2. 103 81

—2.049 92
—2.097 03
—2. 101 74
—2. 103 19
—2. 103 66

—2.078 58
—2.099 11
—2. 102 24
—2. 103 38
—2. 103 77

SLAP W-3
SLAP W-4
LAPW+ LO
LAPW'
LMTO"
LMTO'
Experiment

5.14
5.13
5.15
5.08
5.11
5 ~ 17
5.304

31.9
30.2
33.8
31.1
24.0
28.0
24.8

3.1

3.0
3.5
2.99
3.0

2.8

ues at I for the three basis sets as a function of RMTK „
in a fixed potential are given in Table II. For the chosen
lattice parameter and sphere radius, the plane-wave
cutoffs R~TK,„=7.0, 8.0, 9.0, 10.0, and 11.0 corre-
sponded to a basis-set sizes of about (because of the
discrete nature of the reciprocal lattice, the exact size de-
pends on the particular k point in question) 45, 60, 75,
115, and 150, respectively, with the LAPW+LO basis
sets being 4 larger than the SLAPW sets.

For all the basis-set sizes tested, except for the largest,
the total-energy calculations show that SLAPW-4 was
the least converged of the methods, while the
LAPW+LO approach displayed the most rapid conver-
gence. As discussed above, this may be expected for lim-
ited basis-set sizes, based on the number of matching con-
ditions used in the three methods. On the other hand, for
the largest basis set, the SLAPW-4 method yielded the
lowest total energy, consistent with the extra variational
freedom this basis has for large R~TK,„. This derives
from the extra u&(r) function. The fact that the con-
verged total energies of the three methods (the
LAPW+ LO and the SLAPW-3 basis sets have the same
converged total energy, though the LAPW+LO method
converges more quickly) differ by much less than 1 mRy
(extrapolating the results of Table I, about 0.05 mRy) is
an indication that, at least in the case of lanthanum, the
extra variational freedom of the SLAPW-4 method is un-
likely to have a significant effect on the calculated proper-
ties. This is confirmed by the calculations of the static
properties of fcc lanthanum using the three approaches.
The trends discussed above are also reAected in the con-
vergence of the eigenvalues (see Table II).

The static properties of fcc lanthanum were obtained
by performing well-converged (see above) total-energy

'Reference 4.
"Reference 14.
'Reference 15.
Room-temperature data (see text), Refs. 12 and 13.

calculations for eight lattice parameters in the range 9.4
to 10.1 a.u. The total energies for lattice parameters be-
tween 9.5 and 10.0 a.u. (better fits were obtained by re-
stricting the range of lattice parameter) were then fit to
the Murnaghan equation of state. " The results of these
fits are given in Table III along with room-temperature
experimental data' ' and the results of previous LAPW
and LMTO studies. As may be noted from Table III, the
SLAPW-3, SLAPW-4, and LAPW+LO methods yield
results in good agreement with each other. Based on the
convergence test described above (i.e., the energies in
Table I), for the particular choices of R~TK,„made, the
results obtained using the LAPW+ LO method are some-
what less well converged than the SLAPW-3 results. The
calculated lattice parameter is somewhat more than 1/o
larger than found using the LAPW method and lies be-
tween the results of two LMTO studies which differ be-
tween themselves by about 1%.' '

Since fcc lanthanum is not stable at low temperatures,
no low-temperature experimental data are available.
Thus while the room-temperature data given in Table III
appear to be in only fair agreement with the present cal-
culation, caution is required. A better estimate of the
static lattice parameter can be obtained extrapolating
from room temperature using experimental data for the
thermal expansion. ' In lanthanum the variation of the
atomic volume of the low-temperature double hcp (dhcp)
phase and the fcc phase is almost parallel in the range of

TABLE II. Calculated eigenvalues at I as a function of RMTK „for fcc lanthanum at a lattice pa-
rameter of 9.8 a.u. These non-self-consistent calculations were performed using a converged SLAPW-4
potential. The eigenvalues (given in Ry) are with respect to the average interstitial potential. (For a
converged calculation this is 0.473 Ry below the Fermi energy. )

RMTKmax SLAP W-4
5p

SLAP W-3 LAPW+ LO SLAPW-4
r,

SLAP W-3 LAPW+ LO

7.0
8.0
9.0

10.0
11.0

—0.543 23
—0.671 79
—0.672 61
—0.673 40
—0.673 51

—0.651 06
—0.673 12
—0.673 26
—0.673 46
—0.673 51

—0.669 99
—0.673 38
—0.673 38
—0.673 47
—0.673 51

0.241 31
0.236 29
0.236 13
0.236 07
0.236 06

0.236 38
0.236 06
0.236 06
0.236 05
0.236 05

0.236 11
0.236 07
0.236 06
0.236 05
0.236 05
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coexistence, while both of these curves are quite feature-
less. Thus the fcc static lattice parameter may be es-
timated by assuming that the (hypothetical) fcc atomic
volume shows the same variation as the dhcp volume
down to 0 K. Making this assumption, a lattice parame-
ter of 5.20 A is obtained, in very good agreement with the
present results. While the calculated bulk modulus is
significantly larger than the room-temperature experi-
mental value, it is difficult to determine to what extent
this difference is due to a reduction in the experimental
value due to thermal effects. The close agreement be-
tween the extrapolated experimental lattice parameter
and the calculated lattice parameter is an indication that
the apparent disagreement with experiment may be
misleading.

fcc lanthanum is thermodynamically unstable at elevat-
ed temperatures, and transforms to a bcc phase at about
1140 K. Lu, Singh, and Krakauer have performed gen-
eral potential LAPW calculations of the static properties
of lanthanum in this structure as well as the bcc-fcc ener-
gy difference. The calculated energy difference was 11.5
mRy per atom. This is considerably larger than the 5
mRy estimated from experimental data by Jayaraman. '

Thus it was of interest to determine whether this
discrepancy could be resolved using the present treat-
ment of the semicore states. Accordingly, SLAPW-4 cal-
culations of the static properties of bcc lanthanum and
the bcc-fcc energy difference were performed. The results
of these calculations are shown in Table IV. Except for a
1.5% increase in the lattice parameter, consistent with
the results for the fcc structure, the present results are in
good agreement with the LAPW results. In particular,
the calculated fcc-bcc energy difference is 11.4
mRy/atom, which is practically identical to the 11.5

TABLE IV. Calculated static lattice ground-state properties
of bcc lanthanum. AE denotes the bcc-fcc energy difference.

Technique a (A) B (GPa) B' AE (mRy/atom)

SLAP W-4
LAPW'

4.13
4.07

32.9
31.1

3.0
2.9

11.4
11.5

'Reference 4.

mRy/atom obtained with the LAPW method. It seems
that a reexamination of the experimental data may be
worthwhile.

CONCLUSIONS
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Three related techniques for performing accurate
total-energy and electronic-structure calculations for ma-
terials with semicore states have been described. Calcula-
tions have been presented for fcc lanthanum using the
three techniques and for bcc lanthanum using one of
them. It is found that the bcc-fcc energy difference is
practically identical to that calculated using the LAPW
method, but that the lattice parameters are somewhat
larger.
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