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Coherence properties of holes subject to a fluctuating spin chirality
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The coherence properties of holes coupled to short-ranged chiral spin fluctuations with a
characteristic chiral spin-fluctuation time r,h=e, h are investigated in two dimensions. At tem-
peratures kT«4tt2(&2) 'hcv, t, hole quasiparticles exist and propagate with a renormalized mass
m /m =1+(p )h/16ttma)tv, q. (p ) is the amplitude of the local fictitious ffux ffuctuation and ao
is a lattice cutoK At temperatures kT»4tt'(p ) 'htv, q an eff'ective-mass approximation is in-

valid and we find that the hole diffuses according to a logarithmic diffusion law in the quasistatic
chiral field. The unusual diffusion law is a consequence of the long-ranged nature of the gauge
field. The result shows that the holes do not form a coherent quantum fluid in the quasistatic re-

gime.

The motion of charge carriers in doped Mott insulating
states in two dimensions has been studied in detail during
recent years in the belief that the normal and supercon-
ducting states of high-temperature superconductors are
states of this kind. ' In the t-J model the hole motion is
frustrated by short-range antiferromagnetic spin correla-
tions (and vice versa) such that the coherent bandwidth
for holes propagating in the correlated spin background is
limited by a few times J, the antiferromagnetic exchange
constant. This can be a substantial reduction of the
coherent bandwidth below the bare hopping scale t. Ex-
periments on high-temperature superconductors are, of
course, performed at temperatures well below the antifer-
romagnetic energy scale so it is important to understand
the quasiparticle or other behavior of holes in the temper-
ature regime T« J. Recently, several authors have ar-
gued that the linear temperature coefficient of resistance
(and possibly the unusual Hall eA'ect) seen universally in

the cuprates derives from hole scattering off' fluctuations
of the local spin chirality. (We refer to holes throughout
this paper although the same arguments apply for the
double-occupancy case also. ) Fluctuations of the local
spin chirality represent, from the point of view of the
propagating hole, a Auctuating fictitious Aux of order of a
Aux quantum per plaquette. If this is the dominant
scattering mechanism of charge from spin at temperatures
much less than J, then it follows that chiral Auctuations
play an important role in setting the intrinsic coherence
temperature of the hole system. This can be very low ex-
perimentally; the material Bi-Sr-Cu-0 for instance
sho~s linear temperature coefficient of resistance down to
about 10 K; thus, it is interesting to know if chiral fluctua-
tions can account for such low coherence temperatures.
The essential result of this paper will be that coherence is
absent when the holes experience short-ranged, quasistat-
ic chiral Auctuations.

The coupling of holes to spin chirality is a consequence
of the backflow of spin accompanying the motion of holes.
The Hamiltonian for holes (created by h;t) moving in a

static spin background is

H= —t g z;*z)htth),
&i,j )

where z; =kos(8;/2), sin(8;/2)expip;] represents an up-
spin state with respect to a local quantization axis
n; =(sin8;cosP;, sin8;sing;, cos8;). The form of z; follows
by rotating the spin frame through angle 0; about the axis
a; = (sing;, —cosp;, 0). The required spin- —,

' rotation
operator is R =expi(tr" a/2) where tT=( tTcr„, o,) are the
Pauli matrices. In addition, it can be shown that the re-
sulting overlap of spinor states z; and zj can be expressed
as

(/2)~„, . , 1+a; nz*z.=eJ 2

where 0„,„., is the solid angle subtended by the spin axes
at i and j, and the z axis. The solid angle 0„,„., is posi-
tive or negative depending on the handedness of n;, nj, z.
(Another common measure of the handedness or chirality
is S,, S„,&& z.) Now when a hole is taken around an arbi-
trary closed path C in the spin background it acquires a
phase equal to the total solid angle subtended by the spins
along the particle path. This is a consequence of the over-
lap of displaced spinor wave functions: (y; l yf) +gz| zj.
Spin chirality, as measured by the solid angle, generates
Aharonov-Bohm phases or eA'ective magnetic fields nor-
mal to the plane.

Spin-singlet background states generally exhibit appre-
ciable short-ranged chiral Auctuations. They are present,
for instance, in a quantum antiferromagnetic state where
the fluctuation frequency scale is of order of the Heisen-
berg exchange constant. The precise structure of chiral
spin correlations present in the relevant doped Mott insu-
lating states is still not known for certain. One possibility
is that long-range chiral or staggered chiral order develops
with order parameter (S; S;+„-xS;+„-+„-). In the work
of Nagaosa and Lee the chiral fluctuations correspond to
the transverse current Auctuations of a pseudo-Fermi sea
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FIG. l. Gauge-invariant coherence temperature. (a) Two-
particle exchange Z)2(R, P). (b) The "classical" contribution
Zs dominates in the incoherent regime. At the coherence tem-
perature Z)2(R&-Zj for R-mean particle separation.

(chiral symmetry is unbroken). In a recent paper' Ioffe,
Kalmeyer, and Wiegmann argue that holes see a quasi-
static flux distribution in this model even at low tempera-
ture.

Motivated by their work, we investigate a situation
where the spatial range of correlation is negligible and the
chirality decays in real time with definite decay time
z,h =to, h . (A local, diffusive mode. ) The fictitious flux
fluctuations (expressed in the continuum) satisfy

(y(r, t )y(0, 0)& =a() (y'&8(r)exp —co,ht .

(p & is a dimensionless parameter expected, for typical
spin backgrounds, to be of the order of p(). (The flux
quantum po-2x in our units. ) As we shall see the model
(1) enables us to study both quasistatic and dynamic lim-
its.

A hole traveling around a loop in a fluctuating back-
ground flux such as expression (1) returns with a random
Aharonov-Bohm phase. As pointed out by Nagaosa and
Lee this scattering process has the effect of suppressing
the contribution of closed paths which enclose a large
"area" relative to paths which almost retrace themselves.
In the lattice case the limit where the loop contribution is
completely absent is familiar as the retraced path approxi-
mation. As shown by Brinkman and Rice, " the retraced
path restriction on a lattice radically alters the physics of
holes. For instance, it modifies the behavior of the density
of states near the renormalized band edges (in more than
one dimension; in one dimension all loops are retraced).
This effect goes beyond an effective-mass picture which
just gives a renormalized density of states. Similarly, we
shall verify below that chirality Auctuations can lead to a
breakdown of the effective-mass approximation.

The single hole density matrix or the propagator is not a
gauge invariant object in a fluctuating chiral background.
Despite this the coherence temperature of the hole system
remains well defined as the temperature below which the
free energy becomes sensitive to hole statistics, i.e., Fermi
versus Bose statistics. Ordinarily the coherence tempera-
ture is the temperature at which the thermal length A. T be-
comes comparable with the interparticle spacing. This
picture assumes an effective-mass approximation. More
generally, we may define the coherence temperature as the
temperature below which ring exchange processes make a
substantial contribution to the system free energy. The
multiparticle partition function Z involves a sum over par-
ticle permutations or ring exchanges when expressed in
terms of an imaginary-time path integral; in the in-
coherent phase the action associated with ring exchange is
high and these processes are suppressed. The elementary
ring exchange shown in Fig. 1(a) involves a closed parti-
cle path, and so, makes a gauge-invariant contribution to
the partition function.

The single-particle partition function expressed as an
imaginary-time path integral is (12 =1):

Z Dr(T)e ' exp „dTA i)„, (2)-s, 1 ()
4 r(0) r(p) 2x'

where the averaging is over gauge-field configurations
A(V&A-ao Pi) and So is the free-particle action:
So ao W 'fly'r' (z)dz, where P 1/kT, W=h /2ma(),
and ao is a lattice cutoff. m is the partially renormalized
particle mass. Expanding the exponential, averaging and
reexponentiating in the usual way, the effective action be-
comes

aP ~P
S[r(z) l -S()+ 2 „„dzdz'r', (z)r'p(z')

8&2 do 4P

XDg[r(z) —r(z'), z —z'l, (3)

where D„'t'(r, z) is the time-ordered A-field propagator in

imaginary time. The "gauge-field" fluctuations corre-
sponding to Eq. (1) may be expressed in the Feynman
gauge, where only diagonal components of the gauge-field
propagator are nonzero

(A'(t)A~— (0)& -ao (p & e "'"'b'P t )0. (4)

From (4) we find for the imaginary-time propagator:
D„'~(r, z) Df (r, 0)cosa)ohl zl, 0 «& P.

We first consider the high-temperature limit Pn), h 0.
In this limit the explicit z dependence of Dg(r, z) can be
neglected; i.e., the hole moves in a quasistatic random
chiral field with spatial correlation D~(r, 0). In two di-
mensions the local amplitude of gauge-field fluctuation
D~(r, 0) is logarithmically divergent from Eq. (4). This
divergence should not appear in gauge-invariant proper-
ties which see only finite flux (p &.

Using expression (4) in the effective action (3) we ob-
tain

( 2& 2)(ao (

dqS =So+ J dzdz'r' (z)Jo(qlr(z) —r(z') l)r, (z') .
Sz a() "' q

(5)
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Jo is a Bessel function. Consider the evaluation of the
effective action (5) for a closed loop of "dimension" I.. [i.
can be taken as the greatest separation between points on
the loop r(z). ] The q integration is then cut off below
qL-2+L '. To see this, note that for q «L ' the argu-
ment of the Bessel function is small at all times and
Jo=l ——,

'
q (r(z) —r(z')P. For closed paths the first

term in this expansion gives zero contribution, cutting oA'

the small q singularity. Notice that for open paths the
logarithmic divergence of the action survives, a conse-
quence of absence of gauge invariance for open paths.
Adding zero to (5) in the form

&
')0= ' dzdz'r'(z)ln r'. (z')

8z ao" " ao

we have finally

eP eP 1 ( 2)
S= dzdz'r'(z) b(z —z')+"o 4o aoW 8n ao

r z —r z'

ap

The action expression (6) is not Gaussian and the prob-
lem cannot be treated exactly. The form of the effective
action however suggests a self-consistent approximation
on the kernel of expression (6) (the quantity in large
parenthesis). Then it is not hard to argue that (6) leads to
a logarithmic, rather than linear diff'usion law for long
times. Replace the argument of the logarithm by
its root-mean-square value; )r(z) —r(z') P f(z —z')
—= (~r(z) —r(z')~ ). The action is Gaussian with a kernel
which is nonlocal in time. The problem reduces to finding
the diffusion law f(z) self-consistently with the action.

I

Suppose f(z) is a power law z~. [More properly,
one must remember that f(z) has period p so that
f(z) =aoPWsin~x~z)/P, for instance, is a more appropri-
ate trial form. ] The kernel obtained by this replacement
is pln~z —z'~. The resulting action is the well-known
Caldeira-Leggett action of dissipative quantum mechan-
ics. At times long compared to the inelastic lifetime
[z» 1/(p )W in this case], the diff'usion law in the
Caldeira-Leggett model is logarithmic rather than linear,
in imaginary time. The assumption that f(z) is a power
law is contradicted; therefore, no power-law diff'usion can
be a self-consistent solution. The essential reason for the
altered form of the diA'usion law is that the kernel in ex-
pression (6) is long ranged in space and effectively also in
time. For a short-ranged kernel a linear diffusion law
would hold at su%ciently long times.

These observations suggest a logarithmic solution for
f(z), and hence a double log behavior of the self-con-
sistent kernel. To verify this solution, we express the ac-
tion in Fourier space, with arbitrary kernel k (z) = lnf (z);
co„=2iznP '. Evaluating f(z), the self-consistency equa-
tion reads

a 8'
co„(1+k„)

a0 8' +
1 —cosa z

dN
co'[1+k (co)]

with

( ')w
lim k„= lim ds cosco„s lnf(s)u-- 16m' "o

( ')w '"
ds coscos Inf (s)

16m ~o

k„=—0 for m„& co,. So,

a08 & ')w " . '(s)f(z) = (1 —cosaiz) ai + co ds sincos~0 f(s)
8ao

t

&&'lir 1 coscoz I'—
d

. f'(s)

(7)

The later approximation is valid at long times. Inspection
of expression (7) shows that

Sa0f(z)= in((P &Wz), &P )Wz»1 (8)
iz(y')

is self-consistent to logarithmic accuracy.
It is interesting to compare these results with the

retraced-path-restriction (RPR) lattice result for the
single-particle density of states near the band edge men-

I

tioned earlier. In the RPR, the low-temperature hole par-
tition function is Z —p ~ e ", i.e., states at the band
edge are depleted and there is a square root rather than
step singularity in the density of states at the renormal-
ized band edge at e0. We compare this to the behavior in
the Caldeira-Leggett model. With an upper cutoff oi,
[equivalent to a short distance cutoff on the logarithm in
expression (6)l it can be shown that'

ZCL=/i/ Q dy„dx„exp p/aoWX(ro +—(p )W/8+ Ioi I)(x x — +y y — )
n 1 n

p(y'&w
2 exp —

3
1+ln

ao 16m

The (infinite) normalization constant N is known from the
free particle partition function, and A is the system area.
The upward shift of the band edge —(p )W is in qualita-
tive agreement with RPR; however, the form of the densi-
ty of states near the renormalized band edge is m

' in
Caldeira-Leggett versus m'~ in RPR. The discrepancy

probably indicates that approach to the lattice RPR result
from a continuum-limit calculation is subtle as one might
expect. Z calculated with self-consistent kernel is a corn-
plicated task but the result should be similar to Caldeira-
Leggett. In any case an eff'ective-mass approximation is
invalid and the density of states (or equivalently, the low-



COHERENCE PROPERTIES OF HOLES SUBJECT TO A. . . 6291

» (4) h

(a) Brinkrnan-Rice

Chiral T(,(, cu
h

The behavior is qualitatively altered at temperatures
Pta, h eo. The explicit time dependence of the kernel
must be retained and a quasistatic approximation is in-
valid. Dz (r, r) oscillates in imaginary time on a scale
which is fast compared with the inverse temperature and
the kernel is effectively short ranged. The self-consistent
equation can be developed along the above lines. Essen-
tially at long times i» co,h ', one can approximate

FIG. 2. Hole density of states near the band edge. (a) The
Brinkman-Rice retraced path approximation. (b) The
Caldeira-Leggett density of states -co approximating the
eA'ect of a quasistatic field at temperatures T»co,h in two di-
mensions. The impossibility of Bose condensation in this regime
is evident. The dashed line is the renormalized hole density of
states, T&&m,h.

8'
8Ã GOch

(9)

to logarithmic accuracy, so that the diffusion is linear in ~
(with a high-frequency motion superposed). An efec-
tive-mass approximation holds

temperature partition function) is changed from the two-
dimensional step singularity, as summarized in Fig. 2.

Returning to the result (8), one sees that a logarithmic
diffusion law effectively suppresses coherence effects in
the multihole system. ' Roughly speaking coherence is
suppressed because the distance diffused in imaginary
time -P/2 is less than the order of the mean particle sep-
aration. A more precise criterion is that the action cost
associated with the process shown in Fig. 1(a) grows as
R lnlnP, if the particle path is constrained to pass
through a distance R. (Again a similar behavior occurs in
the Caldeira-Leg~ett model where the classical action cost
grows as R InP. ' )

The form of this result is familiar, mirroring Einstein pho-
nons which give a mass enhancement proportional to the
inverse phonon frequency. Also (9) is consistent with the
conclusion that the regime T& m, h is incoherent. For
co,h(&8' the coherent bandwidth is -co,h so that the
crossover to a coherent hole state is expected below -co,h

at a temperature determined by the hole density. '

As yet there is no experimental determination of the
frequency scale for chiral Auctuations. Shastry and Shrai-
man ' have noted that local chiral spin fluctuations should
show up in the 82g Raman geometry, via a nominally
"higher-order" eff'ect in t/(U —cai„„).

J.M.W. thanks Robin Ball for helpful conversations.
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