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Flux creep and current relaxation in high-T, superconductors
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The long-time asymptotics of the current (magnetization) relaxation in high-temperature super-

conductors is studied within the framework of collective creep theory. The inverse normalized re-

laxation rate S depends linearly on Tin(t/so). The attempt time ro is shown to be much

longer than a "microscopic" time scale and is strongly size and j, dependent.

It is generally agreed that thermal fluctuations of vortex
lines (VL) are of extraordinary importance in the forma-
tion of the mixed state in high-T, superconductors (HTS)
(see, for review, Refs. 1 and 2). The most indicative prop-
erties are (i) very fast fall of the critical current j, with
temperature, and (ii) giant flux creep. One can distin-
guish two principal kinds of thermal fluctuations of VL:
(i) phononlike fluctuations of VL near the equilibrium po-
sitions within metastable valleys generated by random
pinning potential, and (ii) thermally activated jumps of
the segments of VL between different valleys. It was
shown in our previous papers that phononlike fluctua-
tions smear the pinning potential, providing the decrease
in the critical current with temperature increase. On the
other hand, thermally activated jumps are known to be re-
sponsible for the creep phenomenon.

One of the most important problems is the nature of
pinning in HTS. Usually the data concerning pinning
force and barriers are extracted from measurements of
magnetic hysteresis loops and of the rate of magnetic re-
laxation. Due to the presence of giant flux creep the width
of the magnetic hysteresis loop measures the actual per-
sistent current j(t) which can be considerably lower than
the true critical current j, [defined as the value of current
corresponding to substantial deviations from high-current
linear V(j) behavior]. Another consequence of giant
flux creep is that the logarithmical relaxation rate
S = ~d InM(t)/dint~ twhere M(t) is the sample magneti-
zationl generally cannot be directly related with some
well-defined pinning barrier energy Up as it is given by the
Anderson formula S =T/Uo. The point is that the whole
distribution of pinning barriers is generated by random
potential, so that the actual value of the pinning barrier
(corresponding to a given stage of relaxation process) de-
pends on the actual value of persistent current.

In this paper we consider magnetization-current relaxa-
tion due to flux creep. We shall use basically the theory of
collective flux creep developed in Ref. 5 and demonstrate
how the pinning characteristics can be inferred from the
current (magnetization) relaxation measurements.

In HTS materials the values of persistent currents j (t)
are considerably lower than j,. It was shown that at
j«j, the activation barriers U(j) between difl'erent

metastable states should grow with current decrease ac-

cording to a power law:

U(j) =Uo(j /j)',

U (j(t)) =TIn(t/ro), (2)

where rp is some attempt time which will be determined
below. Combining Eqs. (1) and (2), one obtains the
asymptotic form of the current relaxation law:

Upj(t)=j, ln
T 7p

(3)

At initial stage of relaxation process, when (j, —j)
((j„the Anderson formula

j(t) =j, 1 — ln
T t

Ue ~o
(4)

should be valid, where U, is a characteristic energy bar-
rier for the case of j=j,. Then one can write down the
interpolation formula for the whole process of current re-

where Up is the characteristic energy scale and the ex-
ponent a depends on the dimensionality of the problem
and on the particular regime of flux creep. In the three-
dimensional (3D) case a = —,

' in the weak-field, low-

temperature region where creep is dominated by the
motion of the individual flux lines; at higher field collec-
tive creep due to small (Rb «kt ) bundles takes place and
a= 2, wheres at still higher fields the bundle size Rg is
much larger than the London penetration depth kz, and
a =

9 . For 2D collective creep a =
8 . The above-

mentioned results are valid for the case of hopping dis-
tances u much shorter than the lattice constant ap. The
opposite limit u ~ ap was considered by Nattermann, '

who has ground a =
2 . The U(j) behavior (1) gives rise

to essentially nonlinear current-voltage characteristics,
Vccexp( —A/j'), and so to the zero linear resistance
p~;„=(dV/dj)~j=o=O, which is the main feature of the
vortex-glass state. "

If the current relaxation is due to some thermal activa-
tion process, then the relevant activation barrier U, is re-
lated with the persistent current j(t) by the relation'
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laxation:

j (t) =j, 1+a ln
T

U, zp

—
1 ja

(5)

j (t) =j,exp — ln
T

U, zp zp

—TIU

The comparison between Eqs. (5) and (3) shows that
U, =aUp. The result (5) can also be obtained from the
relation (2) and Eq. (1) modified to the form
U(j) =Up[(j,/j)" —1] [which is necessary to have
U(j, ) =0]. In the case of single-vortex creep a«1 and
Eq. (5) can be approximated [at (T/U, )ln(t/zp)«a ']
by the power law

where co is some microscopic (i.e., size independent) fre-
quency, and u is the length over which the Aux bundle is
hopping. We shall look for the solution of Eq. (10) in the
form j (t,x) =j (t)+bj'(t, x), where ~bj'(t,x)

~
&(j(t) (cf.

Refs. 18 and 19). This kind of solution can indeed be
justified in the cases when 8 dependence of U(j) and j, is
irrelevant, i.e., if (i) the case of single-vortex creep is con-
sidered, or (ii) a response to a relatively weak magnetic
field step is considered, so that bB(x) variation across the
sample is much smaller than the background field in the
sample and the eft'ect of b'8(x) on j, and U(j) can be
neglected.

Assuming at least one of these conditions to be fulfilled,
we can rewrite Eq. (10) in the form

The result (5) leads to the following formula for the
normalized creep rate 5:

ceo U(J ) 82

8x

5= T
U, +a T ln (t/zp)

(7)

That means that if one defines the apparent pinning
barrier as U, =T/S, then U, is constant at low tempera-
tures but grows linearly with T at higher temperatures,
which is just the result obtained in other works. '

Note also, that in some work (e.g. , Ref. 13) the value of
U, was deduced from the experimental data using the for-
mula

U=T ln
zp

j (t)
dj (t)/d ln(t)

(8)

which is the consequence of the Anderson formula (4)
and, therefore, should be used at Tln(t/zp) «U~ only. As
it is seen from Eqs. (7) and (8), the use of Eq. (8) leads to
an overestimation of the temperature-dependent term in

U, .
A number of experimental data on the creep rate S

were analyzed recently by Malozemoff and Fisher' and
was shown to obey (at least qualitatively) the behavior
following from Eq. (7). The same result was recently ob-
tained in a very clear way by Konczykowski. ' However,
it was shown in Ref. 17 that the results are meaningful if
one ~ould use unusually long attempt time zp~ 10 sec.
Therefore, we encounter the problem of a calculation of
the attempt time zp which was usually considered to be
"microscopic" (-10 ' sec).

The attempt time zp can be found in the framework of
the Anderson model, as it was done by Beasley, Labusch,
and Webb' (see also Fisher and Nattermann' ). To do
this, let us write down the equation describing Aux
penetration into the sample of the slab geometry (the slab
thickness is equal to d):

=&(UB) . (9)
dt

We shall consider the case of full penetration only
[d&&68,„,(c/4ttj, )l. Diff'erentiating Eq. (9) with respect
to the coordinate x across the slab and using the usual ex-
pression for the VL velocity due to thermally activated
processes, t. =Co„,u exp[ —U(j )/T], one obtains

[uBexp[ U(j )/T]J, —(10)
Bt 4x

uB exp
8U bj(x, t)
J T

and find the solution for bj (x, t):
T + /d'

(12)
(aU/aj. ) 8(x)/8, „,

This means, indeed, that
~ bj (x, t ) (

—[T/U(j)] j(t )
&(j(t). Then the current relaxation j(t) is governed by
the following equation:

bj (x, t) -—

Qj 28u crom

tzd'
exp[ —U(j)/T] . (13)

Integration of Eq. (13) leads to Eq. (2) with the inverse
attempt time

uco~cB BU(j)
zp

xd T rlj
(14)

2

Zp
2 PAow

d
(15)

Note that zp appears to be U, dependent. For the case

Here B is the value of the magnetic induction at the
slab boundary. Thus we have found that the attempt time
zp grows with the size of the sample d. The reason for
that dependence is simple: The sample magnetization is
proportional to the sample volume, whereas the rate of its
time variation is proportional to the sample surface area
(new vortices should penetrate into the sample from the
surface). The value of co~ ' can be estimated as Au/U„
where v, =cj,pp, „B is the value of FL lattice velocity
at j j, (so that co is the traveling time of the flux
bundle inside one metastable state); pp, „ is the flux-flow
resistivity at j=2j, in the mixed state with the induction
B. The numerical factor A is at present unknown, but
one can speculate that A grows with the volume of Aux
bundle (cf. Ref. 20, where such an eA'ect is shown to exist
for the case of thermally activated hopping of an elastic
line in periodic potential). Also, using Eq. (1) to obtain
~dU(j)/dj~, one arrives at
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of collective pinning, where U, grows with j, decrease,
Eq. (15) means that j, decrease leads to the increase of

, which is just the opposite of the behavior of the mi-
croscopic frequency co that is proportional to j,. The
same eA'ect can be enlarged by the factor A, that also
grows with the j, decrease. The result (15) was derived
for the case of the flux penetration into the sample (or,
more generally, for the case of finite external magnetic
field 8). Rather frequently the experiments are per-
formed in another way: initially presented magnetic field
Bo is switched off and relaxation of remanent magnetiza-
tion M„(t) is measured. In this case at the sample
boundary 8 =0 and Eq. (14) cannot be applied. Howev-
er, it seems reasonable to estimate the effective value B,s
which should enter Eq. (14) as

The last estimate in Eq. (16) holds if the critical
current j, is weakly dependent on 8, so the 8 profile can
be considered as a linear one. In any case the parameters
ps,„and U, entering Eq. (15) should be taken at the mag-
netic field value B,g«Bp, which means that Tp(REM)« ~p '. However, due to substantial uncertainty in the es-
timation of B,g for the case of usual remanence measure-
ments with B,„t=0, it seems to be more useful to perform
relaxation experiments at finite value of the external field.

To conclude, we have shown that (i) inverse normalized
logarithmic relaxation rate 5 ' grows linearly with
Tin(r/rp), and (ii) the characteristic attempt time ro is
much longer than it was usually assumed and depends
strongly on the sample size and on the value of j, [cf. Eq.
(Is)].

B,ir =8 (x = u ) = —Bo .
Q

d
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