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Ab initio pseudopotentials for the IIA and IIB elements have been generated in the framework of
density-functional theory, including gradient corrections to the local-density approximation (LDA).
Their accuracy and transferability have been tested by extensive atomic computations. We applied
these pseudopotentials to the evaluation of bonding properties of homonuclear dimers. Our molec-
ular computations, not restricted to light elements, allow a wide assessment of the importance of
gradient corrections in finite systems. For all the dimers considered here, the LDA error for bond
energies is reduced by roughly 50%%uo. The relative improvement on equilibrium distances and vibra-
tional frequencies is less impressive, but still important and systematic. We discuss the computa-
tional cost for the evaluation of gradient corrections in computer programs based on the plane-wave

(or plane-wave-like) basis-set expansion.

I. INTRODUCTION

Density-functional theory' (DFT) in the local-density
approximation (LDA) is the basic tool for most of the
modern computational physics devoted to the under-
standing of electronic and structural properties of con-
densed matter. A large and growing body of computa-
tions within this scheme has assessed its ability to de-
scribe a variety of properties of real materials, and has
also highlighted its limitations. '

Due to its fundamental and technological implications,
the poor description by LDA (and, more generally,
within DFT) of electronic excitations in semiconductors
and insulators has been the main focus of theoretical in-
vestigation. Less discussed, but still very well known, are
several other problems, among which are the following:

(i) Cohesive energies of condensed systems are sys-
tematically overestimated. The discrepancy between
computed and measured quantities becomes more severe
in going from solids to surfaces and to finite systems, like
molecules and clusters.

(ii) Equilibrium interatomic distances are systematical-
ly underestimated. The relative error is usually quite
small, but pathological cases are known, especially
among finite systems. Typical examples are given by
small aggregates of IIA and IIB elements, for which the
error on the equilibrium distances may be as large as
10%. For these systems, the vibrational frequencies are
largely overestimated, sometimes by as much as 50%. '

(iii) The stability of negatively charged finite systems is
underestimated. In particular, LDA predicts negative
electron afFinities for experimentally stable ions like H0,F, Ca, etc.

While the problem of optical excitations is outside the
range of validity of DFT, the problems listed above con-

cern ground-state properties, and, in principle, it should
be possible to improve on LDA without giving away the
many (conceptual and computational) advantages of
DFT.

The importance of overcoming these limitations within
a simple and viable computational scheme has recently
been enhanced by the introduction of simulation
methods relying on the LDA Born-Oppenheimer energy
surface to study the dynamics and thermal properties of
complex systems.

In the last few years, a variety of recipes has been pro-
posed to improve LDA within the DFT framework.
While we refer to a recent review for a systematic discus-
sion (see, for instance, Ref. 8 or Ref. 4), we would like to
mention the self-interaction correction (SIC) of Perdew
and Zunger; the Hartree-Fock plus local correlation
(LSDX) of Kohn and Sham (KS); the average (AD) and
weighted density (WD) of Gunnarson, Lundqvist, and
collaborators ' and, finally, the gradient-corrected
(GC) LDA developed by Perdew, Langreth, and
]yfehl. '

In our opinion, and especially in the perspective of in-
cluding an improved exchange-correlation approximation
in a total-energy molecular-dynamics algorithm, the GC
LDA has several important advantages over the other
schemes:

(i) It provides a unique potential for all the orbitals,
with a clear practical and conceptual simplification.

(ii) It is computationally very convenient, especially for
algorithms based on the plane-wave expansion, since the
gradient and the Laplacian of the charge density, re-
quired by this scheme, are efFiciently evaluated by fast
Fourier transform.

Moreover, previous computations for atoms, mole-
cules, and solids have shown that GD schemes are indeed

43 6376 1991 The American Physical Society



43 PSEUDOPOTENTIALS FOR NON-LOCAL-DENSITY FUNCTIONALS 6377

promising, at least for what concerns cohesive energies
and structural properties. Stimulated by these positive
features, several variants of the original Langreth-Mehl
formulation have been proposed. ' ' Despite their
successes, GC LDA schemes have not replaced the LDA
as the current approximation to the exchange-correlation
functional in total-energy computations.

One of the reasons for this is that the improvement on
LDA has been considered marginal, especially for the
gap problem or the description of Fermi surfaces for
transition metals. Another reason is probably the lack
of some basic tools, like computer codes and pseudopo-
tentials.

Although important, the first limitation should be used
only with care to gauge the quality of approximations to
the exact DFT. As already mentioned, band gaps are
outside the reach of DFT, and also for the Fermi surface
there is evidence that, in general, this is not correctly de-
scribed by the k dependence of the (exact) highest occu-
pied Kohn-Sham eigenvalue.

To ease the second problem, in the present paper we

compute and compare pseudopotentials generated within
different GC schemes. In doing this, we concentrate on
the IIA and IIB elements, for which LDA provides poor
cohesive energies and equilibrium geometries, especially
in the case of small aggregates.

These pseudopotentials are accurately tested for
transferability and applied to the computation of bonding
properties of homonuclear dimers. Our results confirm
that GC approximations provide a systematic and sub-
stantial improvement on LDA for the computation of
potential-energy surfaces.

Among the different GC schemes, the exchange formu-
la by Becke ' and the correlation energy by Perdew'
hold the greatest promise for a reliable description of
both the finite and the extended systems, together with
the ability to provide smooth and transferable pseudopo-
tentials.

The layout of the paper is as follows: In Sec. II we

briefly review the gradient-corrected LDA schemes. In
Sec. III we present the results of all-electron atomic com-
putations and we discuss the comparison with other
schemes and, in particular, with the SIC. The generation
of pseudopotentials is described in Sec. IV, where we also
report the results of the transferability tests. In Sec. V we
present the results of the computation of bonding proper-
ties for the neutral, homonuclear dimers of the IIA and
IIB elements and we discuss the computational cost for
the evaluation of the exchange and correlation functional
in algorithms based on the plane-wave expansion. Final
remarks and an outline of future work are contained in
the Sec. VI. While completing the present paper, we be-
came aware of a study by Shirley et al. in which non-
local-exchange-correlation functionals (LSDX and LDA
SIC) are applied to the generation of ab initio pseudopo-
tentials.

II. GRADIENT CORRECTIONS TO THE LDA

Following the basic results of DFT, ' we express the
ground-state energy of X electrons in the external poten-

where p is the electron density

p(r)=g f, ~g, (r)~'

and the sums extend over the occupied independent par-
ticle orbitals [g;] whose occupation numbers are f;. In
Eq. (I), VH is the Hartree potential

V ( ) f p(r')dr'

and Exc[p] is the exchange-correlation (XC) energy
functional.

As is well known, the basic approximation of LDA
consists in writing Exc[p] for an inhomogeneous system
as

Exc [p]=fp(r)sxc(p(r))dr, (4)

where axe is the exchange-correlation energy per particle
of a uniform electron gas, evaluated at the local density
p(r).

The simplest possibility of adding some more informa-
tion on the density distribution is via the inclusion of the
gradients of p(r) in the XC functional. Then symmetry
and dimensional arguments determine the form of the
first correction to Exc in a Taylor-like functional ex-
pansion for Exc[p] to be

E '=E' "+CXC XC p(r) 4/3

where C is a constant determined by the response func-
tions of the homogeneous electron gas.

Early computations for the planar, metallic sur-
face, ' however, made it clear that, far from providing
an improvement, Eq. (5) was, in fact, giving worse results
than LDA for both the surface energy and the density
profile. The analysis of this failure by Gunnarsson,
Lundqvist, and collaborators, ' carried out in terms of
the size and shape of the exchange-correlation hole,
evolved in the weighted-density approximation. "

Following a different line of investigation, Langreth,
Perdew, Mehl, and co-workers concentrated on the
Fourier-space analysis of the exchange-correlation func-
tional. ' ' Expressing the XC energy as

Exc= f Exc(k)k dk
2m'

and starting again from the case of the planar jellium sur-
face, they were able to show that LDA provides the exact
limit of Exc(k) for large k vectors. On the other hand,
they obtained the exact low-k limit of Exc(k) within the
random-phase approximation (RPA). Interpolating be-
tween these two limits, they proposed the following ex-
pression for Exc [referred to as the Langreth and Mehl
(LM) approximation in the following] in terms of the den-

sity p and its gradient:

tial V,„, as (atomic Hartree units are used throughout the
paper)

E[p]=g f; (Q;l —
—,'V';+ —,

' VH+ V,„,~lt, )+Exc[p], (I)
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ELM ELDA(RPA)+ l P (2 F —7 )dr
V (r),"

XC XC
p r )4/3

where

b lVp(r)
( )7/6

The constant a is atomic Hartree units is

16(3 2)4/3

(8)

(9)

in the tail of the charge distribution was emphasized by
Becke in Ref. 20 and 21.

On semiempirical grounds, he proposed the following
interpolation for the exchange energy:

E2t=Ex + g ff(p;Vp )dr, (10)

where

2

)
— 4/3 x~

(1+6Px sinh 'x )

and b is an adjustable parameter introduced in order to
join smoothly the two (LDA and RPA) limiting approxi-
mations. The value suggested by Langreth and Mehl was
b =(97')' f with f—0. 15. Refinements for finite' and
spin-polarized' systems have also been proposed. It is
important to note that the specific interpolation form and
the value of the b parameter depend on the choice of
RPA to describe the local contribution Exc

Though appealing and, in many respects, successful,
the LM exchange-correlation energy has several draw-
backs. The most serious one, first discussed by Perdew, '

is that in the limit of homogeneous systems Exc ap-
proaches the RPA XC energy for the uniform electron
gas, instead of recovering the exact result, as computed,
for instance, by quantum Monte Carlo methods. As
emphasized in Ref. 19, this may not be too serious for
atoms or molecules, but it is indeed an important limita-
tion for the description of the valence charge in many
solids (like simple metals). Another drawback, common
to most of the gradient-corrected schemes, concerns the
asymptotic behavior of the XC potential close to the
atomic nucleus, and, for finite systems, in the tail of the
electron distribution (see Ref. 16 and the discussion
below).

To overcome these and other related problems, the XC
energy was split into its exchange and correlation contri-
bution. For the exchange part, Perdew and Wang (PW)
(Ref. 18) proposed a gradient expansion based on the
analysis of the behavior of the exchange hole in inhomo-
geneous systems. For the correlation part, an interpola-
tion formula was proposed, ' based on the electron-gas
results of Hu and Langreth and Rasolt and Geldart. '

We shall refer to the combined XC functional as the PW
approximation.

This scheme was shown to provide very good results
for the exchange energy of atoms. However, as we shall
discuss in detail in Sec. II, the satisfactory performance
of the exchange energy is partly due to the compensation
of errors in different regions of the charge distribution.
Far from the nucleus of neutral atoms, the PW potential
fails to reproduce the correct —1/r behavior of the ex-
change potential. Instead, as can easily be shown by as-
suming an exponentially vanishing density, it tends ex-
ponentially to zero as p' . Close to the nucleus, the PW
gradient contribution diverges as a/r (where a is a-
constant), thus overcorrecting the LDA behavior.

The need to limit the gradient corrections in regions of
high gradient [large ratio

l
V'p(r)

l /p (r) ] and to recover
the correct asymptotic behavior of the exchange potential

with x = V l/p, and /3=0. 0042 a.u. is determined
by a fit to atomic Hartree-Fock data. The sum is over the
two spin components o.=+1. The exchange potential
corresponding to Eq. (10), straightforward but tedious to
compute, is reported in Appendix A.

By assuming an exponentially decaying asymptotic
density, it is easy to verify that, far from atoms or mole-
cules, the exchange energy per particle tends to the limit

lim e(r)= —1/r .
T —+ oo

(12)

It does not, however, provide the correct asymptotic be-
havior for the exchange potential From . Eq. (A2) of
Appendix A, instead, it is apparent that u (r) ——1/r2 in
the exponential tail of the density distribution. One
could argue that this asymptotic form is still a definite
improvement on the LDA behavior, with U„" vanishing
exponentially with r, or on the LM asymptotic positive
divergence of u" (r) Howeve. r, u attains its asymptotic
region so far away in the density tail as to have a negligi-
ble effect on the computed quantities. In the intermedi-
ate region, where the negative, slowly decaying part of
the exchange potential is expected to be important for the
determination of excitation, ionization energies, and elec-
tron affinities, the gradient term in U is small, positive,
and close to the PW exchange correction. Again, we con-
clude that the very good exchange and total energies ob-
tained for atoms are partly due to compensation of errors
in the core and in the tail of the electron distribution. In
the following sections we shall implement the Becke ap-
proximation for the exchange energy together with the
Perdew formula' for correlation (BP approximation).

Out of the several gradient-corrected schemes pro-
posed in the literature, the LM formula has been the
most extensively tested. During the years since its ap-
pearance, it has been applied to atoms, molecules, and
extended solids. Recently it has been used for an im-
proved analysis of the jellium surface.

In all these tests, the LM formula gave encouraging re-
sults, at least for what concerns ground-state properties
like total and cohesive energies, ionization energies, den-
sity distributions, and equilibrium geometries. As men-
tioned in the Introduction, it failed to improve
significantly the band structure of silicon and of some
transition metals. In the following sections we compare
the three recipes listed above in atomic computations,
and we test their ability to produce pseudopotentials with
the desirable characteristics of smoothness and transfera-
bility.
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TABLE I. Atomic total energies (in Hartrees) for the IIA and IIB elements computed in LDA and
the gradient-corrected schemes discussed in the text. The last entry reports the experimental value for
Be, Mg, and Ca (Ref. 38) and the relativistic Hartree-Fock energy (numbers in parentheses) for the
heavier elements (Ref. 39).

Element

Be
Mg
Ca
Sr
Ba

LDA

14.448
199.446
678.672

3175.783
8129.246

14.609
200.015
679.725

3177.976
8132.828

PW

14.685
200.512
680.747

. 3180.180
8136.398

BP

14.661
200.412
680.603

3180.223
8136.818

Expt.

14.676
200.418
680.472

(3178.127)
(8136.053)

Zn
Cd
Hg

1793.294
5589.566

19611.740

1794.952
5592.513

19 617.631

1796.606
5595.414

19 623.444

1796.537
5595.666

19 624.699

(1794.628)
(5593.480)

( 19653.870)

III. ALL-ELECTRON ATOMIC COMPUTATIONS

The three XC functionals described above have already
been used by several groups in nonrelativistic computa-
tions for light atoms. Here we extend these tests to the
heavy elements by performing scalar relativistic all-
electron computations for all the elements of the IIA and
IIB groups. For the local part of the XC energy we used
the Vosko-Wilk-Nusair parametrization, both for the
RPA approximation (entering the LM approximation)
and for the interpolation to the "exact" uniform
electron-gas data.

In Table I we compare the total energies of the IIA and
IIB atoms computed in the various schemes. The values
provided by the gradient-corrected formulas are all
significantly lower than those of LDA. For Be, Mg, and
Ca, the BP approximation is indeed very close to the ex-
perimental result. For heavier elements no reliable ex-
perimental value is available, and in the table we compare

to relativistic Hartree-Fock (HF) computations.
Through all the series the energy ordering is the same:

EPW EBP ~ ELM (ELDA
tot tot tot tot (13)

and E„, tends to be slightly lower in energy than either
the experimental value or the HF result (Be and Hg being
the only two exceptions).

In contrast with total energies, the first ionization po-
tentials of all the elements considered here are accurately
known from experiment. In Tables II and III we corn-
pare the predictions of LDA and the gradient-corrected
approximations to the measured values for the first ion-
ization potential (IP1) and for the removal energy (RE) of
the valence shell —equal, for these elements, to the sum
of the first and second ionization energies. The theoreti-
cal values are computed as energy differences between the
ionized and neutral ground states. The energy of the
singly ionized atoms is computed within the spin-density
version of each functional. As is well known, LDA is al-

TABLE II. First ionization potential (in eV) for the IIA and IIB elements computed in LDA and in
the gradient-corrected schemes. The results of pseudopotential computations are reported in
parentheses (LDA pseudopotentials are from Ref. 45; for the GC schemes we applied our fitted pseudo-
potentials).

Element

Be

Mg

Ca

Ba

LDA

9.027
(8.969)
7.733

(7.631)
6.236

(6.137)
5.867

(5.761)
5.379

(5.271)

9.081
(9.239)
7.608

(7.824)
6.133

(6.301)
5.764

(5.950)
5.294

(5.458)

PW

9.240

7.940

6.412

6.031

5.529

BP

9.095
(9.070)
7.700

(7.645)
6.188

(6.128)
5.807

(5.729)
5.319

(5.265)

Expt.

9.322

7.646

6.113

5.695

5.212

Zn
Cd

Hg

9.913
9.414

(9.411)
10.865

(10.819)

9.670
9.143

(9.152)
10.672

(10.701)

10.067
9.455

10.800

9.736
9.193

(9.208)
10.631

(10.655)

9.394
8.993

10.437
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TABLE III. Valence-shell removal energies (first and second ionization potential) in eV for the IIA
and IIB elements computed in LDA and in the gradient-corrected schemes. The results of pseudopo-
tential computations are reported in parentheses.

Element

Be

Mg

Sr

Ba

LDA

27.284
(29.029)
23.109

(22.694)
18.401

(17.964)
17.232

(16.762)
15.703

(15.225)

LM

27.438
(27.713)
22.750

(23.150)
18.077

(18.347)
16.913

(17.166)
15.438

(15.665)

pw

27.768

23.481

18.698

17.498

15.944

PB

27.489
(27.421)
22.985

(22.829)
18.244

(18.028)
17.053

(16.821)
15~ 533

(15.291)

Expt.

27.534

22.681

17.985

16.726

15.216

Zn
Cd

Hg

28.948
27.138

(27.098)
30.433

(30.298)

28.436
26.583

(26.635)
30.071

(30.162)

29.209
27.133

30.228

28.598
26.688

(26.708)
29.985

(30.025)

27.358
25.902

29.194

ready able to reproduce the experimental values reason-
ably well, the average relative error being 3.4% for IP1
and 3.3%%uo for the RE.

With the exception of the Perdew-Wang formula,
gradient-corrected schemes systematically improve over
these results. The best agreement with experiment is
achieved by the LM formula (b IP1 = 1.6 /o, b, RE
=1.7%%uo). Slightly worse than LM, but still significantly
better than LDA, is the BP scheme.

Excitation energies from the atomic or ionic ground
state to the lowest-lying configurations of P and D sym-
metry are also accurately known from experiment. To
avoid the complications arising from the multiplet struc-
tures, we concentrate on the singly charged ions, for
which the ground and low-lying excited states are given
by an electron or a hole around a closed shell. To remain
within the reach of DFT, we restrict ourselves to the
transitions from the S ionic ground state to the states of
lowest energy of P and D symmetry and compute the
excitation energies as total-energy differences. The com-
puted and measured values for Ca+ and Cd+ are com-

pared in Table IV, the results for these two elements be-
ing representative of those obtained for the others. The
PW and BP recipes show a slightly better agreement with
experiment than LDA. However, it is apparent that the
improvement is not systematic and quantitatively not im-
portant.

As is well known, in DFT there is no equivalent of the
Koopman's theorem valid for Hartree Fock, and, in gen-
eral, Kohn-Sham eigenvalues should not be interpreted as
single-particle excitations. The exception to this rule is
represented by the eigenvalue of the uppermost occupied
orbital that, even in finite systems, corresponds in the ex-
act DFT to the ionization potential. In this respect, the
deficiencies of LDA are well documented, the eigenvalue
of the highest occupied orbital in atoms being equal to
about 60% of the LDA ionization potential evaluated as
the difference of ground-state energies. This inconsisten-
cy is only marginally reduced by the gradient-corrected
schemes. Although this failure to improve the value of
the highest eigenvalue is a rather complex issue, a possi-
ble explanation is offered by the analysis of the atomic

TABLE IV. Excitation energies {in eV) to the lowest energy state of P and D symmetry for Ca+ and
Cd+. The results of pseudopotential computations are reported in parentheses.

Transition

S~ P

S~D

LDA

3.155
(3.068)
1.393

(0.653)

LM

3.035
(3.214)
1.380

(1.427)

Ca+
pw

3.179

1.550

3.104
(3.052)
1.444

(1.459)

Expt.

3.144

1.697

S~ P

S~D
5.919

(5.864)
8.569

(8.328)

5.936
(5.917)
8.963

(8.823)

Cd+
5.795

8.421

5.868
(5.841)
8.718

(8.548)

5.703

8.849
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potential and charge distribution. Due to the strongly at-
tractive gradient correction close to the nucleus, the core
states of s symmetry are significantly lowered in energy
and reduced in size with respect to their LDA counter-
parts. This results in a more effective screening of the nu-
clear charge and a stronger orthogonalization repulsion
able to balance the gain in XC potential and to maintain
the valence s states at an energy only slightly lower than
the LDA value.

A few years ago Perdew and Zunger discussed the lim-
itations of the LDA in terms of the orbital self-
interaction. In HF or exact DFT, the Hartree self-
interaction apparently present in Eq. (1) is exactly can-
celled by its exchange-correlation counterpart. This does
not necessarily happen within approximations to the ex-
act XC functional, like LDA or the gradient-corrected
schemes. Furthermore, Perdew ' proved that the rela-
tion

EHsitp]+ExDCF t p]=O (14)

is an exact one for one electron-systems, regardless of
whether p is the ground-state density or not. In Eq. (14),
E~ is the Hartree self-interaction and Exc is the exact
XC energy of the spin-polarized density distribution p(r).

On this basis, Perdew and Zunger proposed using

E"=Xf;«H'fp;]+ELF (S;]) (15)

The results for E ' computed within different approxi-
mations for Exc according to the definition of Eq. (15)
are listed in Table V. If Eq. (15) is a faithful indicator of
the quality of a DFT approximation, then the gradient-
corrected schemes appear to be a major improvement on
LDA. However, we would like to mention that the in-
terpretation of E ' from Eq. (15) as self-interaction ener-

gy has some limitations. In fact, while the Hartree part is
always defined without any ambiguity, for a many-
electron system the identification of Excrp;] as XC self-
interaction of one orbital in the environment of all the
others is much less evident.

An interesting feature of the gradient-corrected ap-
proximations is brought out by our numerical computa-
tions for atoms. Among the KS orbitals of a many-
electron atom, some (i.e., the ls, 2p, 3d 4f) may be
thought as the ground state (for a given symmetry) of a
one-electron system in an external potential. For the oth-
ers, having radial nodal surfaces, this is not possible. It is
interesting to note that, within gradient-corrected
schemes, orbitals of the first class contribute very little to
E ri.e., the exact relation (14) is only weakly violated],
while the seconds are responsible for most of the residual
self-interaction. This is in contrast to what is observed in
LDA, where the inner-core states are the most affected
by self-interaction that is, in fact, mainly a measure of lo-

as a measure of self-interaction in the DF approximation
specified by Egg and to derive from this an improved
functional EfP by imposing, orbital by orbital, the rela-
tion

EH'I p; ]+EVF(p; ]=o .

TABLE V. Self-interaction energies (in eV) of the ground-
state atomic configuration computed in LDA and the GC
schemes according to the definition of Perdew and Zunger (Ref.
9).

Element

Be
Mg
Ca
Sr
Ba

LDA

6.682
38.039
78.088

201.456
340.721

LM

0.750
7.417
7.504

11.952
—25.724

PW

—0.670
—2.128

—10.972
—37.289

—105.574

BP

—0.321
—1 ~ 193

—11.506
—42.060

—122.985

Zn
Cd
Hg

143.208
278.437
582.266

16.287
—0.704

—70.974

—21.126
—68.226

—221.092

—22.050
—78.356

—253.263

calization. This may suggest that the gradient-corrected
recipes discussed here are good approximations to the ex-
act functional (at least for one-electron systems) only for
density close to the ground-state density, while their den-
sity becomes rapidly worse moving away from the ex-
tremal point.

As a final point of this section, we display in Fig. ~ the
XC potential for Sr computed in the various approxima-
tions discussed here. As mentioned in Sec. II, close to
the nucleus the gradient-corrected exchange potentials
diverge as —a/r. In the intermediate region (r (4 a.u. )

the exchange gradient-correction terms tend to be posi-
tive and present a characteristic shoulder around r =1
a.u. At large distances the LDA and PW curves vanish
exponentially, while the LM potential diverges, taking
positive values. Only for ~ & 10 a.u. does the Becke po-
tential attain its asymptotic behavior U ——1/r . Up to
that point, the PW and Becke exchange potentials are re-

-0.2

CD
CO

C3

0 3

-0.4
2.0 3.0

r (a.u. )

4.0

FIG. 1. Exchange-correlation potential p«as a function of
radial distance for a strontium atom. Dashed-dotted line, LDA;
dashed line, LM; dotted line, PW; solid line, BP approximation.
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markably similar. The addition of the correlation part
tends to reduce the difference between LDA and GC
schemes that, however, remains important in the range 2
a.u. ~ r ~ 4 a.u. and in the tail of the electron density.

IV. THE PSEUDOPOTENTIAL GENERATION

1.0

'~

0.5

Q)
CD

C3

0.0

-1.0
0.0

r (a.u.)

2.0 3.0

FIG-. 2. I =0 component of the pseudopotential for Ca com-
puted in LDA (dashed-dotted line, Ref. 45), LM (dashed line),
and BP (solid line) approximations. The arrow indicates the po-
sition of a cusp in the LM pseudopotential.

The atomic computations described above are the
starting point for the construction of pseudopotentials to
be used with the gradient-corrected XC formulas. In do-
ing this, we followed closely the prescription given by
Hamann in Ref. 43. For all the IIA elements we assumed
a valence configuration given by the ns electrons, where
n is the principal quantum number of the highest occu-
pied atomic level. For Cd and Hg we included in the
valence the 12 electrons in the (n —1)d' ns levels. We
did not produce any pseudopotential for Zn since the
sharpness of its d component makes it of little use, at
least for plane-wave programs.

In Fig. 2 we compare the l =0 component of the pseu-
dopotential for Ca computed within the LDA, LM, and
BP approximations. This plot is representative of the re-
sults obtained for the other elements. The three pseu-
dopotentials 1ook quite similar, the main differences being
confined to the region r & 1 a.u. , not really important for
the computation of matrix elements since it is weighted
by the r dr volume element. Less evident, but computa-
tionally more important, are the differences around the
minimum of the pseudopotential, where the LM and BP

curves are slightly shallower than the LDA result.
The LM pseudopotential for Ca presents two cusps, at

the origin and at r =2.65 a.u. (not evident on the scale of
the figure). These singularities arise from the terms linear
in ~Vp present in the LM potential and giving a cusp
wherever the pseudocharge density is stationary
(

~ Vp =0). The infiuence of these two singularities, how-
ever, is negligible, and they are removed in the process of
fitting an analytic expression to the pseudopotential
without significant changes in the computed properties of
the pseudoatom (see below).

From a similar plot it is apparent that, despite the
good quality of the all-electron atomic results, the PW
scheme is not suitable to provide a smooth and regular
pseudopotential. In fact, the pseudopotentials generated
within this scheme have strange and funny shapes, with
oscillations and other strong irregularities inside the core.
Remembering the similarity of the total potential gen-
erated by the gradient-corrected schemes inside the core
region (see Fig. 1), the pathological shape of the PW
pseudopotential is quite surprising. To trace the origin of
this behavior, we recall that the generation of the pseudo-
potential proceeds in several steps. First of all, a smooth
pseudocharge density and screened potential are generat-
ed following, for instance, the recipe of Ref. 45. Then
this potential is unscreened to compute the bare pseudo-
potential. It is mainly in this last step that differences
arise among the gradient-corrected schemes, due to the
significant differences in their exchange-correlation po-
tentials for the relatively low densities and high gradients
[large ratio ~Vp(r)~/p" (r)] characterizing the valence
charge.

In an alternative scheme, some information on the
shape of the core charge density is retained in the compu-
tation of pseudopotentials in order to improve their
transferability by taking into account the nonlinear
exchange-correlation interaction between the core and
valence charge. Following this prescription, the XC en-
ergy and potential of the pseudized system are computed
for the sum of the valence and (smoothed) core charge,
thus reducing the region of low density and high gradient
to the tail of the charge distribution. As expected, this
scheme reduces the differences among the gradient-
corrected formulas and produces for all of them (includ-
ing the PW) smooth and regular pseudopotentials. How-
ever, the inclusion of these nonlinear core corrections in-
creases significantly the complexity of the computation.
For this reason, in what follows we limit our analysis to
the usual (linearized) pseudopotentials and to the
gradient-corrected schemes (LM and BP) providing good
results already at this level of approximation.

To make possible their publication in a compact form,
we fitted the pseudopotentials (computed numerically on
a logarithmic mesh) to a small set of analytic functions,
following Ref. 45 both for the choice of the basis set and
for the fitting procedure (see Appendix B below). In this
process the loss of accuracy is insignificant. We verified
that the difference in the ground-state atomic properties
computed with the numerical or the fitted BP pseudopo-
tential is, at most, 0.02 and 0.05 eV, respectively, for the
eigenvalues and the total energies of the IIA elements
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1.5

1.0

substantially overestimate the cohesion, while Hartree-
Fock gives monotonically repulsive curves. Moreover,
small aggregates of these elements are the subject of
several recent studies that debate the possibility (experi-
mentally confirmed for mercury clusters ) of an
insulator-to-metal transition as a function of cluster size.

The algorithm we use for this computation has been
described in a previous publication. It is based on an ex-
pansion of the Kohn-Sham orbitals Iitj;(r)I in a basis of
cylindrical waves adapted to the symmetry of the Hamil-
tonian,

0.0
40.0 60.0 80.0 1 00.0 120.0

g;(r)=e —' &g g C;(G„,G, )e ' J (G„r) .
G, G

(17)

E cut (Ry)

FIG. 3. Convergence of the total energy E„, of a cadmium
atom as a function of the kinetic-energy cutoff in LDA (dashed-
dotted line), LM (dashed line), and BP (solid line) approxima-
tions. The asymptotic values E„,( ~ ) are provided by an atom-
ic computation in spherical geometry on a logarithmic mesh.

and 0.07 and 0.2 eV for the IIB elements. For the LM
pseudopotentials the error introduced by the fit is about
two times larger than in the BP case.

As a first test of transferability, we computed the exci-
tation and ionization energies of the pseudoatoms. These
are compared to the results of the all-electron computa-
tion in Tables II through IV. From these data it appears
that the transferability of the LM pseudopotentials is
slightly worse than for the LDA ones. The performances
of the BP pseudopotentials are more satisfactory, and, in
fact, they are at least as good as those of the LDA pseu-
dopotentials.

As a further test of the quality of the pseudopotentials,
we have compared their convergence properties in a
plane-wave expansion. As shown in Fig. 3 for cadmium,
both the LM and BP pseudopotentials require a higher
cutofF' to achieve the same convergence in total energy
obtained for the LDA. The cutofF' increase, however, is
not dramatic and does not prevent the use of gradient-
corrected pseudopotentials in algorithms based on the
plane-wave basis set.

—,'(G„'+G,') &E,„, . (18)

Furthermore, the computation of the gradient and the
second derivatives of the density, required for the evalua-
tion of the XC energy and potential, may be efhciently
performed via a Fourier-Bessel transform (FBT). For in-
stance, when the density is written as

p(r)=g g p(G„,G, )e ' Jo(G„r),
G, G

(19)

the gradient is given by

= —g g G„P(G„,G, )e ' J&(G„r),
Bp G Gr z

=i g g G,p(G„G, )e ' Jo(G„r) .
G„G

Here we have introduced cylindrical coordinates
(r, z, P), with the z axis coincident with the symmetry axis
of the dimer. m is the azimuthal quantum number; J is
the Bessel function of the first kind and order I; G„, and
G, are wave vectors selected by the boundary conditions
(see Ref. 6 for more details). Despite the appearance of
the Bessel functions, this basis set retains many of the
properties and advantages of the plane-wave basis. In
particular, it is orthogonal and its degree of completeness
may be characterized by the single parameter E,„, (with
the dimensions of an energy) specifying the kinetic-
energy cutofF' for the basis functions included in the com-
putation

V. BONDING PROPERTIES OF DIMERS

To test the ability of the gradient-corrected schemes,
together with our pseudopotentials, to describe the
Born-Oppenheimer surface of condensed systems, we
computed the bonding parameters of homonuclear di-
mers of the IIA and IIB elements.

As mentioned in the Introduction, these systems pro-
vide a severe test for theoretical methods, since they are
characterized by weak cohesive energies, large equilibri-
um separations, and low vibrational frequencies. The
description of their potential-energy curves, therefore, re-
quires a precise cancellation of large attractive and repul-
sive contributions in the total energy. For instance, LDA

Taking into account the second derivatives (8 p/Br,
r) p/BrBz, 8 p/Bz ), at each iteration of the minimization
process it is necessary to compute five FBT's more than
in the LDA case. Since the total number of FBT's per
iteration required by the LDA scheme is (2N+2) (see
Ref. 6, Fig. 2), where N is the number of occupied orbit-
als, the relative importance of the gradient evaluation de-
creases rapidly with increasing the number of electrons in
the system. For small molecules (like the IIA dimers),
the additional five FBT's represent a sizable portion of
the computation, which, however, remains reasonably
small and fast.

In a three-dimensional plane-wave computation, nine
additional Fourier transforms are needed to evaluate the
gradient corrections to the energy and the potential.
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TABLE VI. Bonding parameters for the homonuclear dimers of the IIA elements computed in LDA
and in the GC schemes. r„D„and co, are the equilibrium distance, the cohesive energy, and the vibra-
tional frequency, respectively. P, a, and b are the fitting parameters of the Hulburt and Hirshfelder for-
mula [Eq. (22)].

Dimer
(E,„„~)

Be2
(40 Ry)

Mg~
(34 Ry)

Ca2
(24 Ry)

Sr2
(20 Ry)

Ba2
(20 Ry)

LDA

LM
BP
Expt.

LDA

LM
BP
Expt.

LDA

LM
BP
Expt.

LDA

LM
BP

LDA

LM
BP

re

(a.u. )

4.46

4.63
4.55
4.66

6.30

6.55
6.73
7.35

7.67

8.07
8.08
8.08

8.20

8.46
8.51

8.52

8.67
8.59

D,
(eV)

0.60

0.44
0.39
0.11

0.24

0.14
0.09
0.05

0.28

0.17
0.13
0.13

0.27

0.22
0.15

0.39

0.33
0.29

(cm ')

383.5

350.1

350.6
223.4

124.0

113.4
89.0
51.1

88.5

72.0
72.2
64.9

55.3

51.6
47.6

48.9

45.4
46.4

(a.u. ')

0.754

0.812
0.854

0.619

0.738
0.740

0.539

0.563
0.638

0.505

0.529
0.589

0.466

0.468
0.517

0.424

0.761
0.623

0.452

0.357
0.288

—0.111

0.533
0.594

1.926

1.342
0.997

1.044

1.108
0.823

0.047

0.216
0.140

0.067

0.131
0.076

0.129

—0.017
0.251

0.098

0.305
0.288

0.175

0.345
0.319

Though not negligible, this is a sma11 fraction of the total
number of Fourier transforms required by a large super-
cell computation. For instance, the ab initio molecular
dynamics (MD) has reached the size of about 100 atoms
and 400 electrons per unit cell, thus requiring, already
at the LDA level, about 400 Fourier transforms per time
step. The modifications to the LDA computer code are
minor, both in two and three dimensions, and are re-
stricted to the routines computing the XC energy and po-
tential. In particular, this change does not affect directly
the computation of the Hellmann-Feynman forces on the
ions, which represent the delicate part of the ab initio
MD program.

The potential-energy curves V(r) computed in LDA,
LM, and BP approximations have been fitted with the
modified Morse potential of Hulburt and Hirshfelder, '

V(r)=D, [(1—e ~") +bP x e ~ (1+aPx)—1], (22)

where x =r —r, and r, and D, are the equilibrium dis-
tance and bonding energy, respectively. More so than in
the LDA case, the fitting is required for the GC schemes
to compute bonding parameters unaffected by small oscil-
lations in the potential-energy curves. Part of these irre-
gularities is due to the increased numerical noise implied
by the higher kinetic-energy cutoff. Another part, in-

TABLE VII. Bonding parameters for the homonuclear dimers of the IIB elements computed in
LDA and in the GC schemes. r„D„co„a,and b are as in Table VI. The LDA results are from Ref. 6.

Dimer
«-toe )

Cd2
(109 Ry)

Hg2
(80 Ry)

LDA

LM
BP
Expt.

LDA

LM
BP
Expt.

(a.u. )

5.77

6.03
6.54
9.10

5.65

6.12
6.86
6.86

D,
(ev)

0.24

0.08
0.04
0.05

0.23

0.05
0.01
0.07

(cm ')

67

39.8
36.0

71

32.1

13.4

(a.u. ')

0.742

0.782
1.189

1.069

1.011
1.151

0.207

—1.574
0.451

0.488

—1.774
0.352

—0.098

—0.457
0.289

0.263

—0.126
0.176
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stead, is a real feature of the GC schemes, and it is due to
the oscillations of the XC potential and energy in the tail
of the density distribution. Although the absolute magni-
tude of these eA'ects is very small, their relative impor-
tance is enhanced by the Ilatness of V(r) for these sys-
tems. The computed bonding parameters are collected in
Tables VI (IIA elements) and VII (IIB elements), where
they are compared to the available experimental data.

Before discussing the GC results, we mention that our
data reveal an overestimate by LDA of the bonding in
the IIA dimers even more severe than that reported in
previous studies. In particular, we systematically obtain
larger cohesive energies and shorter equilibrium distances
than those of Ref. 5. This discrepancy, analogous to that
found in Ref. 6 for the IIB dimers, is consistent with the
improved completeness of the basis set used in the
present computation.

For the IIA dimers the average LDA error with
respect to the available experimental data is 7.9%%uo for the
equilibrium distance and 84% for the vibrational fre-
quency. The cohesive energy is strongly overestimated,
sometimes by a factor of 5. As reported in Ref. 6, the
discrepancy is even larger for the IIB dimers.

The gradient-corrected schemes systematically im-
prove over these results. Both the LM and the BP re-
cipes significantly reduce the difterence between comput-
ed and measured values for the cohesive energy, equilibri-
um distance, and vibrational frequency. Clearly, the
quantitative agreement is still far from satisfactory, but it
is also apparent that gradient corrections represent a big
step in the right direction.

The best general description for the ground-state prop-
erties of these systems is provided by the BP formula.
This finding, together with the trends discussed above for
the pseudopotential smoothness and transferability,
points to BP as the most promising scheme for perform-
ing improved total-energy computations at a minimal
cost.

As expected, the improvement of the total energy does
not correspond to an improved description of the elec-
tron density of states, as computed from the KS eigenval-
ues I s, I. In fact, the eigenvalues for both the occupied
and unoccupied molecular orbitals are remarkably simi-
lar in LDA and in the LM or BP recipes. In all these
schemes, the molecular bonding is related to the bending
downwards of the I E; I for the occupied states, indicating
a covalent character for the cohesion of these molecules
(see Refs. 4 and 47 for a discussion).

As a final remark, we mention that we performed com-
putations for Mg2 using the LDA pseudopotentials from
the table of Ref. 45 and applying the GC to the valence
charge only. This mixed scheme strongly reduced the im-
provement in the computed bonding parameters, thus
confirming the importance of a consistent description of
core and valence states via an "XC-dependent" pseudo-
potential.

VI. CONCLUSIONS

Gradient-corrected exchange-correlation functionals
have been used in all-electron semirelativistic computa-

Be Z, =2 r; =0.4824 c& = —1.091 16
r 2

=0.5881 c2 =2.091 16
a;

2.0511
1.8083
2.3001
1.2621
1.4317
1.5738

A;
—22 700.705 52
—44 556.679 97

67 260.11095
—5 003.105 89

—35 207.079 58
40 210.633 74

B;
18 199.267 91

3172.231 63
6197.363 28

115.662 86
3910.434 03
2537.340 51

Mg Z, =2

1.3714
1.5603
1.9102
1.0774
1.1957
2.0860
1.1674
1.3776
1.5428

r; =0.8237 c& = 18.17248
1.2181 c2 = 19.172 48

26 539.894 25
—20 560.908 48
—5992.950 13

5138.082 81
—5097.695 48

—SS.S2664
13 029.914 84
30 465.721 05

—43 511.607 70

B;
—1820.072 13
—4621.565 46
—674.950 01
—253.793 73
—386.978 64
—18.604 04

—760.178 99
—6358.952 36
—2815.359 15

Ca Z, =2 r; =0.4772 c, =0.74488
r2 =2.3757 c2 =0.255 12

0.7136
0.8162
1.2169
0.8074
0.7237
0.9301
3.7606
1.1059
4.2359

A;

3697.430 61
—3489.515 82
—203.501 43

—27 309.468 25
71 640.546 16

—44 327.215 52
50 977.270 82

23.11099
—51 004.333 61

B;
—144.255 12
—283.907 12
—33.902 17

—7581.500 86
—1881.922 51
—1975.870 36

—11 329.678 41
—11.594 51

—13 190.733 84

Sr Z, =2 r
&
=0.5509 c& = —28.677 30

r2 =0.8694 c~ =29.677 30

1.1906
1.3217
1.7044
0.6370
0.7006
2.2106
0.7272
1.1930
0.8629

A;
—73 197.029 16

66 349.089 69
6808.445 30

—9222.931 64
9211.282 81
—28.776 12

—33 206.067 34
8041.985 71

25 122.715 21

B;
3618.152 91
7671.205 90
956.092 82
267.703 64
328.200 25

13.049 57
1473.666 21
1107.518 66
4633.757 46

Ba Z, =2 r; =1.6136 c~ = —6.28682
r~ =0.7381 c& =7.286 82

A; B;

0.6264
0.3883
0.9674
0.5283
0.6702
0.3618
0.3741
0.4640
0.5536

12.243 60
20.035 43

—17.754 72
1309.887 84

—1514.137 12
217.303 32

7371.396 04
11 534.31099

—18 893.967 43

—5.861 36
—1 ~ 160 13
—7.489 15

—142.429 60
—106.496 81

—6.851 99
—172.618 98

—1481.278 27
—709.015 14

TABLE VIII. BP pseudopotential coeKcients for the IIA ele-
ments. r, c;, a;, A;, and B; are defined in Appendix B.
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tions for the atoms of the IIA and IIB elements. Our re-
sults confirm that, up to the heaviest elements, gradient
corrections provide a systematic improvement over LDA
for what concerns total energies, excitation, and ioniza-
tion potentials.

For all these elements (with the exception of Zn) we
have generated ab initio norm-conserving pseudopoten-
tials to be used with the gradient-corrected functionals.

An extensive set of computations has been performed
to assess the quality of these potentials. While the
Perdew-%'ang' ' functional is apparently unable to pro-
vide good pseudopotentials, we show that both the
Langreth-Mehl' and Becke-Perdew' ' ' schemes give ori-
gin to pseudopotentials with the desirable properties of
accuracy, smoothness, and transferability. A careful
comparison shows that the BP scheme gives slightly
better results than the LM functional.

These two sets of pseudopotentials have been used to
compute bonding properties for the IIA and IIB
homonuclear dimers. Again, our results show that both
schemes provide an important and systematic improve-
ment over LDA, with the BP scheme having an advan-
tage with respect to the LM functional.

These findings point to the BP formula as the most
promising candidate to replace the LDA in the deter-
mination of Born-Oppenheimer properties like total ener-
gies, equilibrium geometries, vibrational frequencies, and
interatomic forces. The improvement in the computed
properties can be very significant, especially for highly in-
homogeneous systems like small aggregates (molecules
and clusters) or surfaces. The inclusion of the BP gra-
dient corrections in computer codes based on the plane-
wave expansion is easy to implement and not very
demanding in terms of CPU time.

Work is in progress along two different lines: (a) to in-
clude the BP functional in an ab initio molecular dynam-
ics (Car-Parrinello) program, in order to study small clus-
ters of the IIA elements, and (b) to evaluate the impor-
tance of gradient corrections in the computation of linear
response functions for both finite systems and extended
solids.

ACKNOWLEDGMENTS

We thank G. B. Bachelet for sending us a copy of Ref.
25 prior to publication. This work has been supported by

I

TABLE IX. BP pseudopotentia1 coefficients for the IIB ele-
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Cd Z, =12 r
&
=0.4477 c& =1.87191

r2 =0.8448 c2 = —0.871 91
a; A; B;

1.3100
1.1687
2.2005
1.3793
1.7315
2.0322
8.5783

13.1010
10.4545

4824.280 50
—4864.534 35

77.187 56
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7341.814 36

—10 384.963 68
—59 905.274 79

41 639.732 06
18 295.022 98

Hg Z„=12 r; =0.4761 c& =0.355
r2 =0.7466 c2 =0.64408

473.33001
262.450 95

—13.331 32
—273.971 64

—2627.569 57
—1325.358 00
35 247.400 43
40 708.433 13

146 885.355 03
92

B;

1.1752
1.0246
1.4423
0.8744
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1.2196
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3.6694

—6728.250 19
15 015.759 58
—8267.092 81

6179.598 84
—6527.203 15

361.233 04
—51 314.771 42

—626.160 32
51 956.624 03
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LsD+ &f + d &f
5p (r) Bp, dx, B(dp /dx, )

Px +

where p„ is the LSD exchange potential.
This gives

(A 1)

APPENDIX A: THE EXCHANGE POTENTIAL
FOR THE BECKE APPROXIMATION

The exchange-potential corresponding to the Becke ap-
proximation [Eqs. (10) and (11) of Sec. II] is computed
from the standard expression of variational calculus:

X LSD p 4 I /3 2=p — —', p x G —2[1+3Px (y xF )] +—6Pp
v p~ , /3 vp~ vlvp —4x 3

3 0

3y (1+2Px y )+4x F (1 3Px F )—
X x F + 6 (A2)

where

Ivp. l

1

+1+x'.
4/3

p~ =s1nh x

G =1+6Px y
and

APPENDIX B: THE BECKE-PERDEW
PSEUDOPOTENTIALS

The LM and BP pseudopotentials, computed numeri-
cally on a logarithmic mesh, have been fitted to the ana-
lytic form introduced in Ref. 45:
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ZU
p&(r)= — g c,erf(r/r, ')+. g (A, +r B, )e.

i =1

where I is the angular moment.
The coefficients c, , r,', a, A', and B' for the BP pseu-

dopotentials are reported in Table VIII (IIA elements)
and Table IX (IIB elements). This analytic form suffers
from the weH-known problems due to the extreme non-

linearity of the fit, as discussed, for instance, in Ref. 52.
These problems, however, do not have important practi-
cal consequences, apart from the need to report in the
tables and to use in the computations a large number of
digits for the A ' and B ' coef5cients. The fitting
coefticient for the LM scheme, together with the numeri-
cal pseudopotentials for both BP and LM, are available
on request.
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