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The ground-state Coulomb energy and zero-point vibrational energy are calculated numerically
for the perfect two-dimensional (2D) Wigner crystal and for a 2D Wigner crystal containing intersti-
tials and vacancies. In the limit of large systems, only the vacancy and the interstitial with threefold
rotational symmetry are stable. The scaling of the interaction between like defects with interdefect
separation is studied and compared with the predictions of elasticity theory. Each type of point de-
fect lowers the zero-point vibrational energy of the system. The role of point defects in the zero-
temperature melting transition is discussed in light of these results.

I. INTRODUCTION

It is well know that a system composed of electrons
embedded in a uniform positive background at zero tem-
perature will exhibit a crystalline phase, or Wigner crys-
tal, at low densities and a fluid phase at high densities.!
Experimentally this system is realized in two dimensions
(2D) by electrons above a liquid-helium surface where the
existence of the crystalline phase has been well estab-
lished.> Much theoretical work has sought to determine
the electron density at which the phase transition to the
fluid phase occurs. Recent Monte Carlo calculations
have placed the transition at the density where
r,~37+5.3 Besides the critical density one is also in-
terested in the mechanism of the transition. Is “quantum
melting” continuous, like the thermal melting transition,
or is it first order? In the event that the transition is con-
tinuous, one would like to identify the microscopic mech-
anism. A natural candidate is the dislocation unbinding
process that occurs in the thermal transition. At zero
temperature one cannot invoke the entropy from the
dislocation positions as a factor which competes with the
energy. Instead one must ask whether there is a net
lowering of the zero-point vibrational energy cased by a
dislocation pair that ultimately, at the critical density,
overwhelms the energy of the pair. With this perspec-
tive, however, there are no obvious criteria that would
distinguish dislocations as being particularly adept in
lowering the zero-point energy. Thus we are lead to con-
sider the simple point defects, vacancies and interstitials,
as well. This study was motivated by the work of Fisher,
Halperin, and Morf* (FHM) which indicated that the
lowest energy point defect was an edge-centered intersti-
tial that promised the possibility of a low zero-point ener-
gy because of its nearly continuous translational symme-
try® (see Fig. 1). We have repeated the calculation of
FHM with more advanced computing resources and find
that, in fact, the lowest energy defect is the triangle-
centered interstitial—the edge-centered interstitial being
classically unstable. We do find that both the stable in-
terstitial and the vacancy lower the average zero-point
energy of the system. This lowering, however, is
insufficient so that if anharmonic terms (which we do not
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calculate) are negligible at r, =37 then our results imply
that simple point defect condensation is not a viable
mechanism for continuous quantum melting.

II. ELECTRON CRYSTAL ENERGY CALCULATIONS

The electrostatic energy of electrons in a Bravais lat-
tice can be evaluated by means of the Ewald sum for the
potential seen by a single electron:
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FIG. 1. Wigner crystal containing edge-centered interstitial
(EI). Motion of the interstitial along the line indicated is nearly
continuous.
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Throughout this paper the existence of a uniform neutral-
izing positive background is assumed. In (1) the sum on
G runs over all reciprocal lattice vectors, j runs over all
lattice points, and 7 is the Ewald parameter which can be
adjusted so that both the direct lattice and reciprocal lat-
tice summations converge rapidly. The Coulomb energy
per electron is then given by

—_ 7 , 2
N 2 o(i) 2)
where the factor of 1 compensates for double counting.
For a system composed of a Bravais lattice of unit
cells, each with a basis of M electrons, the Ewald sum is
modified:
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The structure factor is given by

S(G)=3
k

G

, (4)

where k runs over all the electrons in the basis. The
Coulomb energy per electron is now given by

E _e

=1
~ =3 <1>—M§¢(k), (5)

where the sum is again over each electron in the basis.

The zero-point vibrational energy of an N-electron
periodic cell in the harmonic approximation is calculated
by determining the normal-mode frequencies of the
2N X 2N dynamical matrix

Ne d’®
Ciwipg=—— 7 6
iaiB = am 97,405 (6
using the differentiated Ewald sum (5). Then the vibra-
tional energy per electron is given by

Evib #
N 3N zi"a)i . (7)

where {w?] are the 2N eigenvalues of the matrix C. It
must be emphasized that this is only an approximation to
the zero-point vibrational energy per electron as only the
set of normal modes which have the periodicity of the N-
electron cell are summed over. An effective method for
improving this approximation in the case of the perfect
Wigner crystal is given in Sec. III.

As N increases, the evaluation of (3) and (6) becomes
increasingly computationally intensive. Minimization of
computation time was aided by following a method point-
ed out by Adams and McDonald®” of setting the Ewald
parameter large enough so that the direct lattice sum had
at most one significant contribution from each pair of

electrons in the basis. For the approximately square rec-
tangular unit cells used in this study, 620 terms in the re-
ciprocal lattice were needed for 1 part in 10'? accuracy.
Furthermore, rather than determine the error function
associated with the distance between each pair of elec-
trons, a table of 10000 such values was created at the be-
ginning of each run, with the value for the pair deter-
mined by a parabolic interpolation through the three
nearest points of this table. Consistency checks showed
that the base potential energy calculations in the present
work were good to better than 1 part in 10'!,

III. THE PERFECT 2D WIGNER CRYSTAL

The perfect 2D Wigner crystal forms a hexagonal lat-
tice. In the semiclassical approximation, the low-density
expansion of the ground-state energy of the crystal may
be written in the form

1

N r, r J ’ ®
where E /N is the energy per electron in untis of Ryd-
bergs and r, is the dimensionless radius such that
m(r,ay)? equals the area per electron A., with a, the
Bohr radius. The first term in the expression represents
the equilibrium Coulomb energy, the second term the
harmonic term of the zero-point vibrational energy, and
the final term the lowest order of the anharmonic oscilla-
tor terms.

In all our numerical work we use a rectangular super-
cell of the hexagonal lattice. In units of the lattice con-
stant a of the hexagonal lattice the length and height of
the supercell are m and nv'3, respectively. In the ab-
sence of defects there are N =2mn electrons in the super-
cell. Using (3), we find for the hexagonal lattice,

c

N
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The final two decimal places differ from the previously
published value.® This energy corresponds to
C,=—2.2122052 above.

The vibrational modes of the perfect 2D crystal are
longitudinal and transverse plane waves. We modify the
approximate zero-point vibrational energy (7) to label the
modes by their longitudinal or transverse nature and
their wave vector q:

Eyip _
N 2N 4

[o/(q)+o,(q)], (10)

where the sum runs over all the reciprocal lattice vectors
q of the supercell. Rather than diagonalize the dynami-
cal matrix C to find the normal mode frequencies, we can
use the known eigenfunctions ¢f1(rjﬁ) and 9;(r;g) for lon-
gitudinal and transverse waves to find the frequencies
simply via the relations Cy}'=(w}")*y". Cunningham
has shown® that the most efficient way of evaluating an
integral of a function over a Brillouin zone where the
function has the full symmetry of the zone is to evaluate
the function over a set of special points. The special
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points of the hexagonal lattice Brillouin zone correspond
to a subset of reciprocal lattice points of a rectangular su-
perlattice having m =3 and n =3 where p is an integer.
Using a set of six special points. Bonsall and Maradudin®
found the zero-point vibrational energy per electron in
the 2D Wigner crystal to be 4.28 (#iw,/2) where
co0=\/e_2 /ma®> and a is the lattice constant
(A,=V'3a?/2). Our calculation of the eigenvalues at the
larger set of 378 special points yields a coefficient of
4.2776. This corresponds to C;,, =1.6274. In Fig. 2 the
phonon dispersion relations are shown as contour plots
over the Brillouin zone.

IV. ENERGY OF POINT DEFECTS

Fisher, Halperin, and Morf* identified three simple
point defects in the 2D Wigner crystal: the centered in-
terstitial (CI), edge interstitial (EI), and vacancy (V). Any
defect must raise the Coulomb energy of the system; if
the total ground-state energy of the Wigner crystal with a
defect is to be lowered, it must be through a reduction in
the zero-point vibrational energy. With the contributions
to the energy again solely the Coulomb and zero-point vi-
brational energies, we expect the energy of a single isolat-
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FIG. 2. Phonon dispersion relations w(q) for (a) transverse
modes and (b) longitudinal modes of the perfect 2D Wigner
crystal over the Brillouin zone (BZ). The contour interval is
0.lw,. For clarity, only contours for = 0.9w, are shown for
the longitudinal modes. The transverse modes dispersion rela-
tion has a minimum at the origin, maxima at the BZ corners,
and saddle points at the BZ edge centers. The longitudinal
modes dispersion relation has a minimum at the origin, maxima
at the BZ edge centers, and local minima at the BZ corners.

ed defect of each type in an otherwise perfect crystal to
also be given by an expansion of the form

C,(defect) Cj; ,(defect) 1
defect 3,2 > (11)
rS rS rS

We calculate the coefficients C;(defect) and C; /,(defect)
numerically.

A. Coulomb energy

To calculate the Couloumb energy we begin, as before,
with a rectangular perfect crystal superlattice, where the
parameters m =5t and n =3¢, t integer, are chosen so
that the superlattice approximates a square to within 4%.
To this system of 2mn =30t> electrons, an electron is
added to create a CI or EI or one is removed to create a
vacancy, as shown in Fig. 3. Since it is known that the EI
causes relaxation for an extended distance along its own
row,*> the edge interstitial is placed so as to maximize
the distance between an EI and its images along its own
row. After placing the defect we rescale the dimensions
of the supercell by a factor of
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2mn (12)

to reset the system to the initial density. This avoids the
complications of having to correct the energy calcula-
tions for density changes.*

The Coulomb energy per electron of the supercell
(e/2)® was determined by explicit evaluation of the
Ewald sum (5). After adding the defect, the relaxation
and equilibrium energy were computed by writing the en-
ergy as a function of the 2N particle coordinates and us-
ing standard conjugate-gradient methods to minimize
this function.!®

After evaluation of the equilibrium Coulomb energy,
the Coulomb energy of the defect was determined by sub-
tracting the Coulomb energy of the same number of elec-
trons in a perfect crystal of the same density:

Ec(defect)Z%[d)—cb(perfect)] . (13)

This yielded the Coulomb energy change per defect of a
system containing a superlattice of such defects. The iso-

FIG. 3. 2D Wigner crystal containing unrelaxed (left) EI,
(center) CI, and (right) V defects.
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lated defect energy was computed by calculating the en-
ergy for successive ¢ in the supercell size and extrapolat-
ing the results to infinite supercell size.

The relaxed configurations for each type of point defect
are shown in Fig. 4. The relaxed configurations for the
CI and EI maintain the symmetry of the unrelaxed
configurations, with the CI configuration just slightly dis-
torted to a lower symmetry by the boundary conditions.
The vacancy, however, was found to relax into a
configuration of lower symmetry, in contrast to previous-
ly reported behavior.*

The Coulomb energy per defect in a lattice of unit den-
sity is shown as a function of supercell size in Fig. 5,
where the horizontal axis for each type of defect is scaled
via the elasticity theory prediction of the defect-image in-
teraction, as discussed in Sec. V. Extrapolation to infinite

(a)
(c)

supercell size yields E,(CI)=0.1364, E_(EI)=0.1394,
and E_(V)=0.1939, where the energies are expressed in
units of e2/V/ A,. Our energy calculations show that,
contrary to the results of FHM, the centered interstitial
is the lowest energy point defect in the 2D Wigner crys-
tal. These results give C,(CI)=0.1539, C,(EI)=0.1573,
and C,(V)=0.2188 in the expansions above. The values
given for the EI and V energies are accurate to 1 in the
last digit given, while the values for the CI energies are
accurate to the last digit given.

In addition, it was found that the EI was unstable for
even the largest (271 electron) system whose normal
modes were computed. The unstable “buckling” mode as
shown in Fig. 6 was found to lead to a CI configuration
upon relaxation. We conjecture that the EI remains un-
stable in the limit of an isolated EI, in contrast to the

(b)

FIG. 4. Relaxed configurations containing (a) EI, (b) CI, and (c) V defects. The point group of the V is C,.
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FIG. 5. Defect Coulomb energy vs system size for the (a) EI,
(b) CI, and (c) V. The system areas A4 are scaled according to
the predictions of elasticy theory.

conclusion of FHM that the EI is stable. We thus omit
discussion of the EI in Sec. IV below.

B. Zero-point vibrational energy

Once the equilibrium configuration for each supercell
containing a defect is determined, the zero-point vibra-
tional energy is determined by diagonalization of the 2N
by 2N dynamical matrix C. The change in vibrational en-
ergy due to the defect is then given by appropriately sub-
tracting the vibrational energy of a perfect lattice:

% 2N
Evib(defect)=3 S, w;(defect)
i=1
N 2NED
T Ntl P o;(perfect) | . (14)
The comparison is made to a supercell energy, rather
than to 2N times the perfect lattice zero-point vibrational
energy found in Sec. II because the systematic deviations
in the vibrational energy calculated over a finite cell as
discussed in Sec. II exceed the difference in vibrational
energy that we wish to calculate.

The resultant changes in the zero-point vibrational en-
ergies for the CI and V systems of 30t2+1 electrons with
t=1,2,3 are plotted in Fig. 7. We determine a scaling
law for the effect of the image defects on the total vibra-
tional energy by assuming that the difference in vibra-
tional energy between the lattice containing periodic de-
fects and the perfect lattice is dominated by vibrational
models localized near the defect and representing these
modes as fluctuating dipoles located near the defect and
its images. The image dipoles provide an effective addi-
tional force that scales as A 3/%, where 4, is the area of
the supercell. Thus we expect the effect of the image de-
fects on the frequencies of the local modes to scale as

A3, Extrapolating our results to 4, =, we find

FIG. 6. Unstable “buckling” mode of the EI shown in Fig. 1.
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FIG. 7. Change in zero-point vibrational energy with system
size for the CI and V defects.

C;/,(CI)=—0.59+0.01 and C;,(V)=—0.67%0.02.
Both stable point defects lower the zero-point vibra-

tional energy of the Wigner crystal in the harmonic ap-

proximation. For each type of defect, there is a critical

density, or

2

—C, ,,(defect)
— AN (15)

fe =
r;(defect) C(defect)

where the defect energy computed using the first two
terms in (11) is zero. Below this density Coulomb forces
dominate, an isolated defect raises the energy of the
Wigner crystal and the ground state is crystalline. Above
this density the zero-point vibrational energy begins to
overwhelm the Coulomb energy and a condensation of
defects is favored. From our calculations we find
r,(CI)=15+%1 while r,(V)=9=+1, for the critical density.
These densities are much higher than the r,=37+5 cal-
culated by Tanatar and Ceperley, implying either (1)
point defects are not responsible for a continuous melting
mechanism and/or (2) the anharmonic terms in the ex-
pansion of the defect energies move the critical density
nearer the Tanatar and Ceperley value. The energies of
the extended defects such as dislocations, disclinations,
and grain boundaries that have been investigated in re-
gard to the thermal melting of the Wigner crystal* are
not calculated here. Although a dislocation, for example,
can be viewed as a semi-infinite line of CI spaced one lat-
tice constant apart, the present work cannot be expected
to model the energetics of these defects well, as all point
defects studied here are well separated. Anharmonic os-
cillator terms must be included if our estimate of the crit-

ical r; is to be improved. Assuming all anharmonic
effects are included in the C,(defect) terms, C, =~ —2.1is
necessary in order that r (CI) equal the Tanatar and
Ceperley value of r, =~ 37.

V. POINT DEFECTS: INTERACTION

When elasticity theory is applied to the interaction be-
tween a point defect in the 2D Wigner crystal and its im-
ages, it predicts an interaction that scales at large separa-
tions r as r 2, for a defect of low symmetry, such as the
vacancy or EI and as r 3 for a defect of higher symme-
try, such as the CL.* Our periodic boundary conditions
always yield a rectangular superlattice of defects with the
two sides of the supercell in the proportional of 3V/3 to 5.
As the dimensions of the supercell ¢ are changed only the
scale of the superlattice is changed, not its shape. There-
fore, regardless of the specific tensor nature of the in-
teraction, the net effect of the supercell size changes
should scale exactly the same way with r as the single
pair interaction, provided that the minimum separation
between defects is in the large separation regime. In Fig.
5, the increase in defect Coulomb energy is plotted
against the characteristic interdefect separation length
r=v' A, raised to the power predicted by elasticity
theory. The interaction between both EI’s and vacancies
scale roughly as 2, as expected, although the three
largest systems tested most closely fit an exponent of 2.3
for the vacancy and 2.1 for the EI. The interaction be-
tween CI’s does not seem to scale as » ~3 over the range of
supercell sizes tested; in fact the form r ~2 fits better over
the system sizes tested. Either the interaction between CI
does not scale as » ~° at large distances as predicted by
elasticity theory, or a separation of 20 to 30 lattice con-
stants is not enough to bring the CI interaction into the
large separation regime.

VI. CONCLUSIONS

The energies of point defects in the 2D Wigner crystal
have been calculated very accurately. Earlier work on
the subject by Fisher, Halperin, and Morf* has been
corrected and extended. In particular, we find only one
stable interstitial and a lower symmetry for the vacancy.
We have also obtained the next term in the large-r, ex-
pansion of the defect energies. This term arises from lo-
cal zero-point modes and is negative for both of the stable
defects.

ACKNOWLEDGMENTS

E. C. was supported in part by the National Science
Foundation. V. E. was supported by the Cornell Materi-
als Science Center, the Sloan Foundation, AT&T, the
David and Lucile Packard Foundation, and the National
Science Foundation Grant No. DMR-8958510.




43

IE. Wigner, Phys. Rev. 46, 1002 (1934).
2C. C. Grimes and G. Adams, Phys. Rev. Lett. 42, 795 (1979).
3B. Tanatar and D. M. Ceperley, Phys. Rev. B 39, 5005 (1989).

4D. S. Fisher, B. 1. Halperin, and R. Morf, Phys. Rev. B 20,
4692 (1979).

5V. Elser, unpublished.
SD. J. Adams and L R. McDonald, J. Phys. C 7, 2761 (1974).
Further techniques are given for reducing the computation

43 ENERGETICS OF POINT DEFECTS IN THE TWO- . ..

629

time of Ewald sums.

"D. Ceperley, Phys. Rev. B 18, 3126 (1978).

8L. Bonsall and A. A. Maradudin, Phys. Rev. B 15, 1959 (1977).

9S. L. Cunningham, Phys. Rev. B 10, 4988 (1974).

10w, H. Press, B. P. Flannery, S. A. Teukolsky, and W. T.
Vetterling, Numerical Recipes (Cambridge University Press,
New York, 1986). The subroutine FRPRMN and its associated
subroutines were used.



